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We study a competitive reaction model between two monomers A and B on a linear lattice. We assume that
monomer A can react with a nearest-neighbor monomer A or B, but reactions between monomers of type B are
prohibited. We include in our model lateral interactions between monomers as well as the effects of tempera-
ture of the catalyst. The model is considered in the adsorption controlled limit, where the reaction rate is
infinitely larger than the adsorption rate of the monomers. We employ site and pair mean-field approximations
as well as static Monte Carlo simulations. We determine the phase diagram of the model in the plane yA versus
temperature, where yA is the probability that a monomer of the type A arrives at the surface. This phase
diagram shows regions of active and absorbing states separated by a line of continuous phase transitions.
Despite the absorbing state of the model to be strongly dependent on temperature, we show that the static
critical exponents of the model belong to the same universality class of the directed percolation.
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I. INTRODUCTION

Phase transitions in systems out of the thermodynamic
equilibrium are very common in many branches of science.
These transitions are obtained when some external param-
eters change, such as temperature, pressure, electric, or mag-
netic fields. Unfortunately, we do not have until now a suc-
cessful theory to account for these problems as in the
equilibrium statistical physics. The detailed balance condi-
tion fails in treating nonequilibrium states and the distribu-
tion of states according to the Boltzmann weight factor can-
not be employed. Despite this fundamental difficult, the
methods developed in the study of phase transitions in equi-
librium statistical physics are usually extended to throw
some light in the behavior of the nonequilibrium problems.

A particularly interesting class of problems that have been
studied exhibits phase transitions from active states, where
large scale spatial and temporal fluctuations are present, to
inactive states, where fluctuations are completely absent. The
simplest example of this type of phase transition is the con-
tact process that models the spreading of a disease �1,2�,
where the external parameter that drives the system to an
inactive �absorbing� state is the rate of change of healthy
individuals into unhealthy ones. There are other examples of
transitions to an absorbing state: surface catalytic reaction
models �3�, transition to turbulence �4�, traffic flow �5�, etc.

The relevant universality class associated to these transi-
tions is the directed percolation �DP� �6,7�. The experimental
determination of the critical exponents in the phase transition
to an absorbing state is a difficult task, because in real sys-
tems there are always small fluctuations due to the presence
of impurities and other inhomogeneities �8�. Recently, Ka-
zumasa et al. �9� observed a phase transition between differ-
ent turbulent states in nematic liquid crystals and showed
that the set of static critical exponents is in full agreement
with those defining the DP in 2+1 dimensions.

Catalytic reaction models are a class of nonequilibrium
systems that exhibit a phase transition into absorbing states.
Besides the mentioned Ziff, Gulari, and Barshad model �3�,
there are in literature many interesting examples of the cata-

lytic reaction models �10–13�. In this work we focus our
attention on a particular catalytic reaction model with com-
petitive reactions between monomers of types A and B: the
autocatalytic reaction A+A→A2 �14�, and the simple
monomer-monomer reaction A+B→AB �15�. This competi-
tive reaction model was studied through dynamical mean-
field approximation and Monte Carlo simulation �16,17�, and
the critical exponents of the model are in the same univer-
sality class of the directed percolation. The absorbing state is
unique with the lattice completely poisoned by monomers of
type B.

In order to allow the presence of phase transitions to mul-
tiple absorbing configurations we include in our model lat-
eral interactions between nearest-neighbor adsorbed species
�18–22� as well as thermal effects �23�. We determine the
phase diagram of the model in the plane temperature versus
partial pressure of monomers A in the gas phase. Depending
on the temperature and partial pressure of the monomers of
type A, the resulting absorbing state is a poisoned state with
different concentrations of the A and B species. Despite this
fact, the static critical exponents of the model are in the same
universality class of the DP. This fact is interesting, because
one of the premises of the DP assumption �6,7� is the unique-
ness of the absorbing state. This paper is organized as fol-
lows: in the next section we describe the model and the
mean-field calculations in the site and pair approximations.
In Sec. III we present our Monte Carlo simulations along
with finite-size scaling arguments to determine the critical
behavior of the model. Finally, in the last section we present
our conclusions.

II. INTERACTING REACTION MODEL

The system we are considering consists of two reacting
models, the autocatalytic reaction A+A→A2 �14�, and the
simple monomer-monomer reaction A+B→AB �15� on a
one-dimensional substrate. Monomers A and B arrive at the
substrate, which is in contact with an infinite reservoir of
monomers, with probabilities yA and yB, respectively, where
yA+yB=1. These probabilities are related to the partial pres-
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sure of the gases inside the reservoir. Each monomer can
occupy only a single vacant site in the lattice and reactions
can occur only if monomers are nearest neighbors in the
lattice. The basic steps to describe the reactions are the fol-
lowing:

�i� A�g�+v→A�a�,
�ii� B�g�+v→B�a�,
�iii� A�a�+A�a�→A2�g�

↑, and
�iv� A�a�+B�a�→AB�g�↑.
where labels �g� and �a� denote a monomer in the gaseous

and in the adsorbed phases, respectively. The first two steps
describe the adsorption of the species on the substrate and
the symbol v represents a vacant site. Steps �iii� and �iv�
describe the possible reactions between adsorbed monomers
occupying nearest-neighbor sites. As we will define next, the
probability of a reaction between monomers depend on tem-
perature and magnitude of the lateral interactions. Immedi-
ately after a reaction, A2 or AB molecules leave the catalyst
and a pair of nearest-neighbor vacant sites is generated on
the substrate. We disregard in this model any type of diffu-
sion of the species over the lattice.

This model was previously studied by Costa and
Figueiredo �16�, in the adsorption controlled limit, where the
rate for the reactions is much larger than the rate for adsorp-
tion. There, always monomer A sees a nearest neighbor the
reaction occurs without delay and the probability of A to
react with another monomer A is the same as to react with
monomer B. This model exhibits a unique absorbing state,
which is characterized by a lattice completely poisoned by
monomers of type B.

Besides the temperature of the catalyst, we also consider
the lateral interactions between the adsorbed species. In the
first place, for the adsorption process to occur, the existence
of vacant sites on the lattice is not sufficient. Every time we
try to deposit a new monomer on a vacant site of the lattice,
we calculate the change in energy �E that this event would
cause in the whole system. We assume that there is a repul-
sive energy ����0� between nearest-neighbor pairs of A
monomers or A and B monomers, as well as, between mono-
mers and catalyst. The interaction energy between two
nearest-neighbor adsorbed monomers of type B is taken
equal to zero. For any temperature, the probability that
monomer B is adsorbed is one, provided that its nearest
neighbors are vacant sites or occupied by monomers B. On
the other hand, monomer A is always adsorbed if its nearest-
neighbor sites are both empty. Finally, thermal effects are
taken into account only when we try to deposit a given
monomer that can react with one of its nearest neighbors.
The probability that the monomer is adsorbed on the sub-
strate is chosen to be given by the Boltzmann-like weight
factor

� =
2

1 + e+�E/kBT , �1�

where the temperature T of the substrate is measured in units
of � /kB, and kB is the Boltzmann constant. The possible en-
ergy changes due to the deposition of a monomer that can
react are Avv→AAv, Avv→ABv and AvB→ABB, for

which �E=2�, where v represents an empty site. For the
transitions AvA→AAA, AvB→AAB, AvA→ABA and BvB
→BAB, we have �E=3�. Then, due to the interaction en-
ergy parameters of our model, we always have �E�0,
which gives �→0 when T→0 and �→1 at high tempera-
tures. Factor 2 in the last equation is to assure that probabili-
ties are in the range from 0 to 1. If the monomer is not
adsorbed, it reacts with probability �1−��. This choice re-
covers, in the limit T→0, the model considered by Costa and
Figueiredo �16� where the absorbing state is unique, corre-
sponding to a lattice completely filled with monomers B. In
that model, it is not possible for a monomer of type A to stay
adsorbed in the presence of another A or B monomers, and
Eq. �1� for T→0 is consistent with an absorbing state with
only B monomers in the lattice. As will see next, at a finite
temperature, it is possible to find absorbing states with dif-
ferent concentrations of monomers A and B. Also, in the
present model, the order parameter is the fraction of vacant
sites in the lattice.

This study is not meant to describe realistic catalytic mod-
els. Our main purpose is to show that systems with a multi-
tude of absorbing configurations can belong to DP universal-
ity class. This is not a trivial result because due to the
thermal effects, when temperature is changed from very low
to very high values, we found a continuous set of absorbing
states. Concerning the values of the interaction energy be-
tween pairs of particles, and particles and catalyst, we would
like to say that by using different figures for these energies,
we only change the location of the line of critical points;
however, the critical exponents, as is well known from the
renormalization-group theory, are not affected by the magni-
tude of the interaction parameters.

A. Mean-field site approximation

In this approximation we disregard the correlations be-
tween nearest-neighbor sites. We define the densities pi for
each one of the species, that is, i can represent monomers A
and B or the vacant sites v. The system is considered trans-
lationally invariant and the densities are normalized, pv+ pB
+ pA=1. In order to write the master equation for the time
evolution of these densities, we need to determine the tran-
sition probabilities corresponding to all possible processes
concerning this competitive reaction model. We summarize
them by the following five steps:

�1� T1 :A+v→A�a�,
�2� T2 :A+v→A2↑+2v,
�3� T3 :A+v→AB↑+2v,
�4� T4 :B+v→B�a�, and
�5� T5 :B+v→AB↑+2v.
For instance, the rate corresponding to the second step is

given by

T2 = yapv�2pvpA�1 − �1� + �pA
2 + pApB��1 − �2��

where �1,2=2�1+e+�E1,2/kBT�−1, and �E1,2=2�, 3�
The gain and loss equations for the densities of monomers

A and B can be written in the form
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d

dt
pA = T1 − T2 − T5 �2�

and

d

dt
pB = T4 − T3. �3�

The equation for the order parameter of the system pv
comes from the constraint pv+ pA+ pB=1. We solve this sys-
tem of equations by the fourth-order Runge-Kutta method
with the initial condition pv=1, i.e., empty lattice. We look
for the stationary states of the model as a function of tem-
perature and partial pressure of monomers A in the gaseous
phase. In Sec. III we present the phase diagram for this
model in this approximation along with the results from pair
approximation and Monte Carlo simulations.

B. Mean-field pair approximation

This is the simplest approximation beyond the one-site
approximation. Here, we introduce the correlation between
two nearest-neighbor sites of the lattice. We introduce con-
ditional probability P�i � j�, which is the probability that a
given site to be of type i, given that one of its nearest neigh-
bors is of type j. Therefore, we can write for the probability
of a nearest-neighbor pair �ij� in the lattice

pij = pjP�i�j� . �4�

The pair probabilities are related to the densities of mono-
mers A and B and to the fraction of vacant sites by the
relation

pj = �
i

pij . �5�

Pairs �ij� and �ji� occur with the same probability in the
lattice and this model allows the presence of all pairs of
nearest-neighbor sites in the lattice. Therefore, we can write
for the densities

pA = pvA + pBA + pAA,

pB = pvB + pBB + pBA,

pv = pvv + pvA + pvB. �6�

In this approximation �24� we assume that the probability for
a larger cluster is written as a product of nearest-neighbor

pair probabilities, and that the system is translationally in-
variant. As we have made in the site approximation, we need
to consider the change in energy after we try to deposit a
given monomer on the substrate. All the possible transitions
between pairs of nearest neighbors in the lattice can be seen
in the Table I. In this table the � means that the transition is
not possible. For instance, the transition from pair BA to Bv
occurs with a rate transition T11 every time monomer A or B
arrives at a empty site in the vicinity of monomer A of this
central pair. Then, we can write the following expression for
the transition rate T11:

T11 = yapBA� pvA

pA
�	� pvv

pv
��1 − �1� +

1

2
� pvA + pvB

pv
��1 − �2�


+ ybpBA� pvA

pA
�	� pvB + pvv

pv
��1 − �1�

+
1

2
� pvA

pv
��1 − �2�
 , �7�

where the probabilities �1 and �2 are the same used in the
site approximation. After we calculate the other transition
rates of Table I, we can establish the set of gain-loss equa-
tions for the pair densities

d

dt
pvB = T2 + T6 + T11 − T4 − T5 − T12, �8�

d

dt
pvA = T1 + T9 + T10 − T3 − T7 − T8, �9�

d

dt
pvv = 2�T3 + T4 − T1 − T2� , �10�

d

dt
pBA = T7 + T12 − T9 − T11, �11�

d

dt
pAA = 2�T8 − T10� , �12�

d

dt
pBB = 2�T5 − T6� . �13�

This last equation can also be obtained from the constraint

TABLE I. Possible transitions among different configurations of pairs of nearest neighbors in the
lattice.

From→
To↓ v−v v−A v−B B−B B−A A−A

v−v � T3 T4 � � �

v−A T1 � � � T9 T10

B−v T2 � � T6 T11 �

B−B � � T5 � � �

B−A � T7 T12 � � �

A−A � T8 � � � �

COMPETING REACTION MODEL WITH MANY ABSORBING… PHYSICAL REVIEW E 81, 021114 �2010�

021114-3



pBB = 1 − pAA − pvv − 2�pvA + pBA + pvB� , �14�

which comes from Eq. �6� and from the normalization for the
densities pA+ pB+ pv=1. Again, we solve this set of simulta-
neous equations by the fourth-order Runge-Kutta method
starting with the initial condition pv=1. The stationary states
of the model are determined as a function of temperature and
partial pressure of monomers A in their gaseous phase yA and
the results will be present in the next section.

C. Monte Carlo simulations

We have determined the phase diagram and the critical
behavior of the model through Monte Carlo simulations. We
consider a linear lattice of size L, with L ranging from 256 to
16 384. We employ periodic boundary conditions and we
start our simulations with an empty lattice. We applied a
continuous time algorithm in order to save time. In this way,
instead of looking for an empty site in the whole lattice, we
restrict our search to the sites of a list of empty sites at each
instant of time. This is very efficient because close to the
absorbing states the number of empty sites is very small.

For each value of temperature T and partial pressure yA of
the monomers of type A in the gaseous phase the algorithm
reads: �i� a site is randomly chosen from the list of empty
sites in the lattice, and we count the number of monomers A

and B that are its nearest neighbors; �ii� with probability yA,
monomer A will be adsorbed in the selected site if there is no
A nor B monomer in its neighborhood, and in this case the
list of empty sites decreases by one. If there is at least one
monomer A or B in its neighborhood, then we take the fol-
lowing action: we calculate the probability �, Eq. �1�, and
select a random number between 0 and 1; if � is larger than
the random number then monomer A is adsorbed; and if not,
it reacts and leaves the lattice, increasing the number of
empty sites of the list by one unit. Similarly, with probability
yB=1−yA, monomer B will be adsorbed in the lattice unless
there is at least one monomer of type A in its neighborhood.
In this case we also need to determine the probability � in
order to know if monomer B will be adsorbed in the selected
site. We consider equal reactivities for both species, that is, if
we have as nearest neighbors of monomer A, monomer B,
and another monomer A, the reaction, if it occurs, is chosen
randomly between the two possible paths.

After the system reaches the stationary state, we start
measuring the densities of both species, pA and pB, as well as
the density of vacant sites in the lattice, pv. We would like to
mention that only the surviving configurations, which did not

FIG. 1. Order parameter pv as a function of yA in the site and
pair mean-field approximations. Monte Carlo simulations are also
shown for four lattice sizes L. The temperature is T=0.5, and it is
measured in units of � /kB.

FIG. 2. The same legend as in Fig. 1 but for T=1.3.

FIG. 3. Phase diagram of the model in the plane yA versus T.
Monte Carlo simulations �squares�, pair mean-field approximation
�inverted triangles� and site mean-field approximation �circles�.
Each critical line separates the active phase �top� from the absorb-
ing phase �down�.

FIG. 4. Coverages of species A and B, in the Monte Carlo simu-
lations, as a function of temperature for which we have the phase
transition from the active to the absorbing state. The concentration
of empty sites is zero.
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enter into the absorbing state, are used to calculate the aver-
age values of the densities. We show in Figs. 1 and 2 the
mean-field results along with the Monte Carlo simulations,
for the order parameter pv as a function of yA for two se-
lected values of temperature. The transition from the active
to the absorbing state is always continuous for any value of
temperature. At low temperatures, as in Fig. 1, the agreement
between mean-field results and Monte Carlo simulations is
good only far away of the critical point. As to be expected, at
the critical point, pair and site approximations underestimate
the critical value of the partial pressure. However, when we
increase the temperature, Monte Carlo results are completely
different from the mean-field calculations as we can see in
Fig. 2 for T=1.3 for all values of the parameter yA. At high
temperatures, the probability of monomer A to become ad-
sorbed is very large, and the partial pressure of A monomers
needs to increase in order to have an active state in the lat-
tice.

Figure 3 displays the phase diagram in the plane yA versus
T in the site and pair mean-field calculations as well as in the
Monte Carlo simulations. For each value of temperature,
there is a critical value of the partial pressure yA, below
which the lattice is completely poisoned by monomers A and
B. However, there is a maximum value of temperature to
have an active state in the lattice. For instance, in the site

approximation this temperature is T=2.70, in the pair ap-
proximation T=1.83, and in the simulations we have T
=1.347. We show in Fig. 4 the concentration of species A
and B as a function of temperature at the corresponding criti-
cal point.

While at T=0 the critical point is characterized by a lat-
tice completely filled with B monomers, at temperatures
larger than T=1.35 the absorbing state is formed only by
monomers of type A. However, at intermediate temperatures,
the absorbing state is a mixture of the species. In fact, we
observe a continuum of absorbing states from T=0 to T
=1.35. Figure 5 shows the coverages of species as a function
of the critical partial pressure for T=1.35, which is a little
above the maximum temperature observed in the Monte
Carlo simulations. Again, we see that the absorbing state is a
continuum of configurations ranging from a pure B state at
yA�0 to a pure A state at yA�1.

We have shown in Fig. 3 the phase diagram of the model,
where continuous phase transitions occur from the active to
absorbing states. To find the critical exponents of the model,
we choose some points of the phase diagram, corresponding
to different temperatures, and we consider the behavior of
the order parameter, which in our case is the fraction of
empty sites, pv, in the neighborhood of these points. We
performed a finite-size scaling analysis for the order param-
eter �25�. We assume that it is a generalized homogeneous

FIG. 5. Coverages of species A and B and of the empty sites, in
the Monte Carlo simulations, as a function of yA at T=1.35.

FIG. 6. Log-log plot of the order parameter pv versus the system
size L for some selected values of yA as indicated in the figure. The
temperature is T=0.5 and the straight line �triangles� gives the criti-
cal value of the parameter yA.

FIG. 7. The same legend as in Fig. 6 but for T=1.3 and straight
line �stars�.

FIG. 8. Collapse of the data points of Fig. 6. The figure is a
log-log plot of pvL�/�� versus �yA−yAc

�L1/��. The best collapse was
found with the values �=0.272�1� and ��=1.083�8�.
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function of variables L, the linear size of the system, and
�=yA−yAc

, which measures the distance from the critical
point yAc

,

pv��,L� 	 L−�/��f��L1/��� , �15�

where � and �� are the order-parameter critical exponent
and the critical exponent associated with the spatial correla-
tion length, respectively. The scaling function f�x�	x� holds
for large values of x. At the critical point where �=0, we can
write that

pv 	 L−�/��, �16�

and we can find the ratio � /�� from the straight line behav-
ior of the log-log plots of pv versus L. We show in Figs. 6
and 7 the behavior of pv versus L for the temperatures T
=0.5 and T=1.3, respectively. The central curve in Fig. 6
gives the critical value yAc

=0.6432�1� and for the ratio
� /��=0.256 89�6�. Analogously, from Fig. 7, we found the
critical value yAc

=0.868 55�10� and the ratio � /��

=0.248 86�6�. In Figs. 6 and 7 as well as in Figs. 8 and 9, we
considered the following values of L: 256, 512, 1024, 2048,
4096, 8192, and 16 384, although we did not include all the
points in these plots in order to leave these figures more
clear. However, all seven lattices were used in the calculation
of the critical point and the related critical exponents.

We can also estimate the critical exponents by collapsing
the data points of Figs. 6 and 7 obtained for four different
lattice sizes. From the log-log plot of pvL�/�� versus

�yA−yAc
�L1/�� we can tune the values of � and �� in order to

have the data points in the same curve. For large values of
the argument of the function f in Eq. �15�, the data should
fall on a straight line with slope �. Figure 8 displays the
collapse of the data for T=0.5, while Fig. 9 shows the col-
lapse for T=1.3. For T=0.5, the best results we find are �
=0.272�1� and ��=1.083�8�, and for T=1.3 we find �
=0.269�3� and ��=1.087�4�. In Table II, we summarize the
results for some selected temperatures as well as the results
found earlier at T=0 �16�, and the best values for the DP
universality class �26�. Despite the system to exhibit many
different absorbing states, which depend on temperature, our
exponents are in close agreement with those of the Directed
Percolation.

III. CONCLUSIONS

We have studied in this work a one-dimensional model of
competitive reactions where we considered thermal effects
and lateral interactions between nearest-neighbor monomers.
In our analysis we have employed mean-field calculations at
the site and pair approximations as well as Monte Carlo
simulations. The model exhibits continuous phase transitions
between active and absorbing states. We determined the
phase diagram of the model in the plane temperature versus
partial pressure of one of the reactants. We have found a
continuum of absorbing states when we change the tempera-
ture from low to high values. Although we have determined
a continuum of absorbing states as a function of temperature,
the critical exponents � and � associated to the transition
from the active to absorbing states do not depend on tem-
perature. The values we have found for these critical expo-
nents are in the DP universality class. This fact does no con-
tradict the DP conjecture advanced by Grassberger �7�,
where continuum phase transitions to an absorbing state,
with local evolution rules and not conserved order parameter,
belong to the directed percolation universality class. There
are other examples in the literature of multiple absorbing
configurations but with a unique absorbing state for which
the order parameter is zero. This is the case observed in the
pair contact process �27� and in some models in catalysis
�28–30�. A word of caution must be said about the static and
dynamical critical properties of the models with multiple ab-
sorbing states. For instance, the one-dimensional pair contact
process and the dimer reaction models belong to the DP

FIG. 9. Collapse of the data points of Fig. 7. The figure is a
log-log plot of pvL�/�� versus �yA−yAc

�L1/��. The best collapse was
found with the values �=0.269�3� and ��=1.087�4�.

TABLE II. Critical exponents of the order parameter ��� and of the correlation length ���� for some
selected temperatures.

Exponent T=0 a T=0.5 T=0.9 T=1.3 T=1.33 DP b

� 0.27�2� 0.272�8� 0.276�8� 0.269�7� 0.271�8� 0.276486�8�
�� 1.07�3� 1.083�8� 1.088�3� 1.087�4� 1.088�7� 1.096854�4�
aReference �16�.
bReference �26�.
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universality class regarding their static critical behavior
�27,31�. However, the dynamical critical properties of both
models are nonuniversal, the exponents depending upon the
nature of the initial conditions �31�. In order to describe this
complex behavior, a generalized scaling theory was devised
where the dynamic critical exponents can change according
to the initial configurations �32�.
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