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We consider various anomalous d-dimensional diffusion problems in the presence of an absorbing boundary
with radial symmetry. The motion of particles is described by a fractional diffusion equation. Their mean-
square displacement is given by (r?)o"(0<y=1), resulting in normal diffusive motion if y=1 and subdif-
fusive motion otherwise. For the subdiffusive case in sufficiently high dimensions, divergent series appear
when the concentration or survival probabilities are evaluated via the method of separation of variables. While
the solution for normal diffusion problems is, at most, divergent as t— 0, the emergence of such series in the
long-time domain is a specific feature of subdiffusion problems. We present a method to regularize such series,
and, in some cases, validate the procedure by using alternative techniques (Laplace transform method and
numerical simulations). In the normal diffusion case, we find that the signature of the initial condition on the
approach to the steady state rapidly fades away and the solution approaches a single (the main) decay mode in
the long-time regime. In remarkable contrast, long-time memory of the initial condition is present in the
subdiffusive case as the spatial part W(r) describing the long-time decay of the solution to the steady state is
determined by a weighted superposition of all spatial modes characteristic of the normal diffusion problem, the
weight being dependent on the initial condition. Interestingly, W, (r) turns out to be independent of the anoma-

lous diffusion exponent 7.
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I. INTRODUCTION

Over the last few decades, the attitude of the scientific
community toward fractional calculus has been changing
rapidly. While for many years this discipline was regarded as
a relatively arcane field of mathematics, more recently it is
increasingly appreciated as a useful, at times even indispens-
able, tool for the study of a broad array of scientific problems
in physics, biology, geology, engineering, economics, etc
[1-5]. Fractional differential equations, and in particular,
fractional diffusion equations have been successfully used to
describe anomalous diffusion processes [2,4-12].

An important class of (normal and anomalous) diffusion
problems are those with radial symmetry [6,13]. In this pa-
per, we shall consider problems of this class in the presence
of absorbing boundary conditions. This kind of boundary
condition is characteristic of the subclass of so-called exit or
escape problems, which find a wide application in biology
and other disciplines and are the subject of the theory of
first-passage processes [ 14,15]. Independently of whether the
problem at hand makes it advisable to work with the forward
or with the backward (adjoint) Smoluchowski equation, a
route to the solution of the first-passage problem involves the
use of an absorbing boundary condition which allows one to
identify the exit process with an irreversible absorption step.
In general, the resulting equations are not exactly solvable in
dimensions d>1; however, in the rather common situation
where the system has radial symmetry the hope to find exact
solutions for the resulting two-variable (spatial and temporal)
problem is much more justified. In such cases the solution of
the problem for this “two-body” system (i.e., the diffusing
particle and the absorbing surface) may prove useful to de-
vise suitable approximations for more complex many-body
problems.
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A known example of this is found in the so-called trap-
ping problem, where one seeks to compute the survival prob-
ability of a diffusing particle in a d-dimensional sea of ran-
domly distributed, static, and fully absorbing traps. This
problem is amenable to exact analysis in the asymptotic,
long-time regime [16,17]. Moreover, if the particle and the
traps diffuse [10,18-22], the problem can still be tackled
analytically, but the method involves the solution of two
first-passage problems. In the first one asks what is the prob-
ability that a diffusing particle gets trapped by the perfectly
absorbing surface of an immobile hypersphere when it starts
diffusing from a point outside the hypersphere (this problem
is also termed the “target problem” in the literature [15]).
The second first-passage problem deals with exactly the
same setting, except that the diffusive particle is initially
located at an interior point of the hypersphere [23] (in what
follows we shall refer to this problem as the “escape prob-
lem”). The d-dimensional trapping problem in which the par-
ticle and/or traps can be subdiffusive has recently been
solved by means of the fractional diffusion formalism
[12,22,24]. The long-time behavior of the solution turns out
to be different from that of the corresponding normal diffu-
sion problem in a rather surprising way. A similar surprising
behavior is found in the long-time solutions of the problems
considered in this paper. This shows that, in general, normal
diffusion results are not immediately extendable to anoma-
lous diffusion systems, which calls for a careful consider-
ation of these anomalous diffusion problems. The usual rea-
son for studying diffusion problems in dimensions d>3 (as
it is done in this paper) is that the dependence of physical
phenomena on the dimension provides a better understanding
of their behavior via additional insights on the role of the
underlying geometry [4,15,25]. However, in some cases, the
d-dimensional results with d>3 can be directly useful: for
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example, some N-particle diffusion problems in one dimen-
sion can be mapped into N-dimensional diffusion problems
for a single particle (Chap. 8) [15].

The d-dimensional fractional diffusion equation for a
spherically symmetric diffusive field c(r,?) is

de(r,1) D (o"zc(r 1)

d—10dc(r,t)
ot =K ) W)

rt r ar

where c(r=|#],t) is the solution at 7, y is the anomalous
diffusion exponent, and K, is the anomalous diffusion coef-
ficient. The limit y— 1 corresponds to ordinary normal dif-
fusion. In what follows, we shall regard c¢(r,f) as a particle
concentration, but of course our results would be valid for
any other physical quantity described by these equations.
The nonlocal integrodifferential operator

I 19 ! . c(nt')
oD; Vc(r,t)—r(y)atj()dt —(t—t’)l_y’ (2)

is the Riemann-Liouville fractional derivative of ¢(r,?) with
respect to time. In the diffusive limit, Eq. (1) describes the
spatiotemporal behavior of the concentration of continuous
time random walkers (CTRW) when the probability distribu-
tion for the waiting time of the walkers between two succes-
sive steps follows the power-law decay #~'~” at long times
[5]. In this case, the mean-square displacement of each
walker grows as (r?)oct? for large ¢.

When seeking the solution of many normal diffusion
problems by means of the method of separation of variables,
one finds that the solution can be written as a linear super-
position of exponentially decaying modes (eigenfunctions)

()

c(r,1) = c(r,%) + 2, a, i, (r)exp(= N, 1), (3)

n=1

where the eigenvalues A\, satisfy 0 <A; <\,... and where the
specific initial condition of the problem is reflected in the
corresponding specific set of coefficients {a,,}.

Similarly, if one applies this method to the fractional dif-
fusion Eq. (1), it turns out that the time dependence is de-
scribed by a Mittag-Leffler function E,(-) [1,5] rather than
by an exponential function. Thus, the corresponding frac-
tional solution reads [5,6]

c(r,0) = e(r,) + 2 a,Eo(= Nt ") (). (4)

n=1

When y— 1, E,(=\,?) becomes exp(—\,?) and one recov-
ers the solution of the normal diffusion problem (3). Using
the asymptotic formula [26]

“ m+1
E ( l) Zm

Ey(_ 9= m=1 NG m'y)

, Z— o, (5)

one gets the long-time form of the solution
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)n+1 -
c(r,t) = c(r,) + 21 - ) ", (r) (6)
with
W, (r) = 2 a\" e (r). (7)
k=1

In the normal diffusion case described by Eq. (3), the small-n
modes ,(r) corresponding to n=1,2,... can be interpreted
as spatial patterns whose relative weight in the solution se-
ries becomes increasingly important in the course of the tem-
poral evolution. For sufficiently long times one has [c¢(r,?)
—c(r,o)]/exp(—=N\1) < i, (r), i.e., the dominant decay mode
is ¢(r). Similarly, for the subdiffusive case the small-n
modes W, (r) corresponding to n=1,2,... can be interpreted
as spatial patterns whose relative weight in the solution se-
ries (6) becomes increasingly important in the course of the
temporal evolution. It therefore seems appropriate to term
these functions W, (r) as long-time subdiffusive modes. For
sufficiently long times the dominant subdiffusive mode cor-
responding to m=1 is

[e(r,t) = c(r, @)Y = 25 a N, () =T, (r). (8
n=1

This result is very interesting; note that for normal diffusion
problems the signature of the initial condition rapidly fades
away because the weight of the eigenfunctions #,(r) rapidly
becomes negligible for large values of n and in the end only
the term proportional to #,(r) survives; however, in the sub-
diffusive case, the dominant long-time subdiffusion mode
W, (r) embodies the details of the initial condition, as it de-
pends on the full set of coefficients {a,}. This implies that, if
somehow, W, (r) (or any other subdiffusion mode, V,(r)) is
known, then these coefficients {a,} can be obtained from
W, (r) using, as usual, the orthogonality properties of the
eigenfunctions ¢,(r). Note, though, that the computation of
the explicit form of W,(r) from Eq. (7), i.e., the sum of a
series of functions, is not an easy task in general (as illus-
trated by some representative examples in Sec. II).

A second remarkable aspect is that these “multimodal”
functions W, (r) do not depend on the specific value of vy as
long as y<<1, even for values of 7 arbitrarily close to unity.
However, an abrupt transition from multimodal to unimodal
behavior takes place when switching from y<<1 to y=1,
Note that the above considerations on the long-time subdif-
fusive modes of the fractional diffusion Eq. (1) can be
straightforwardly generalized to the long-time solutions of
the fractional Fokker-Planck equation as the solution in this
case is also of the form (4) [5,27].

In this paper, we will compute the long-time solution (or,
equivalently, the long-time subdiffusive modes WV,) for some
typical fractional diffusion problems in the presence of an
absorbing boundary with spherical symmetry. In such a case
one has ¢,(r)=J,(z,r), where J,(z,r) is the Bessel function
of the first kind with p=d/2-1 and z, is its n-th zero, i.e.,
J,(z,)=0. As we will see, the route to the solution involves
the evaluation of the function series
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TABLE I. Numerical estimate of the series S(d/2—1,1) obtained by summing the first 1000 and 1001
terms and comparison with the analytical value 24?>73I'(d/2)/d up to d=8.

d 1 2 3 4 5 6 7 8
1000 0.3133 0.1250 0.1044 0.1250 0.1878 0.3222 0.0448 -9.704
1001 0.3133 0.1250 0.1044 0.1250 0.1882 0.3445 1.2981 12.759
Ana. 0.3133 0.1250 0.1044 0.1250 0.1880 0.3333 0.6714 1.5000
B e typical example is the analysis of the Casimir effect, where
Sp.mr) = >, ~L——1J (z;7). (9)  divergent series appear when one attempts to compute the
=1 Jpa(z)) force between two uncharged metallic plates in vacuo [30].

We will also show how to evaluate the related numerical
series

* Zg—Zm—l
S(p.m) = 2 ——, (10)
j=1 Jp+1(Zj)

which appears in Sec. III when computing the survival prob-
ability (or fraction of nonabsorbed particles) in the aforemen-
tioned subdiffusive escape problem. It turns out that some of
these series are divergent in spite of the fact that they repre-
sent well defined physical quantities. Thus, one of our main
tasks in the present work will be to “regularize” such series,
i.e., to assign them “sensible” values [28] compatible with
the physics of the problem and coincident with those ob-

tained by other methods. In order to sum §(p,m;r), we will
regard this series as the Fourier-Bessel expansion of a func-
tion f(r) which we will subsequently determine and identify

with the physically correct value of S(p,m;r). To regularize
the numerical series S(p,m) we will use a procedure akin to
the classical method of Abel summation. The latter uses the
functions x" as regulators of the sum X_a, to obtain f(x)
=37 ,a,x" and thus estimate = _a, as lim,_,;_ f(x). In con-
trast, the method employed in the present work uses the
functions ¢, (x)=2"p!J,(z,x)/(z,x)P as regulators to obtain
gx)=="_a,¢,(x), and thus estimate = a, as lim,_q, g(x)
[note that lim,_,,, ¢,(x)=1].

Subdiffusion processes are only one out of many research
areas in physics where divergent sums play a major role. The
regularization techniques used in the present work may
therefore be relevant beyond the specific problems consid-
ered here. For instance, the survival probability of a diffusing
particle initially located at the center of a three-dimensional
sphere whose surface is absorbing (3d escape problem) must
obviously take the value unity at t=0. However, when ob-
tained by separation of variables, the solution takes the form
of an alternating series between 1 and —1 (Grandi’s divergent
series) multiplied by the factor 2. In order to obtain the
“physically correct” value of 1/2 associated with this series it
is necessary to resort to special summation methods [28]. A
distinction between anomalous diffusion and normal diffu-
sion is that such divergent series may appear not only in the
early-time regime but also in the long-time regime. Beyond
the above diffusive and subdiffusive problems, divergent se-
ries are quite common in perturbation methods [29]. Another

The paper is organized as follows. Section II is devoted to
the sum of the series S(p,m;x) and S(p,m) by the procedure
mentioned in the paragraph after Eq. (10). In Sec. III we
present some spherically symmetric subdiffusion problems
and show how the solution of the associated fractional diffu-
sion equation leads to series of the form S(p,m;x) and
S(p,m). We subsequently discuss the physics implied by the
solution for the survival probability, and confirm the validity
of our Fourier-Bessel regularization procedure via numerical
simulations as well as an alternative method based on
Laplace transform techniques. To conclude Sec. III, we dis-
cuss the long-time approach of the subdiffusive concentra-
tion profiles to the steady state and compare it to those for
the normal diffusion case. Finally, Sec. IV summarizes the
main conclusions of the work.

II. SUM OF THE SERIES S(p,m) AND S(p,m ;x)

For odd-valued d, the Bessel functions can be written in
terms of circular functions, and some sums S(d/2-1,m) can
be easily evaluated, e.g., S(-1/2,1)=\m/32 and S$(1/2,1)
=+m/288. However, for other values of d and m the evalu-
ation is not trivial at all. Moreover, a closer inspection of the
definition (10) of the series S(p,m) reveals that it may be-
come divergent. To see this, let us denote by s; the j-th term
of the series. The denominator of s; decreases with increas-
ing j and the absolute value of its numerator turns out to
increase with j when p—2m—1>0 or, in terms of the dimen-
sion, when d—4m—4>0. Therefore, it is sure that |sj will
also increase with j when d—4m—4>0. Of course, this rule

of thumb only leads to a crude overestimate cz. of the critical
dimension d, above which S(d/2-1,m) becomes divergent:
it is only an estimate because |s;| could grow with j, even if
the absolute value of the numerator decreases with increasing
Jj, if the denominator decreases even faster than the numera-
tor. For instance, we carried out a brute-force term-by-term
sum of S(d/2-1,m) for m=1 and found that the series con-

verges numerically only for d=d, =6 (note that d.=8 in this
case). We show some of these numerical estimates in Table I.

As anticipated in the Introduction, we shall sum the nu-
merical series S(p,m) by making use of the regulator func-
tions ¢;(x)=2"p!J,(z;x)/(zpx)P. To this end, let us define the
function series

© ZR_an—l 2[)p!~
S(p,msx) = 2 ——¢;(x) = = ~S(p.m:x).  (11)
j=1 Jp+1(Zj) X

Note that for x— 0% the series S(p,m;x) becomes identical
with the numerical series S(p,m). Also, the Fourier-Bessel
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expansion of a given function g(x) is defined as

g(x) ~ 2 el (zj), (12)

where

f xg(x)J,(zx)dx. (13)

j +1(Zj)

Henceforth, the symbol ~ will stand for a Fourier-Bessel
expansion. Comparing Eq. (9) with Eq. (12) we can regard
§(p,m;x) as the Fourier-Bessel expansion of a continuous
function f(p,m;x) with coefficients

—2m-1

c; = cj(p.m) = ET (14)
p+l
i.e.,
fp,m;x) ~ S(p,m;x). (15)
Defining
2Pp
flp,m;x) = —f(P m;x), (16)

we see from Eq. (11) that f(p,m;x)~ S(p,m;x). In order to
assign S(p,m) a value, we proceed as follows. First we de-
termine  f(p,m;x) and then identify  S(p,m)
=lim,_,, S(p,m;x) with lim,_ f(p,m;x), i.e.,

27pl
S(pm) = lim f(pm:x) = im =~ F(pm:x).  (17)
x—0 x—0 X

(Even though we use the same symbol S(p,m) to denote both
the numerical series and its sum, its actual meaning should
be clear from the context in which it is used.) The fact that
this regularization procedure works (as will be shown below)
is by no means surprising. Indeed, since f(p,m;x) are poly-
nomials (see Appendix B), the Fourier-Bessel expansion
S(p,m;x) of the function f(p,m;x) is Cesaro-1 (C1) sum-
mable to  f(p,m;x) [31]. Therefore, assigning
lim,_, f(p,m;x) to S(p,m) amounts to assigning the CI-
sum of the series S(p,m;x) in x=0 to S(p,m). Furthermore,
in the next section we shall demonstrate that the value
yielded by our method coincides with the result of numerical
simulations and with the value yielded by the solution of the
corresponding subdiffusion problem in Laplace space.

Our final goal in this section will be to devise a procedure

to compute f(p,m;x) and thus obtain finite values for

S(p,m). The Fourier-Bessel expansion of f(p,m;x) is given
in terms of the coefficients (14). Using the well-known rela-
tion [31]

YOS Ay (18)
¥ .
2 j=1 Jp+1(Zj) P

together with Egs. (9) and (15) we find f(p,0;x)=x"/2.
Therefore, from Eq. (17) we see that S(p,0)=2"""p!. In or-
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der to compute f(p,m;x) for m=1 we first note that, as
shown in Appendix A,

1
du
X
LU

" ~ 1
2P+IJ dvv** f(p,m;v) ~>
0

2
j=1%j

o

cilp,m)J,(zx).

(19)

Also, one sees from the definition (14) that the relation

1

Cj(pvm + 1) = _2

J

holds. Therefore, the left-hand side of Eq. (19) defines a

function whose Fourier-Bessel expansion is S(p,m+1;x),
i.e.,

C](p’m) ’ (20)

1 u
_ d ~
Ap.m+ 1;x):x1>f _MZZHJ dvv" ' f(p,m;v), (21)
x 0

or, in a more symmetric form,

1 u
d
f(p,m+1;x)=f —2pbilj dvv*  f(p,miv).  (22)
x U 0

This relation allows one to generate the f(p,m;x)’s recur-
sively from f(p,0;x)=2P"!p!. In fact, it is possible to prove
(see Appendix B) that

(= D" (p)>x™"
22 =P\ (m + p)!

flp.m:x) =

m

(= Dp! .
B z 221 (k +p)!f(p’m “kx) o (23)

so that f(p,m;x) is a polynomial of degree 2m. From the
above recursion we get, for example,

2

flp.1;x)=2"""p! L=

41 +p)’ @24)

and

e 3+p-22+p)x>+(1+p)x*
f(p.2;x) =2 p! 3201+ p)22+p) . (25)

Taking the limit x— 0% in Eq. (23) and using the definition
(17) gives

m

_ 1)\k+1
S(p.m) = pz Ch

mS(p,m -k), (26)

with S(p,0)=27"1p!.

III. THREE SUBDIFFUSION PROBLEMS WHERE THE
SERIES S(p,m) AND §(p,m;x) APPEAR

As anticipated in the Introduction, in the present section
we shall consider the subdiffusive version of three standard
d-dimensional diffusion problems whose solution involves

the Bessel series S(p,m) or §(p,m;x). The three problems
considered have spherical symmetry and an absorbing sur-
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face, i.e., a surface on which the solution c(r,f) must be zero
at any time f.

A. Survival probability of a subdiffusive particle starting at
the center of a hypersphere with absorbing surface

The numerical Bessel series S(p,m) appears in the first
problem we shall consider, namely, the calculation of the
probability (survival probability) W(R,¢) that a subdiffusive
particle starting at the center of a d-dimensional hypersphere
of radius R has not reached its absorbing surface by time ¢
[13,23,24]. This problem was addressed, but only partially
solved, in the appendix of Ref. [24]. In this section we solve
it in full. The solution for this subdiffusive version of the
escape problem can be found by separation of variables (or
eigenfunction method) [32]. For a generic initial concentra-
tion c(r,0)=cy(r) one gets

” 2
c(r,)=2, ajrl_d/z.ld,z_l(zjr/R)Ey{— (%) Kyﬂ] . (27)

J=1

(more details can be found in the appendix of [24]). By vir-
tue of the orthogonality properties for the Bessel functions
I (])xJa(zjx)Ja(zmx)dx=Ji+l(zj)ém’j/ 2, the coefficients a; can
be expressed as

2 N darn
ai=—>——| r"co(r)Jyo_i(z;r/R)dr. 28
i R2J§1/2(Zj)f() o(rJap 1(Z, ) (28)
For the present case where one deals with a single point
particle starting from the center of the hypersphere one has
c(r,O):sgl(r) 8,(r), where &8,(r) is the slightly modified
Bessel  function  with [ g 8. (r)dr=1, and  s4(r)
=272r1/T'(d/2) is the surface of a d-dimensional hyper-
sphere of radius r. In this case Eq. (27) becomes

- di2-1 1-di2
c(r =2 (‘ZL) /erJd/H(ELr)
o1 \2R 7?R%T;,(2) R
3 2
XE, —(;) K7, (29)
Using the asymptotic expansion (5), one gets for long times
*© (_ 1)m+1 ( R2 )m
=2 ——| =] V.0, 30
=2 ) Y G0
where the long-time subdiffusion modes are
2 1-dr2 ~ ZL.I/Z—Zm—l )
\I,m(r) = 7f'd/§) d/2+1 12 d/2—1 ELV . (31)
RT5 Jan(z)) R

The survival probability W(R,7) we are interested in straight-
forwardly follows as

R
W(R,t)=j sy (r)e(r,t)dr
0

2-dr2 © _d2-2
2 Z;

< 2
- r(d/z)z Jan(z)) E’[_ (?el) Kyﬂ]‘ (32

To obtain the long-time survival probability (long-time reac-
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FIG. 1. Simulation results (symbols) for the survival probability
of a subdiffusive particle with diffusion exponent y=0.5 in an
eight-dimensional sphere of radius R=100 with absorbing surface.
The particle starts moving from the center of the hypersphere. We
carried out 5X10° realizations. The solid line log,, W=4
- %loglo t is obtained from the exact asymptotic prediction given by
Eq. (36).

tion kinetics) we insert the asymptotic expansion (5) of the
Mittag-Leffler function into Eq. (32):

92-di2. = (- 1)m+1 ( R2 )m”’ Z
r(azxz)mz=1 T(1-my)\K " 21 Junz)
(33)

d/2-2m-2
I

W(R,t) =

or, using Eq. (10),

92-d/2 - (- 1)m+1 <R2 )m
F(d/2),n2=1 T(1-my) \K S(d/2-1,m).

W(R,t) =

(34)

where the values of the coefficients S(d/2—1,m) can be
evaluated by means of Eq. (26). In particular, the first two
terms are explicitly given by the result

R? 4+d ( R )2
2T(1- ) Kp? 842 +dT(1-2)\K 1

+ 0<KR—;)3. (35)

W(R,?) =

When the subdiffusive particle is described by means of the
CTRW model [14] with the Pareto waiting time distribution
(t)=7y/(1+1)'*7, the diffusion constant becomes K.,
=1/[2dTI'(1-1)], and the leading term of the asymptotic sur-
vival probability nicely simplifies to
2
W(R,t) = Ii. (36)
R

In Fig. 1 we compare this prediction with simulation results
for d=8. We chose this value of the dimension because we
know that in this case the series S(3,1) used to compute the
numerical coefficient of the leading term of W(R,?) in Egq.
(34) is divergent (see Table I) in spite of the fact that it must
be associated with a finite physical value. The simulations
were carried out using a CTRW model with Pareto waiting
times and the anomalous diffusion exponent y=1/2. As one
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can see, the agreement between theory and simulation is ex-
cellent.

It is interesting to note that the result (35) might have
been obtained in a different way. Indeed, one can show that
the Laplace transform W(R,u)=/ o W(R,t)e™dt of the sur-
vival probability in the above problem reads

21—d/2

. u’yRZ/K (d/2-1)/2
W(R,u)=—— ( ?

. (37
wou T2 (VWRIK,)

This result is essentially obtained by taking the Laplace
transform of the adjoint fractional diffusion equation, inte-
grating over the interior of the hypersphere, and solving the
resulting equation with the pertinent boundary condition (this
procedure is described in detail in Ref. [12] for a subdiffu-
sive version of the target problem). Note that this result for
the anomalous diffusion case could have been obtained from
the normal diffusion case by performing the simple replace-
ment u—u” in the expression for uW(R,u) [8,14]. At this

point we can use the series expansion of the Bessel function
14>, [33] to write Eq. (37) as

. 11| S ®ek) |
WRu) =" - ur(d/z)[g‘o P

or, equivalently, as

i R%u”
2d K,

(d+4) <R2u7)2 . O<R2u7)3.

8(d+2)d*\ K, K,

uW(R,u) =

(39)

Inverting term-by-term this expression, we immediately re-
cover the asymptotic large-¢ behavior predicted by Eq. (35).

B. Homogeneous distribution of particles inside a hypersphere
with absorbing surface

The physical system in our second example is the same as
in the previous one, except that we now consider a homoge-
neous initial concentration of particles c¢(r,0)=c, [13,34].
Using

R d/2+1
. R J .
f ’”d/sz/z_l(Z!r)dr: d/Z(ZZ), (40)
0 R Zj

in Eq. (28) and inserting the resulting expression into Eq.
(27) one easily finds
Ty (z;r/R
c(r,t)lco=2(r/R)""?, d/z—l(Z;)Ey[— (z/R)*K 1]
j=1 Zj‘ld/Z(Zj)

(41)

For long times, one can use the expansion Eq. (5) in Eq. (41)
and get

B * (_1)m+1 (R_Z)m
c(r,t)/co_mE:l—F () \ K7 v, (r, (42
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FIG. 2. (Color online) Profile of the long-time asymptotically
dominant mode Y (r) for anomalous diffusion (solid line) and nor-
mal diffusion (dashed lines). The dashed lines correspond to d
=1,2,3,8 with increasing dimensionality from top to bottom. In
order to facilitate the comparison, all curves have been rescaled so
as to take the value unity at the origin.

where, upon use of the definitions (9) and (15), the long-time
subdiffusion modes can be written in closed form in terms of

the functions f(p,m iX):

W (r) =2(r/R)"*f(d/2 = 1,m;r/R). (43)

Regarding the behavior of the long-time dominant mode,
one sees that it satisfies c(r,7)/ ()< Y(r), where ¢(r)
=exp[—z;Kt”/R?] for normal diffusion and ¢(?)
=1/(Kt"/R?) for anomalous diffusion. Most remarkably, one
has Y (r)= ¢, (r)=(r/R)'"¥J ;,_(z,r/R) for normal diffusion
and [see Eq. (24)]

Y(r)=W,(r) = f(di2—1,1;r/R) = 1 —=r}R?,  (44)

for anomalous diffusion, i.e., the concentration profile at late
times W,(r) is different from that of the normal diffusion
case and its form does not depend either on the dimension d
or on 7. In conclusion, a minute amount of subdiffusivity in
the particle motion is seen to destroy the form
(r/R)'=%2J,_,(z;r/R) of the long-time normal diffusion
mode and leads to the subdiffusive form 1-7*/R*> which
holds for any y<<1. In Fig. 2 we show a comparative plot of
the long-time profiles Y (r) induced by normal diffusion (y
=1) and by anomalous diffusion (y<1) for different values
of d.

The aforementioned singular long-time behavior of the
solution with respect to 7 is not an exclusive feature of the
escape problem. A similar behavior has also been observed
when calculating the survival probability of a diffusing par-
ticle in a sea of mobile traps. In Refs. [10,21,22,24] it is
shown that the survival probability displays a crossover be-
tween two different asymptotic regimes: for y=1 one has a
Donsker-Varadhan decay law characteristic of the trapping
problem (where a mobile particle can be annihilated upon
contact with immobile traps), while for y<1 one has
Bramson-Lebowitz behavior associated to the target problem
(where an immobile particle or “target” surrounded by mo-
bile traps is annihilated upon contact with the latter) [24].
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C. Source of particles inside a hypersphere with absorbing
surface

The setting of our third and last example consists of a
homogeneous source of particles of strength Q placed in a
hypersphere of radius R with absorbing surface [13,34] and
zero initial concentration of particles. The temporal evolution
of the concentration is described by the reaction-subdiffusion
equation [34]

de(r,1) 1=y Pelr,t)  d—=10dc(r)
o v ol o T -
r r ar

Q). (45)

The solution reads

K c(r,t) 1= r*/R? 2<£)l_d/2
OR*> = 2d R

x% L1 (z7'R) E7<— 4Ky 7). (46)

=1 Z;J a2(z)) R?

Using Egs. (5), (9), and (15), one arrives at the long-time
result

K c(r,t) 1= IR
OR> 2

(_ 1)m+1 ( R2 >m
m=1 ra —I’I’Vy) Kyty lI,m(r),

(47)

where the long-time subdiffusion modes can again be written
in closed form in terms of the functions f(p,m;x):

W,(r) = 2(r/R) "= ?F(d/2 = 1,m + 1;r/R). (48)

If one only retains the leading term of the analytic expression
describing the approach to the stationary profile, one obtains

Kylnt) Qz(;t) - %l(l —PIR) |p(t) = X(r).  (49)

Here, one has Y (r)=4,(r)=(r/R)""¥2J,_,(zyr/R) when 7y
=1 (as in our previous example of Sec. III B) and

Y(r)=W,(r) = f(d/2 = 1,2;r/R) < 4 +d - 2(d + 2)(r/R)*
+d(r/R)*, (50)

in the anomalous diffusion case (0<y<1) [cf. Eq. (25)].
Note that the form of the dominant subdiffusion mode W (r)
describing the decay to the stationary concentration profile
depends on the dimension d, as opposed to the example in
the previous subsection [cf. Eq, (44)]. In Fig. 3 we show a
comparison of the long-time profiles Y(r) for d=1, 2, 3, and
8. In spite of the different analytic expressions for Y(r), the
similarity between the diffusive and the subdiffusive profiles
is remarkable, especially in lower dimensions. This suggests
that the impact of memory effects is smaller in the presence
of a particle source than in its absence.
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FIG. 3. (Color online) Form of the long-time dominant decay
mode Y(r) for anomalous diffusion (solid lines) and normal diffu-
sion (dashed lines) in the particle source problem. The solid and
dashed lines correspond to d=1,2,3,8 with increasing dimension-
ality from top to bottom. In order to facilitate the comparison, the
respective profiles have been normalized to take the values 1, 0.8,
0.6, and 0.4 at r=0.

IV. CONCLUSIONS

We have considered the long-time solution ¢(r, 1) of frac-
tional diffusion problems with anomalous diffusion exponent
y<1 (subdiffusion problems). To find this solution is tanta-
mount to finding the “long-time subdiffusion modes” W, (r)
as the solution can be expressed as a weighted superposition
of W,(r), the weight being proportional to /7. Remarkably,
the functions W,(r) do not depend on 7, but depend on the
details of the initial condition as they are linear superposi-
tions of all normal diffusive modes ,(r) needed to construct
the initial condition. This has a remarkable consequence: it is
well-known that for normal diffusion the influence of the
initial conditions on the solution rapidly fades away and at
long times only the first normal diffusion mode #,(r) sur-
vives; similarly, in the equivalent subdiffusion problem, at
long times only the first subdiffusion mode W(r) survives,
but note that even for very long times the form of the initial
condition plays a key role in the subdiffusive solution as the
particular form of W,(r) depends on the initial condition.
Finally, as the long-time dominant behavior of the solution is
described by W, (r) for the subdiffusion case (y<<1) and by
i, (r) for the normal diffusion solution (y=1), and because
W, (r) is independent of vy, we find that an interesting cross-
over occurs when switching from y<<1 to y=1 in the long-
time solution.

In this paper, we have studied in detail the long-time so-
lution ¢(r,f) of two fractional d-dimensional subdiffusion
problems with radial symmetry and a hyperspherical absorb-
ing surface. In the first problem, there is an initial homoge-
neous concentration of particles. In the second, there is a
homogeneous source of particles in a medium initially de-
void of particles. The solution is given in terms of the long-
time subdiffusion modes W,(r) which take the form of
Fourier-Bessel series S(d/2—1,n;r) whose coefficients in-
volve both Bessel functions and their zeros: S(p,n;r)
= Zf:lz;z”_lJ »(2;7)1J,41(z;). These series may become diver-
gent in sufficiently high dimensions, so that regularization
methods are needed to recover their correct values. We have
been able to sum these series, and have shown that S(p,n;r),
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i.e., ¥,(r), is given by a polynomial f(p,n,r) of degree 2n.
These polynomials can easily be computed by means of the
recursive formula (23). For the two examples considered,
and especially in the first example, the difference between
the dominant normal diffusive mode and the dominant sub-
diffusive mode becomes increasingly large as d increases.

The third problem we have considered is the so-called
escape problem of a single particle initially located at the
center of a d-dimensional hypersphere of radius R with ab-
sorbing surface. Here we are interested in the survival prob-
ability W(R,1) of the particle. In the solution of this problem
there again appears a (numerical) series S(d/2-1,n) whose
coefficients involve both Bessel functions and their zeros:
S(p,n)EE;';IZJ’?‘Z”_l/Jerl(zj). As in the previous examples,
such series are divergent in sufficiently high dimensions, and
regularization methods are again necessary to sum them.
They were summed by means of a procedure based on the
use of Bessel functions as regulators. These sums can be
computed recursively by means of the formula (26).

In view of the results in Ref. [34], we expect that some of
the techniques employed here may be relevant not only for
subdiffusion problem (y<1), but also for diffusion-wave
equations where 1= y=2. This is certainly a promising av-
enue for future research.
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APPENDIX A: RECURSION RELATION FOR THE
FOURIER-BESSEL COEFFICIENTS OF f(p,m ;x)

The Fourier-Bessel coefficients of the m-th order function

f(p,m;:x) are given by Eq. (14). Our goal is to show that the
Fourier-Bessel coefficients of the function

1 u
_ d .
f(p,m+1;x)=x”J MTMHJ dvoP f(p,m;v), (A1)
x 0

satisfy the recursion relation (20). Making the change of
variable y=zx, the Fourier-Bessel coefficients c;(p,m) of

f(p,m;v) can be expressed as follows:
2 (' -
ci(p.m) = z—f xf(p,m;x)J ,(zx)dx. (A2)
J+1(Zj) 0

Thus, they can be written as cj(p,m)=2z;26j(p,m)/ Ji +1(z)
with

¢i(p.m) = JO ijp(y)f(p,m;y/zj)dy- (A3)

Therefore, to prove Eq. (20) is equivalent to proving

¢(p.m+1)=¢(p.m)/z;. Using y"*'1,(y) =d[y"*' 1, (y)]/dy.
one can rewrite Eq. (A3) as

PHYSICAL REVIEW E 81, 021105 (2010)

i i d -
c,-(p,m+1)=J a[y”+'1p+1(y)]y"’f(p,m+l;y/zj)dy-
0

(A4)

Integrating by parts, the boundary terms are seen to vanish

since, by Eq. (Al), lim,_,, f(p,m+l ;x)=0. Next, inserting
Eq. (Al) into the resulting expression we find

Zj J y/zj _
cAj(P,m+1)=sz dy—p;llﬁf dvvP  f(p,m;v).
0 0

(AS)

We can now make use of the relation J,(y)/y’=
—d[J,(y)/y"]/dy in the integrand and integrate by parts one
more time. Once again, the boundary terms are seen to van-
ish: when y tends to z; one trivially has J,(y) —0 and when
y goes to 0 one has y‘pJp(y)f(y)/Zfdvvp”f(p,m;v)—>O. The
reason is that the prefactor of the integral goes to a constant
because of the behavior of the Bessel functions for small
arguments; the integral itself goes to zero as the integration
interval shrinks, because the functions f(p,m;v) are well-
behaved polynomials. Thus, one is finally left with the iden-
tity ¢,(p,m+ 1)=éj(p,m)/zjz-, as we aimed to show.

APPENDIX B: RECURSION RELATION FOR f(p,m ;x)

Using a more formal language, one can rewrite Eq. (22)
as
flp.m+ 1;x) = A[f(p.m:x)], (B1)

where we have presented the operator

1 u
A[f(p,m;x)]zf duuzlﬂf dvv** ' f(p,m;v). (B2)
x 0

Using the recursion relation (B1) repeatedly, we find

Alf(p.m;x)]= A"[f(p,0:x)]. (B3)
Since f(p,0;x)=2""p!, we get
flp,m:;x) = A"(2P~"p1) = 277" pI A (1). (B4)
We can now show by induction that
moy2m k
A1) = 2;113(211610)! - el 2215};!(112 f[la)!Am_k(l)
(BS)

holds for all m € N. For m=1 one can easily show by inte-
gration that the statement is correct:

1-x2

RRRTRET

(B6)

Assuming that the statement holds for m—1, and taking into
account that A(x*"72)=(1-x*")/[4m(m+p)] and A°(1)=1,
one finds
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A™(1) = A[A™(1)]
~ (_ 1)m—1p!A(x2m—2)
S22 2= 1) (m -1+ p)!

m—1 (=1 k
— —Zf( ) Am—k(l)
o1 27k (k+ p)!
_ DTN (=)l
O 2"ml(m+p)! 2%"ml(m+p)!
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m—1

- 1)kp!
-3 e e Ar)
w1 27k (k + p)!
—1)™p! 2m -1 k !
e S 0
m!(m+p)12°" 5 27Nk + p)!

as we intended to show. Multiplying Eq. (B5) by 2°~!p! and
making use of the representation (B4), Eq. (23) follows.

[1] L. Podlubny, Fractional Differential Equations (Academic
Press, San Diego, 1999).

[2] Applications of Fractional Calculus in Physics, edited by R.
Hilfer (World Scientific, Singapore, 2000).

[3] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and
Applications of Fractional Differential Equations (Elsevier,
Amsterdam, 2006).

[4] Anomalous Transport: Foundations and Applications, edited
by R. Klages, G. Radons, and I. M. Sokolov (Wiley-VCH,
Weinheim, 2008).

[5] R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).

[6] R. Metzler and J. Klafter, J. Phys. A 37, R161 (2004).

[7] E. Barkai, R. Metzler, and J. Klafter, Phys. Rev. E 61, 132
(2000).

[8] E. Barkai, Phys. Rev. E 63, 046118 (2001).

[9] S. B. Yuste and L. Acedo, Physica A 336, 334 (2004).

[10] S. B. Yuste and K. Lindenberg, Phys. Rev. E 72, 061103
(2005).

[11] S. B. Yuste, J. J. Ruiz-Lorenzo, and K. Lindenberg, Phys. Rev.
E 74, 046119 (2006).

[12] S. B. Yuste and K. Lindenberg, Phys. Rev. E 76, 051114
(2007).

[13] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids,
2nd ed. (Oxford University Press, Oxford, 1959).

[14] N. S. Goel and N. Richter-Dyn, Stochastic Models in Biology
(Academic Press, New York, 1974).

[15] S. Redner, A Guide to First-Passage Processes (Cambridge
University Press, New York, 2001).

[16] B. Ya. Balagurov and V. G. Vaks, Sov. Phys. JETP 38, 968
(1974).

[17] M. D. Donsker and S. R. S. Varadhan, Commun. Pure Appl.
Math. 28, 525 (1975); 32, 721 (1979).

[18] M. Bramson and J. L. Lebowitz, Phys. Rev. Lett. 61, 2397
(1988); J. Stat. Phys. 62, 297 (1991).

[19] A. J. Bray and R. A. Blythe, Phys. Rev. Lett. 89, 150601
(2002).

[20] R. A. Blythe and A. J. Bray, Phys. Rev. E 67, 041101 (2003).

[21]7J. J. Ruiz-Lorenzo, S. B. Yuste, and K. Lindenberg, J. Phys.:

Condens. Matter 19, 065120 (2007).

[22] S. B. Yuste, G. Oshanin, K. Lindenberg, O. Bénichou, and J.
Klafter, Phys. Rev. E 78, 021105 (2008).

[23] A. Nagar and P. Pradhan, Physica A 320, 141 (2003).

[24] R. Borrego, E. Abad, and S. B. Yuste, Phys. Rev. E 80, 061121
(2009).

[25] B. H. Hughes, Random Walks and Random Environments
(Random Walks, Clarendon Press, Oxford, 1995), Vol. 1.

[26] G. Mittag-Leffler, Acta Math. 29, 101 (1905); Tables of Inte-
gral Transform, edited by A. Erdelyi (McGraw Hill, New
York, 1954), Vol. I; F. Mainardi and R. Gorenflo, J. Comput.
Appl. Math. 118, 283 (2000).

[27] R. Metzler, E. Barkai, and J. Klafter, Phys. Rev. Lett. 82, 3563
(1999).

[28] G. H. Hardy, Divergent Series (Oxford University Press, Ox-
ford, 1949).

[29] C. M. Bender and S. A. Orszag, Advanced Mathematical Meth-
ods for Scientists and Engineers: Asymptotic Methods and
Perturbation Theory 2nd. ed (Springer, New York, 1999); F.
M. Fernandez, Introduction to Perturbation Theory in Quan-
tum Mechanics (CRC Press, Boca Raton, 2001); G. A. Artega,
F. M. Ferndndez, A. M. Mes6n, and E. A. Castro, Physica A
128, 253 (1984); 1. I. Fedchenia, J. Phys. A 25, 6733 (1992);
R. R. Parwani, Int. J. Mod. Phys. A 18, 293 (2003); G. A.
Alvarez, C. J. Howls, and H. J. Silverstone, J. Phys. A 35,
4017 (2002).

[30] H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948); V.
M. Mostepanenko and N. N. Trunov, Sov. Phys. Usp. 31, 965
(1988); E. Elizalde and A. Romeo, Am. J. Phys. 59, 711
(1991); A. Actor, I. Bender, and J. Reingruber, Fortschr. Phys.
48, 303 (2000).

[31] G. N. Watson, A Treatise on the Theory of Bessel Functions,
2nd ed. (Cambridge University Press, Cambridge, 1966).

[32] R. Metzler and J. Klafter, Physica A 278, 107 (2000).

[33] M. Abramowitz and 1. A. Stegun, Handbook of Mathematical
Functions (Dover, New York, 1965).

[34] Y. Z. Povstenko, J. Mol. Liq. 137, 46 (2008).

021105-9



