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Motivated by subdiffusive motion of biomolecules observed in living cells, we study the stochastic proper-
ties of a non-Brownian particle whose motion is governed by either fractional Brownian motion or the frac-
tional Langevin equation and restricted to a finite domain. We investigate by analytic calculations and simu-
lations how time-averaged observables (e.g., the time-averaged mean-squared displacement and displacement
correlation) are affected by spatial confinement and dimensionality. In particular, we study the degree of weak
ergodicity breaking and scatter between different single trajectories for this confined motion in the subdiffusive
domain. The general trend is that deviations from ergodicity are decreased with decreasing size of the move-
ment volume and with increasing dimensionality. We define the displacement correlation function and find that
this quantity shows distinct features for fractional Brownian motion, fractional Langevin equation, and con-
tinuous time subdiffusion, such that it appears an efficient measure to distinguish these different processes

based on single-particle trajectory data.
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I. INTRODUCTION

Anomalous diffusion denominates deviations from the
regular linear growth of the mean-squared displacement
(r’(t)) =Kt as a function of time 7, where the proportionality
factor K, is the diffusion constant of dimension cm?/s. Of-
ten, these deviations are of power-law form and in this case,
the mean-squared displacement in d dimensions

2K,
(X’ (1)) = mt (1.1)

describes subdiffusion when the anomalous diffusion expo-
nent is in the range 0 <a <1 and superdiffusion for a>1
[1]. The generalized diffusion constant K, has dimension
cm?/s% We here concentrate on subdiffusion phenomena.
Power-law mean-squared displacements of the form (1.1)
with 0 <a <1 have been observed in a multitude of systems
such as amorphous semiconductors [2], subsurface tracer dis-
persion [3], or in financial market dynamics [4]. Subdiffusion
is quite abundant in small systems. These include the motion
of small probe beads in actin networks [5], local dynamics in
polymer melts [6], or the motion of particles in colloidal
glasses [7]. In vivo, crowding-induced subdiffusion has been
reported for RNA motion in E. coli cells [8], the diffusion of
lipid granules embedded in the cytoplasm [9,10], the propa-
gation of virus shells in cells [11], the motion of telomeres in
mammalian cells [12], as well as the diffusion of membrane
proteins and of dextrane probes in HeLa cells [13].

While the mean-squared displacement Eq. (1.1) is com-
monly used to classify a process as subdiffusive, it does not
provide any information on the physical mechanism under-
lying this subdiffusion. In fact, there are several pathways
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along which this subdiffusion may emerge. The most com-
mon are:

(i) The continuous time random walk (CTRW) [2] in
which the step length has a finite variance (&r?) of jump
lengths, but the waiting time 7 elapsing between successive
jumps is distributed as a power law (7)== 75/ 7", with 0
< a<1. The diverging characteristic waiting time gives rise
to subdiffusion of the form (1.1) [2]. The subdiffusive
CTRW in the diffusion limit is equivalent to the fractional
Fokker-Planck equation that directly shows the long-ranged
memory intrinsic to the process [1]. Waiting times of the
form (1) were, for instance, observed in the motion of
tracer beads in an actin network [5]. We note that recently,
subdiffusion was also demonstrated in a coupled CTRW
[14].

(ii) A random walk on a fractal support meets bottlenecks
and dead ends on all scales and is subdiffusive. The resulting
subdiffusion is also of the form (1.1) and the anomalous
diffusion exponent is related to the fractal and spectral di-
mensions, df and d,, characteristic of the fractal, through «
=d,/d;[15]. A typical example is the subdiffusion on a per-
colation cluster near criticality that was actually verified ex-
perimentally [16].

(iii) Fractional Brownian motion (FBM) and the fractional
Langevin equation (FLE) that will be in the focus of this
work and will be defined in Sec. II. The understanding of
these types of stochastic motions is up to date somewhat
fragmentary. Thus, the first passage behavior of FBM is
known analytically only in one dimension on a semi-infinite
domain [17], the escape from potential wells in the frame-
work of FLE has been studied analytically [18,19] and nu-
merically [20,21], and a priori unexpected critical exponents
have been identified for the FLE [22]. Here we address a
fundamental question related to FBM and FLE. Namely,
what is their behavior under confinement? Two main aspects
of this question will be addressed. One is the study of the
relaxation toward stationarity in a finite box by means of the
ensemble-averaged mean-squared displacement. We also in-
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vestigate a new quantity used to characterize the motion, the
displacement correlation function. For these aspects, we also
study the dependence on the dimensionality of the motion.

The second aspect concerns how FBM and FLE motions
under confinement behave with respect to ergodicity. Experi-
mentally, the recording of single-particle trajectories has be-
come a standard tool, producing time series of data that are
then analyzed by time rather than ensemble averages. For
subdiffusion processes, both are not necessarily identical. In
fact, for CTRW subdiffusion with an ensemble-averaged
mean-squared displacement of the form (1.1), the time-
averaged mean-squared displacement

T-A
[x(t+ A) — x(0)]Pdt

- 1
F(AT) = ——

1.2
) (12)

on average scales like (6*(A,T))=A/T'~% [23,24]. That is,
the anomalous diffusion is manifested only in the depen-
dence on the overall measurement time 7" and not in the lag
time A that defines a window swept along the time series.
Thus, time and ensemble averages are indeed different. In
contrast, for normal Brownian diffusion, (§*(A,T))=A is in-
dependent of 7 and time and ensemble averages become
identical, i.e., the system is ergodic. Different from CTRW
subdiffusion, systems governed by FBM or FLE are ergodic.
The ergodicity-breaking parameter measured from time-
averaged mean-squared displacements converges algebra-
ically to zero (ergodic behavior) as the measurement time
increases, the convergence speed depending on the Hurst ex-
ponent H=a/2 [25]. For the FLE case, however, it was also
shown that the ergodicity measured from the velocity vari-
ance can be broken for a class of colored noises [26].

One of the open questions in the context of ergodicity
breaking for FBM and FLE in the above sense is the influ-
ence of boundary conditions on the time averages. It was
shown for CTRW subdiffusion that confinement changes the
short-time scaling (5*(A,T))=A/T'~“ to the long-time be-
havior (&*(A,T))=(A/T)'=% [27,28]. Although we expect
that FBM and FLE processes become stationary under con-
finement and, for instance, attain the same long-time mean-
squared displacement dictated by the size of the confinement
volume, we investigate how fast this relaxation actually is
and how it depends on the volume and the dimensionality. To
this end, we study the ergodicity-breaking parameter for the
system. We find that for both FBM and FLE confinements
actually decrease the value of the ergodicity-breaking param-
eter with respect to unbounded motion, i.e., the process be-
comes more ergodic. Ergodicity is also enhanced with in-
creasing dimensionality. We also discuss how FBM and FLE
motions can be distinguished from time series from single-
particle trajectories.

The paper is organized as follows. In Sec. II, we present
FBM and FLE motions and review briefly their basic statis-
tical properties. In Sec. III, we describe the numerical
scheme for simulating FBM and FLE in confined space.
Simulation results are presented in Secs. IV and V, where we
discuss the effects of confinement and dimensionality on
time-averaged mean-squared displacement trajectory, ergod-
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icity, and displacement correlation. We draw our conclusions
in Sec. VL.

II. THEORETICAL MODEL

We here define FBM and FLE. These two stochastic mod-
els share many common features, however, their physical
nature is different. In the following, we will see, in particular,
how the two can be distinguished on the basis of experimen-
tal or simulations data.

A. Fractional Brownian motion

FBM was originally introduced by Kolmogorov in 1940
[29] and further studied by Yaglom [30]. In a different con-
text, it was introduced by Mandelbrot in 1965 [31] and fully
described by Mandelbrot and van Ness in 1968 in terms of a
stochastic integral representation [32]. In the latter reference,
the authors wrote that “we believe FBMs do provide useful
models for a host of natural time series.” This study was
motivated by Hurst’s analysis of annual river discharges
[33], the observation that in economic time series cycles of
all orders of magnitude occur [34], and that many experi-
mental studies exhibit the now famed 1/f noise. FBM by
now is widely used across fields. Among many others, FBM
has been identified as the underlying stochastic process of
the subdiffusion of large molecules in biological cells
[13,35,36]. We note that FBM is neither a semimartingale
nor a Markov process, which makes it quite intricate to study
with the tools of stochastic calculus [37,38].

FBM, xI(¢), is a Gaussian process with stationary incre-
ments which satisfies the following statistical properties: the
process is symmetric,

(xf(r)) =0,
with x7(0)=0, and the second moment scales like Eq. (1.1),
()% = 2K, (2.2)

For easier comparison to other literature, we introduced the
Hurst exponent H that is related to the anomalous diffusion
exponent via H=a/2. The Hurst exponent may vary in the
range 0 <H <1, such that FBM describes both subdiffusion
(0<H<1/2) and superdiffusion (1/2<<H<1). The limits
H=1/2 and H=1 correspond to Brownian and ballistic mo-
tion, respectively. Finally, the two-point correlation behaves
as

(2.1)

@) (1)) = K™ + 57 = |1, = ).

Here, (-) represents the ensemble average. It is convenient to
introduce fractional Gaussian noise (FGN), £&(7) from which
the FBM is generated by

(2.3)

t
xH(1) = f dr' éi(t"). (2.4)
0
FGN has the properties of zero mean
(1) =0 (25)

and autocorrelation [39,40]
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(&) (1)) =2KyzH(2H - 1)|1, — 1,]*2

+4KyH|t - 677181 - 1), (2.6)

as can be seen by differentiation of Eq. (2.3) with respect to
t, and t,. Here we see that Ky plays the role of a noise
strength. For subdiffusion (0<<H<1/2), the autocorrelation
is negative for #; #1,, i.e., the process is anticorrelated or
antipersistent [41]. In contrast, for 1/2<<H<1, the noise is
positively correlated (persistent) and the motion becomes su-
perdiffusive. For normal diffusion (H=1/2), the noise is un-
correlated, i.e., (£7(t))&(t,))=2K&(t,~t,). For further de-
tails, compare the discussions in Refs. [32,42].

We define d-dimensional FBM as a superposition of inde-
pendent FBMs for each Cartesian coordinate such that

d
XAy =2 | dr' ()%, (2.7)
i=1J0
where X; is the Cartesian coordinate of the ith component and
&' is FGN which satisfies

(&(1)=0 (2.8)

and
(1) & (12))y = 2KxH(2H = 1)|1, - 1,725
+4KyH|ty - 1,771 8t - 12) 8. (2.9)

From this definition, d-dimensional FBM x(¢) has the prop-
erties of zero mean

(x"(r)y=0, (2.10)

variance

(xM(1)?) = 2dK ;1?1 (2.11)

and autocorrelation
(1)) - x"(1))) = dKy (77 + 57 = |1, - .. (2.12)

Note that |[x7(¢)| cannot satisfy these properties, thus it is not
an FBM.

A few remarks on this multidimensional extension of
FBM are in order. We note that, albeit intuitive due to the
Gaussian nature of FBM, this multidimensional extension is
not necessarily unique. In mathematical literature, higher-
dimensional FBM in the above sense was defined in Refs.
[43,44]. In physics literature, an analogous extension to
higher dimensions was used in Ref. [13] based on the
Weierstrass-Mandelbrot method (Note: HeLa cells belong to
an immortal cell line derived from cancer cells originally
taken from Henrietta Lacks in 1951, see Ref. [13]). To verify
that this d-dimensional extension is meaningful, we checked
from our simulations of d-dimensional FBM that the fractal
dimension of FBM, d;=1/H for H>1/d [45], is preserved
in higher dimensions. Moreover, we used an alternative
method to create FBM in d dimensions, namely, to use one-
dimensional (1D) FBM to choose the length of a radius and
then choose the space angle randomly. The results were
equivalent to the above definition to use independent FBMs
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for every Cartesian coordinate. We are therefore confident
that our definition of FBM in d dimensions is a proper ex-
tension of regular 1D FBM.

B. Fractional Langevin equation motion

An alternative approach to Brownian motion is based on
the Langevin equation [46—48]

&’y (1) dy(1)
——=—y— + &), 2.13
m ==y S () 2.13)
where &(f) corresponds to white Gaussian noise. When the
random noise &(r) is nonwhite, the resulting motion is de-

scribed by the generalized Langevin equation (GLE)

2 t
md ¥(0) =— 7f Kt - t’)d—ydt’ + &(1),
0

2.14
dr* dt' (2.14)
where m is the test particle mass and /C is the memory kernel
[49-51] which satisfies the fluctuation-dissipation theorem
(&) E(t"))=kgTYK(t—1t"). When & is the FGN introduced
above, K decays algebraically and Eq. (2.14) becomes the
FLE

@) (" Laady
prabitd MU )2H 2;% + & (1)
0

m

2-2H

= 3TQH-1) y(0) + 7E(1). (2.15)

dt2—21§

Here, 7 is a generalized friction coefficient. We also define
the coupling constant

kgTy
AR
2K H(2H - 1)

imposed by the fluctuation dissipation theorem and the
Caputo fractional derivative [52]

(2.16)

dz—zﬁ t

)= —— fdt'(t-t’)2ff-2d—y. (2.17)
TH-1)Jo dr’

dtz—zfly

Note that in Eq. (2.15), the memory integral diverges for H
smaller than 1/2, such that the Hurst exponent in the FLE is

restricted to the range 1/2<H<1.
It can be shown that the relaxation dynamics governed by
the FLE (2.15) follows the form

(1)) = vyt Esjy o (= v (2.18)

for the first moment, where v is the initial particle velocity.

The rescaled friction coefficient is y=3I"(2H—1)/m. The co-
ordinate variance behaves as

k —
0y =2 (- ), (2.19)

where (v%):kBT/ m is assumed, and we employed the gener-
alized Mittag-Leffler function [53]
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E,p(2) = E F(an 5 (2.20)
whose asymptotic behavior for large z is
* Z—l‘l
Eppd)==-2 (2.21)

S T(B-an)

Thus, the mean-squared displacement shows a turnover from
short-time ballistic motion to long-time anomalous diffusion
of the form [54,55]

2, t—0

(1) ~ (2.22)

t2—2H’ t— 0,

Therefore, for persistent noise with 1/2<H< 1, the result-
ing motion is in fact subdiffusive, i.e., the persistence of the
noise has the opposite effect than in FBM.

In analogy to our discussion of FBM in a d-dimensional
embedding, the FLE is generalized to

&’y (1) _f’ = dy
m—o==y| K-=%
dt o dt

dr’ + &(r), (2.23)

where y(1)=3y,(t)%;, &1)=2;€"(t)%;, and K is the memory
tensor which is in diagonal form [i.e., K;=/(t—1") §;] in the
absence of motional coupling between different coordinates.

III. SIMULATIONS SCHEME

We here briefly review the simulations scheme used to
produce time series for FBM and FLE motions.

A. Fractional Brownian motion

d-dimensional FBM is simulated via Eq. (2.7) by numeri-
cal integration of §f(t). The underlying FGN was generated
by the Hosking method which is known to be an exact but
time-consuming algorithm [56]. We checked that in the one-
dimensional case, the generated FBM in free space success-
fully reproduces the theoretically expected behavior, the
mean-squared displacement (1.1), the fractal dimension d,
=2—a/?2 of the resulting trajectory, and the first passage time
distribution. To simulate the confined motion, reflecting
walls were considered at locations =L for each coordinate.
For instance in the 1D case, if |x(z)|>L at some time
t, the particle bounces back to the position
xf() - 2|x"() - sgn(x)L|. Similar reflecting conditions were
taken into account in the multidimensional case.

B. Fractional Langevin equation motion

In simulating FLE motion, we follow the numerical
method presented by Deng and Barkai [25]. First, integrating
Eq. (2.15) from O to z, we obtain the Volterra integral equa-
tion for velocity field v(r)=dy(r)/dt,
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exact solution Eq. (2. 19)

ensemble and time averaged MSDs

4
1075 S(AT)Wllhdh 0.1
<y¥(t)> with dh=0.1
10° : T
0.01 0.1 1 10

torA

FIG. 1. (Color online) The mean-squared displacements (MSDs)
for FLE motion in free space. The ensemble-averaged and time-
averaged MSDs, (y%(1)) and {(5*(A,T)), obtained from simulation
are compared to the exact solution 2£2Esy3[—100(5/4—1)r"4]
given by Eq. (2.19). The numerical values were obtained from 200
simulated trajectories. In the simulation, we chose the Hurst expo-

nent H=5/ 8, time increment dh=0.01, particle mass m=1, initial
velocity vy=1, initial position y,=0, friction coefficient y=10, and
kBT= 1.

t _ —
#f (t=1") (e dt + v+ ﬂx”(t),
) m

v(t)=———=
(2H-1)mYo

(3.1)

where v(r=0)=v,. This stochastic integral equation can be
evaluated by the predictor-corrector algorithm presented in

Ref. [57] with the FBM x/(¢) independently obtained by the
Hosking method. We calculated y(r)=yo+ [(uv(s')dt’ by the
trapezoidal algorithm. For discrete time steps, the equation
of motion is given by

n

Yur1 = Yo+ —(vo +0,1) +dh D v;,
i=1

dh
ZE(Un+Un+I)+yn’ (32)

where dh is the time increment. When evaluating Eq. (3.2), a
reflecting boundary condition was considered in the sense
that yn*)yn_2|yn_sgn(yn)[‘| if |yn| >L.

To show the reliability of our simulation, we compare the
simulation result to the well-known solution for free space
motion. In Fig. 1 we simulate the subdiffusion case with the
parameters values H=5/8, m=1, vo=1, yy=0, y=10, kT
=1, and dh=0.01. From 200 simulated trajectories, we ob-
tain the ensemble-averaged and time-averaged mean-squared
displacements, (y(¢)) and (8(A,T)), and compare them to
the exact solution Eq. (2.19). Note that (y*(t)) should be
identical to (&*(A,T)), Eq. (5.2), with 7 regarded as the lag
time A due to the ergodicity of the FLE motion in free space
[25]. The deviation from the exact solution is markedly re-
duced with decreasing time increment dh. With our chosen
value dh=0.01, the mean-squared displacements obtained
from simulation appear to be in good agreement with the
theory (Fig. 1).
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FIG. 2. (Color online) Time-averaged MSD vs the lag time A
for given values of L. The drawn line has slope 1/2, corresponding
to the expected short lag time behavior for the used value H=1/4 of
the Hurst exponent. For L=1, 2, and 3, five different trajectories
each are drawn to be able to see whether the trajectories scatter. The
simulation time is 7=2'7~ 1.3 X 10°.

IV. FRACTIONAL BROWNIAN MOTION IN CONFINED
SPACE

We now turn to the investigation of the behavior of FBM
under confinement, analyzing the mean-squared displace-
ment and potential ergodicity breaking. We then define the
displacement correlation function and finally study the influ-
ence of dimensionality.

A. Mean-squared displacement

For FBM in free space (x’(¢)?) can be estimated by the
time-averaged mean-squared displacement Eq. (1.2) via the
exact relation [25]

(8*(A,T)) = 2K A%, 4.1)

Here, (-) denotes the ensemble average. In contrast to
CTRW subdiffusion, in FBM, this quantity is ergodic. How-
ever, as mentioned above, the approach to ergodicity is alge-
braically slow and we want to explore here whether bound-
ary conditions have an impact on the ergodic behavior. Let
us now analyze the behavior in a box of size 2L.

In Fig. 2, we show typical curves for the time-averaged
mean-squared displacement for Hurst exponent H=1/4 and
three different interval lengths L. Regardless of the size of L,
the confined environment does not affect the power law with
exponent 2H for short lag times. Moreover, at long lag times,
we observe saturation of the curves to a value that depends
on L. This behavior is distinct from that of the CTRW case
where (&*(A,T)) shows a power law with slope 1—a [27,28].

One can estimate the saturated value as a function of L.
For long A and measurement time T, the probability p(x) to
find the particle located at x is independent of x due to the
equilibration between the reflecting walls and thus
= 1 x*p(x)dx=L?/3. The dotted lines in Fig. 2 represent these
values.

We observe that the scatter between different single tra-
jectories becomes more pronounced when the interval length
is increased. In fact, the scatter is negligible for L=1 while it

PHYSICAL REVIEW E 81, 021103 (2010)

10’ —
s L=10.
0] o L5
4 =3
107 o L=1 ¢
21075
[8a]
10°f ~A
ol b
N (92K,)"™ (2572 )"
1 10 100 1000 10000

lag time A

FIG. 3. (Color online) Ergodicity-breaking parameter Eg vs lag
time A for L=1, 3, 5, and 10 (from bottom to top) with Hurst
exponent H=1/4. The overall measurement time is 7=2'4~1.6
X 10%. Dotted line with slope 1 represents the theoretical expecta-
tion Ez=A in free space. For each L, the curve was obtained from
200 single trajectories. Vertical lines show the crossover lag time
A, =(L?/2K)"?H for L=1, 3, and 5.

is quite appreciable for L=3, even though the slope of all
curves at finite L converges to a horizontal slope, with an
amplitude close to the predicted value L?/3. We also note
that the scatter depends on the total measurement time 7. For
given L, it tends to be reduced as we increase 7. This effect
will be discussed quantitatively in detail using the ergodicity-
breaking parameter.

B. Ergodicity-breaking parameter

In contrast to CTRW subdiffusion, FBM in free space is
known to be ergodic [25]. The time-averaged mean-squared
displacement traces displayed in Fig. 2 exhibit no extreme
scatter as known from the CTRW case. This implies that
ergodicity is indeed preserved for confined FBM. We quan-
tify this statement more precisely in terms of the ergodicity-
breaking parameter [23]

[&ADP) - (&A1)
(6'(A,T)) ’
where lim;_,. Eg(T)=0 is expected for ergodic systems. For

the case of free FBM, Deng and Barkai analytically derived
that E decays to zero as

Eg(A,T) = (4.2)

p
A 3
7 for 0 <H<73
A 3
Ep(A,T) ~ ¢ Tlog T for H=3 (4.3)
A 4-4H
(;) for % <H<I
\

for long measurement time 7 [25].

We numerically investigate the boundary effects on the
ergodicity-breaking parameter. First, in Fig. 3, we evaluate
Ep as function of the lag time A from 200 FBM simulations
for each given L. The dotted line represents the expected
free-space behavior Ez~ A, which is nicely fulfilled by the
data at shorter times and sufficiently large L. At longer times
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FIG. 4. (Color online) Ergodicity-breaking parameter Ep vs
overall measurement time 7 at given lag times A=1, 100, and 1000.
Dotted line depicts a power law with slope —1, representing the
analytic behavior Ez=T"" in free space. For each A, the Ej curves
are drawn for different interval lengths L=1, 3, 5, and 10. Each
curve was obtained from 200 single trajectories and the Hurst ex-
ponent was H=1/4.

or small L, the results show that Eg behaves very differently
when confinement effects are present. The plateau in Ep is
related to the saturation of the curves for the mean-squared
displacement, Fig. 2. As the motion is restricted by the walls
roughly above a crossover lag time A, =(L?/2Ky)"?H, the
ergodicity-breaking parameter Ey levels off at A=A_,. The
sharp increase at the end of the curve is due to the singularity
when the lag time reaches the size of the overall measure-
ment time 7, which would disappear in the infinite measure-
ment time.

In Fig. 4, we show Ej for given A as function of the
measurement time 7 for the same choice of interval lengths,
L=1, 3, 5, and 10. For short lag times A, all E curves
coincide and decay as 7°!, in complete analogy to the free-
space motion (dotted line). In the case of longer A, the gen-
eral trend is that E decays like 7-!, unaltered with respect to
the free case. However, there is a sudden decrease in Ey for
the smallest interval size, for L=1. One can understand this
behavior by observing the Ej curve for L=1 in Fig. 3; as the
fluctuations of the mean-squared displacement are strongly
suppressed due to the tight confinement in this case, Ey has
almost no dependence on A for A, <A =T and the saturated
value is quite small compared to those for other cases. There-
fore, the curves for L=1 appear disconnected from the other
curves. Corresponding to the approximate independence of
the L=1 curve for A= 10 in Fig. 3, we observe in Fig. 4 that
at longer times 7, the L=1 curves approach each other. Only
at T=A these curves separate, as then 5?(T, T):[le(HT)
—xf’ (1)1, and Ejy is evaluated with the same small number of
squared displacement data. Note that the splitting of the Ejp
curve can be also observed for larger L at As larger than A,
under longer total measurement time 7 as other Ep curves
also have corresponding constant saturation values for A
= A, [=(L?/2Ky)""*"] which increases with the size L.

C. Displacement correlation function
As explained for the stochastic properties of FBM in Sec.

II, the position autocorrelation (x(¢,)x"(t,)) explicitly de-
pends on ¢, and t, as well as their difference, |t;—1,|. It is
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IDC|
34.

1 10 100 1000 10000
lag time A

FIG. 5. (Color online) Absolute value of the displacement cor-
relation (DC) vs lag time A for L=1, 2, and 3 (from bottom to top)
with a slope proportional to A*# (dotted line). Total measurement
time is 7=2'7~1.3X 10° and the Hurst exponent is H=1/4. Each
curve was obtained via time averaging from a single-particle
trajectory.

therefore not an efficient quantity to estimate directly from
experimental or simulations data. However, the correlation
function of the displacements

a1, A) = x"(t + A) — x"(1) (4.4)

depends only on the time interval A of the displacement
(&M (1, A) (1 — A A))y = Ky (22 —2)A*H (4.5)

for free FBM. This relation is derived in Appendix A. This
quantity is anticorrelated for 0 <<H<1/2 (subdiffusive mo-
tion), uncorrelated for H=1/2 (normal Brownian motion),
and positively correlated for 1/2<H<1 (superdiffusion).
As Eq. (4.5) does not depend on the measurement time 7, the
value of the ensemble averaged value is identical to the cor-
responding time average.

We present the time-averaged displacement correlation
function for confined subdiffusive motion (H=1/4) in Fig. 5.
Because of the negativity of expression (4.5), the absolute
value of the displacement correlation is drawn in the log-log
representation. At short lag times, the slope of the correlation
functions is proportional to 2H as expected from Eq. (4.5).
However, at long lag times, we interestingly observe fluctua-
tions of the correlations around a constant value, reflecting
the confinement of the motion.

D. Dimensionality

To mimic the anomalous diffusion of particles inside bio-
logical cells, we also simulate two- and three-dimensional
FBMs based on Eq. (2.7) in the presence of reflecting walls.
In free space, the ensemble average of the time-averaged
mean-squared displacement is simply given by

T-A

FRD)=——|  (x+ 1) -x (0P,

=2dK,A*" (4.6)

i.e., it is additive as for the ensemble average. This behavior
is indeed observed in Fig. 6 where five different mean-
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FIG. 6. (Color online) Time-averaged MSD curves vs lag time
A for L=1 in 1D, 2D, and 3D spaces (from bottom to top) with a
slope A?f (dotted line). For each dimension, five trajectories were
drawn with total measurement time T=2'7 and H=1/4.

squared displacement curves are drawn for L=1 in 1D, two
dimensions (2D), and three dimensions (3D), respectively.
Only the height of the curves is affected by the dimension-
ality. There is no noticeable difference in the scatter of the
curves.

We further investigate the effects of dimensionality on the
scatter of the mean-squared displacement curves, as possibly
the strong scatter observed in experiments [8—10] may also
occur for FBM in higher dimensions. To see the effect of
dimensionality on the ergodicity behavior, we measure Ep
versus lag time for one-, two-, and three-dimensional embed-
ding dimensions for the same values of L and H. Interest-
ingly, the result shows that £ tends to decrease with increas-
ing dimensionality d, meaning that for FBM, big scatter is
not caused by higher dimensions in presence of reflecting
walls. In fact, from Egs. (4.2) and (4.6), we can analytically
derive the relation

EB(d= 1)

EB(d) = d

, (4.7)
which still holds in the case of confined motion (see Appen-
dix B for the derivation). This relation is numerically con-
firmed in Fig. 7 where three E curves collapse upon rescal-
ing by dEg(d). According to this relation, we expect that
ergodic behavior obtained in one-dimensional confined mo-
tion (Figs. 3 and 4) will also be present in multiple dimen-
sions with a factor of 1/d.

V. FRACTIONAL LANGEVIN EQUATION MOTION IN
CONFINED SPACE

In this section, we analyze FLE motion under confine-
ment. Due to the different physical basis compared to FBM,
in particular, the occurrence of inertia, we observe interesting
variations on the properties studied in the previous section.

A. Mean-squared displacement

Using the correlation function [55]

PHYSICAL REVIEW E 81, 021103 (2010)

100 1000 10000

lag time A

FIG. 7. (Color online) Rescaled ergodicity-breaking parameter
vs lag time A for interval size L=5 for 1D, 2D, and 3D spaces
(from top to bottom) with Hurst exponent H=1/4 and measurement
time T=2'%. Eg was evaluated from 200 trajectories with different
initial positions.

kT o o
e)y(1) = = Eyis(= y1i") + 3E2ias(= v3")
= (= 1) Esjg3(= Yl — 1,1, (5.1)
one can show analytically that, similarly to the FBM, the

ensemble-averaged second moment (y%(¢)) is identical to its
time-averaged analog (5*(A)) for all A in free space, namely,

FaD) =2 Ny - A). (52)

Thus, the time-averaged mean-squared displacement turns
over from a ballistic motion

(6*(A,T)) = A® (5.3)
at short lag time to the subdiffusive behavior
(SA,T)) = A>2H (5.4)

at long lag times in free space.

We numerically study how this scaling behavior is af-
fected by the confinement. Figure 8 shows typical curves for
the time-averaged mean-squared displacement, for interval
sizes L=1/2, 1, 3, and 100 (regarded as free-space motion)

with identical initial conditions and Hurst exponent H=5/8.
The results are summarized as follows. (1) We observe both
scaling behaviors, (6*(A,T))=A? turning over to =A>"2H,
for confined FLE motions. (2) For narrow intervals, the
curves eventually reach the saturation plateau within the cho-
sen total measurement time 7. The saturation values are ap-
proximately L?/3. For interval size L=1/2, the saturated
value is noticeably larger than L?/3, which appears to be
caused by multiple reflection events on the walls. The same
behavior is observed in the FBM case when considering a
large value of H=1/2 or very narrow intervals for the given
H=1/4. (3) As in the case of FBM, the scatter becomes
pronounced as the interval length increases.
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Time-averaged MSD

0.01 0.1 1 10 100
lag time A

FIG. 8. (Color online) Time-averaged MSD vs lag time A. The
two dashed lines represent the two asymptotic scaling behaviors
(8*(A,T)y=A? and (& (A, T)y=A>2H For each given L=1/2, 1,
and 3, five different trajectories are drawn to visualize the scatter.
As a reference curve for motion in free space, the curve for L
=100 (line) is drawn. In the simulation, we chose the Hurst expo-
nent H=5/8 (NB: for the FLE this means subdiffusion), time incre-
ment dh=0.01, particle mass m=1, initial velocity vy=1, initial
position y,=0, friction coefficient y=10, and kgT=1.

B. Ergodicity-breaking parameter

From a simple argument and simulations, it was shown in
Ref. [25]. that the FLE and FBM mean-squared displace-
ments are asymptotically equal, (5*(y)) ~(5*(x")), similarly
for the ergodicity-breaking parameter, Eg(y) ~ Ep(x'?). Here
the asymptotic equivalence is valid at long measurement
times 7, and the derivation holds for motion in free space.
From 200 trajectories of the mean-squared displacement we
measure the ergodicity-breaking parameter Ey as function of
lag time A for interval lengths L=1/2, 1, 3, and 100 in Fig.
9. The behavior is similar to the corresponding curves for
FBM, displayed in Fig. 3: Ep significantly deviates from the
reference curve for free-space motion (i.e., the longer A be-
havior for L=100 and the drawn power law =A) due to the
confinement effect. £ tends to decrease with smaller L for
the same value of A. However, the plateau at short lag times
that is still observed for L=100 (regarded as free-space mo-
tion) is due to the initial ballistic motion of FLE. In that

0.01 01 1 10 100
lag time A

FIG. 9. (Color online) Ergodicity-breaking parameter Ep vs lag
time A for interval sizes L=1/2, 1, 3, and 100. The straight line
corresponds to the free-space behavior Ez=A. Each curve was ob-
tained from 200 single trajectories, with the same parameter values
used in Fig. 8.

PHYSICAL REVIEW E 81, 021103 (2010)

regime, the initially directed motion renders the random
noise effect negligible.

C. Displacement correlation function

Using the correlation function {(y(¢,)y(#,)), we analytically
obtain the displacement correlation function in free space in

the form (refer to Appendix A for the derivation)
kgT \, 2H
(y(t,A)oy(t - A,A)) = 47A Erpsl— v(24)™]

kgT 7
27 By a[- A, (5.5)

so that we observe the following asymptotic behavior:

<5y(t’A) 5y(t - A’A)>

2kgT
ﬁ 2, for A—0
m

_ 5.6)
22 - kgT 5 o7z (
%Az—zy’ for A — oo,
myI'(3 - 2H)

where y(r,A)=y(t+A)—y(r). Above expression shows that
the displacement correlation has two distinct scaling behav-
iors. At short lag times, it grows like A% and is positive due
to the ballistic motion. At long lag times, it is negative in the

domain 1/2<H< 1, exhibiting the same subdiffusive behav-
ior as observed for FBM [cf. Eq. (4.5)] when we replace H
—2-2H. Note that to bridge these two scaling behaviors,
the displacement correlation passes the zero axis at A=A,
that satisfies 2E,j; 5[~ y(2A.)*7]= E,j; (- yA2] in free space.
For small vy, we find approximately

— 12H
A= ( LA} "—f) RENER)
2F2H-1)(2*H 1 - 1) Y

such that it becomes exactly the momentum relaxation time

m/ ¥ for normal Brownian motion (H=1/2). In the limit H
—1, A, goes to infinity to satisfy the equality 2E ;5[

—y(2Ac)2H]=E2;,y3[—yA§H]. Thus, A, can be interpreted as
the typical time scale for the persistence of the ballistic mo-
tion.

Figure 10 shows (a) the displacement correlation versus
lag time A and (b) the absolute value of the displacement
correlation as function of A, for L=1/2, 1, 3, and 100. The
scaling properties derived in Eq. (5.6) are indeed observed.
At short lag times, all curves are positive and scale like ~A?
before decreasing to zero. In the long lag time regime, the
displacement correlation becomes negative and the predicted

scaling behavior =A?2# is observed. For small intervals
(L=1/2 and 1), it is saturated due to the confinement effect
as seen in the case of FBM.

D. Dimensionality

In the case when the memory tensor is diagonalized, each
coordinate motion is independent and FLE motion exhibits
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FIG. 10. (Color online) (a) DC vs lag time A for L=1/2, 1, 3,
and 100 (from bottom to top). (b) Absolute value of the displace-
ment correlation as a function of A for the given values of L. The
two slopes correspond to the limiting behaviors A2 and A%~ In (a)
and (b), the ensemble-averaged curves were obtained from 200 dif-
ferent time-averaged displacement correlation curves. Same param-
eter values as in Fig. 8.

qualitatively the same behavior as shown in the case of FBM
with increasing dimensionality. From the mean-squared dis-
placement curves, the same scaling behavior is expected with
more elevated amplitude for higher dimensionality. In fact,
when each coordinate motion is decoupled, a d-dimensional
motion effectively increases the number of single trajectories
d times compared to the one-dimensional case. Therefore,
the scatter in the mean-square displacement curves decreases
with increasing dimensionality and the ergodicity-breaking
parameter Ej is expected to follow the relation Eq. (4.7).

VI. CONCLUSION

Motivated by recent single-particle tracking experiments
in biological cells, in which confinement due to the rather
small cell size becomes relevant, we studied FBM and FLE
motions in confined space. In particular, we analyzed the
effects of confinement and dimensionality on the stochastic
and ergodic properties of the two processes. Interestingly for
both stochastic models, the confinement tends to decrease the
value of the ergodicity-breaking parameter Ez compared to
that in free space. The same trend is observed for increasing
dimensionality. Correspondingly, the scatter of time-
averaged quantities between individual trajectories is quite
small, apart from regimes when the lag time A becomes
close to the overall measurement time 7 and the sampling
statistics for the corresponding time average become poor.
The relaxation of the ergodicity-breaking parameter as func-
tion of measurement time is quite similar to previous results

PHYSICAL REVIEW E 81, 021103 (2010)

in free space. We conclude that neither confinement nor di-
mensionality effects lead to the appearance of significant er-
godicity breaking or scatter between single trajectories.

The displacement correlation function introduced here is a
useful quantity that can be easily obtained from single-
particle trajectories. It can be used as a tool to discriminate
one stochastic model from another. For subdiffusive motion
governed by FBM and FLE motion, the displacement corre-
lation should be negative and saturate in the long-
measurement time limit due to the confinement. Notably, the
negative decrease (—|A|?) with lag time A and anomalous
diffusion exponent « is an intrinsic property of FBM and
FLE displacement correlations which is clearly distinguished
from that of CTRW subdiffusion. In the latter case, the sub-
diffusive motion occurs due to the long waiting time distri-
bution between successive jumps and there is no spatial cor-
relation between them so that displacement correlation only
fluctuates around zero with time. FLE motion can be distin-
guished from FBM motion since the displacement correla-
tion has a positive value at short times due to the ballistic
motion in the FLE model.
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APPENDIX A: DERIVATION OF THE DISPLACEMENT
CORRELATION FUNCTION

In this appendix, we derive analytical expressions for the
displacement correlations, Egs. (4.5) and (5.5). For a sto-
chastic variable x, we define

ox(t,A) =x(t+A) —x(1).
The displacement correlation is then given by
(Ox(2,A)0x(r = A, A)) = (x(t + 2A)x(r + A)) — (x(r + 2A)x(2))
—x(t+ A+ (x(t+ A)x(0).  (A2)

We now calculate this expression for FBM and FLE motions.

(A1)

1. FBM

For FBM [x()=x"(1)], we use the expression
(x(t)x(ty)) = Ky + 57 = |1, = 1)) (A3)
for the autocorrelation. With this, we readily obtain the result

(8x(t,A)Sx(t — A,A)) = Ky (227 - 2)A%H (A4)

2. FLE
For FLE [x(1)=y(r)], we use the correlation function [55]

kgT H H
(xle)x(12)) = = TR Esjy o= vi™) + E2s(- v3")

— (= 1) Esis(- M= 1,1, (AS5)

The displacement correlation is then obtained as
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(Sx(t,A)dx(r—A,A)) =

4kpT 7
B[ A(28)]

sz

N YA (A6)
Expanding the generalized Mittag-Leffler function E,z ;(x)

~1/T(3)+x/T(2H+3)+" -
relation is approximated as

for x<<1, the displacement cor-

2 kT
r3) m

at short lag times. With the expansion E,z;(—x)=~1/xI'(3

(Ox(t,A) 6x(t — A A)) ~ ——A? (A7)

—2H) for x> 1, the long lag time behavior of the displace-
ment correlation is obtained as

222 ) T
Y3 -2H) ™

AZ 2H

(x(1,A)6x(r — A,A)) ~ (AB)

Note that the prefactor (22‘2‘:’ -2)/T(3-2H) is zero for H
=1/2 and then becomes increasingly negative, saturating at

the value —1 for H=1.

APPENDIX B: DERIVATION OF Eq. (4.7)

From the definition of the time-averaged mean-squared
displacement, Eq. (4.6), we expand {[6*(A,T)]*) in the form

T-A T-A | d
[ iz e
0 i=1

(T-4)),
=5 ()P (1 + &) = (2) 1)
+ 2 ([ + ) - X,-H(tl)]2><[x7(f2 +4)

i#j

[&ADP) =

—X;i(t2)]2> dtldtz. (Bl)

Using the Isserlis theorem for Gaussian process with zero
mean [48]

() x (1) x(23)x(24)) = Cer)x(12) X x(£3)x(14)) + {x(11)x(23))

Xx(12)x(24)) + (21 x(24) Xx(12)x(13))

(B2)

the first term in the braces in Eq. (B1) can be rewritten as

PHYSICAL REVIEW E 81, 021103 (2010)

2<[xH(t1+A ()P (e + 8) = x{ (1) )

= 2 <[xfl(l1 +4) - xf’(tl)]2><[xf’(tz +A4) - Xfl(fz)]2>
i=1

d
+ 22 ([xf (e + A) = X (1) Jxl (12 + )

i=1

-x ()]
(B3)

In this expression, we note that the sum of the second term in
Eq. (B1) and the first term in Eq. (B3) yields (5*(A, 7)),

T- T-
(A1) = T-A)7 JO fo (1t + A) = xH (1))
XA (1, + A) = X (6,) Pyt dty = A8,
(B4)

where we used the property

Z ([ + A) = () PH (2 + A) = 1] (1))
i.j
= d([x(1y + A) = (e P (1 + 8) = x(1)T)
(BS)
due to the independence of the motion in each coordinate

direction. We also note that the expression ([&*(A,T)]*)
—(8*(A,T))* simplifies to

([FA,DP) - (&)=

d T-A
7= A)2 f ([x (1, +4)

- xfl(t])][xfl(tz +A) - X?(tz)pzdﬁdfz
=d[{(#)*)1p —(P)p]- (B6)

From Egs. (B4) and (B6), the ergodicity-breaking parameter
follows the general relation

([ A D) - (5(A,T)*  Egld=1) .

Ex(d)= (A1) T

(B7)
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