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We calculate short-time diffusion properties of suspensions of porous colloidal particles as a function of their
permeability, for the full fluid-phase concentration range. The particles are modeled as spheres of uniform
permeability with excluded volume interactions. Using a precise multipole method encoded in the HYDROMUL-

TIPOLE program, results are presented for the hydrodynamic function, H�q�, sedimentation coefficient, and
self-diffusion coefficients with a full account of many-body hydrodynamic interactions. While self-diffusion
and sedimentation are strongly permeability dependent, the wave-number dependence of the hydrodynamic
function can be reduced by appropriate shifting and scaling, to a single master curve, independent of perme-
ability. Generic features of the permeable sphere model are discussed.
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Suspensions of solvent-permeable colloidal particles can
be found in a great variety of synthesized materials. Ex-
amples are fuzzy-sphere systems consisting of highly porous,
crosslinked microgel spheres exhibiting large volume
changes as a function of temperature �1,2�. Another experi-
mentally well-studied class of permeable colloids are core-
shell-like particles consisting of an impermeable rigid core
and a permeable stabilizing layer of some soft material �3,4�,
such as grafted polymers �5,6�. Despite the importance of
permeable particles both from a fundamental viewpoint and
in terms of applications, little is known theoretically about
transport properties in nondilute systems, such as self- and
collective diffusion coefficients. The calculation of transport
properties is a challenging problem since one has to cope
with many-body hydrodynamic interactions �HIs� by ac-
counting for the fluid flow inside the porous particles relative
to their skeletons. A better control on diffusion and viscoelas-
tic properties for industrial processing of concentrated col-
loids requires a deeper understanding of the influence of the
HIs.

Theoretical and simulation work on diffusion and sedi-
mentation of porous particles was primarily concerned so far
with dilute systems. Chen and Cai �7� calculated the sedi-
mentation velocity in a suspension of uniformly porous
spheres to first order in the volume fraction �, demonstrating
that sedimentation is quite sensitive to direct interactions and
permeability. Mo and Sangani �8� used a multipole expan-
sion method for hydrodynamically interacting porous
spheres to obtain numerical results for the average drag force
per particle in random and in bcc fixed-bed arrays.

Clearly, there is a strong demand on exploring generic HIs
effects in concentrated porous particle systems where pair-
wise additivity approximations are bound to fail. In this
Rapid Communication, we describe a comprehensive simu-
lation study of short-time diffusion properties for systems of
permeable nonoverlapping spheres. Our study covers the
whole fluid-phase regime including concentrated systems

with strong many-body HIs. The considered permeability
ranges from fully impermeable to strongly permeable par-
ticles. Numerical results are presented for the hydrodynamic
function, H�q�, obtained in short-time scattering experiments
as a function of wave number q, and for the associated short-
time self-diffusion coefficient, Ds, and mean sedimentation
velocity U.

The function H�q� is the key quantity containing informa-
tion on colloidal short-time diffusion processes. In a dynamic
scattering experiment, H�q� is obtained from measuring the
short-time exponential decay, S�q , t� /S�q��exp�−q2D�q�t�,
of the dynamic structure factor S�q , t�. The measured short-
time diffusion function, D�q�, is used to define H�q� by the
relation �9�

D�q� = D0H�q�/S�q� , �1�

where S�q�=S�q ,0� is the static structure factor and D0 is the
diffusion coefficient of a single porous particle. In the limit
of q→�, H�q� is equal to the normalized short-time self-
diffusion coefficient, Ds /D0. At q→0, H�q� reduces to the
sedimentation coefficient K=U /U0, with the sedimentation
velocity U0 of a porous particle at infinite dilution.

The statistical-mechanical expression for H�q� is �9�

H�q� =� kBT

ND0
�
i,j=1

N

exp�iq · �Ri − R j��q̂ · �ij�X� · q̂� ,

�2�

where q̂ is the unit vector in direction of the scattering wave
vector q. The brackets represent an equilibrium ensemble
average in the thermodynamic limit N→�, with fixed den-
sity n=N /V. The translational mobility tensors �ij�X� lin-
early relate the hydrodynamic forces acting on the spheres to
their translational velocities. They depend on the hydrody-
namic model of particles, and on the many-body HIs be-
tween them at the specific configuration X= 	R1 , . . . ,RN
 of
their centers.

To focus on generic HIs effects caused by permeability
using a minimal number of parameters, we model the par-
ticles as solvent-permeable nonoverlapping spheres of uni-*mekiel@ippt.gov.pl
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form permeability k, and radius a. The velocity field, v�r�,
and pressure field, p�r�, of the Newtonian fluid of shear vis-
cosity �0 outside and inside the spheres are described, re-
spectively, by the Stokes �10� and Brinkman �11,12� equa-
tions,

�0�2v − �0�2�v − ui���X� − �p = 0, � · v = 0. �3�

Here, �−1=�k is the hydrodynamic screening length, and
ui�r�=Ui+�i� �r−Ri� is the rigid-body velocity field of the
skeleton of a sphere i moving with translational and rota-
tional velocities Ui and �i, respectively. The characteristic
function, ��X�, is equal to one for r inside a sphere and zero
otherwise. The Brinkman equation obtained for �=1 de-
scribes the mean flow inside a porous particle, under the
proviso that the mean pore size, ���−1, is sufficiently
smaller than a; i.e., the dimensionless inverse hydrodynamic
screening length, x=�a, is sufficiently large.

To determine the translational hydrodynamic mobility
tensors �ij�X� going into the calculation of diffusion proper-
ties, the Stokes equation for the flow outside the spheres
�where �=0� and the Brinkman equation inside the spheres
must be solved under the conditions that v and the fluid
stress tensor change continuously across the sphere surfaces.
Here we apply the multipole expansion �13–15�. In this pro-
cedure, two basic operators are involved: the integral opera-
tor G�ij� with the Green kernel equal to the Hasimoto tensor
for a periodic system �16�, describing the propagation of the
velocity field from the particle j to the particle i, and the
one-sphere operator, Z0�i�, which relates the incident flow
around particle i to the flow scattered by this particle. Only
Z0�i� depends on the hydrodynamic particle model, i.e., on
whether porous particles �13,17�, particles with stick bound-
ary conditions or liquid droplets are considered. The opera-
tors Z0�i� and G�ij� enter into a system of integral equations,
which are solved by projecting onto a complete set of spheri-
cal multipole functions, and truncating at a multipole order L
�13–15�. A detailed description of this procedure, including
information about the role of Z0�i� and G�ij� in this calcula-
tion, can be found in Refs. �13–15�. Our numerical imple-
mentation of this algorithm is called the HYDROMULTIPOLE

code.
The averaging is performed over equilibrium configura-

tions of typically N=256 particles in a periodically replicated
cubic simulation cell. The configurations are generated by
Brownian dynamics simulations and a condensation tech-
nique. The extrapolation from a finite number of particles in
the periodic cell to the thermodynamic limit, N→�, is
achieved using a finite-size correction formula proposed by
Ladd �18� and our fast-multipole simulations performed for
N=256,512,1024. With the extrapolation for N→� and also
the extrapolation for the truncation order from L=3 to
L→�, high-precision data for H�q� are obtained, with an
error of less than 1% at low q, and less than 0.5% at larger q.

The suspension in our model is fully characterized by the
particle volume fraction � and the parameter x. The former
extends to values close to the freezing concentration,
��0.45. The latter covers the whole range of permeability,
x	3, starting from highly porous particles at the limits of
the continuum picture underlying the Brinkman equation,

and including typical values x�30, which correspond to
screening lengths of polymer brushes in core-shell systems,
e.g., �−1�5 nm and a=140 nm for the particles studied in
�6�.

Figure 1 shows an example of our simulation results for
H�q� at �=0.35, covering a wide range of x values. With
increasing x, H�q� becomes smaller at all q �19�. The de-
crease reflects the strengthening of the HIs when the particles
become less permeable. This can be understood if H�q� is
interpreted as the short-time generalized sedimentation coef-
ficient of a homogeneous suspension of monodisperse par-
ticles subject to a weak, spatially sinusoidal force field col-
linear with q �20�. According to our simulations, the
amplitude of oscillations in H�q� becomes larger with in-
creasing �.

Three characteristic values of the hydrodynamic function
H�q� are shown in Fig. 2: at the principal peak position qm, at
q=0 and for q→�, representing H�qm�, K and Ds /D0, re-
spectively. The single-particle diffusion coefficient, D0
=D0�x�, is very sensitive to x �21�. In the zero permeability
limit, x→�, it attains its smallest value given by the Stokes-
Einstein diffusion coefficient, D0���=D0

hs=kBT / �6
�0a�, of
a nonpermeable sphere with stick boundary conditions.

For x	30, H�qm� decays monotonically in �, whereas a
small nonmonotonicity is observed for x�5 �see Fig. 2�a��.
The peak value declines most strongly for zero permeability
�x=��, where it follows precisely the linear relation H�qm�
=1–1.35� up to �=0.45. This confirms earlier Stokesian
dynamics simulation results for the H�qm� of impermeable
hard spheres �23�.

Unlike H�qm�, both K and Ds /D0 decline monotonically
for all x, with a faster decay for a smaller permeability �see
Figs. 2�b� and 2�c��. The quantities in Fig. 2 are strongly
permeability dependent, in particular at larger �. Decreasing
x from 100 to 10 at �=0.45, e.g., doubles K and Ds /D0. The
dashed lines in Fig. 2�b� are the first-order density expansion
results for x=� and x=10 derived, respectively, by Batchelor
�22� and Chen and Cai �7�. Notice that O��2� corrections to
K involving three-body HIs contribute significantly already
for �=0.05.
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FIG. 1. �Color online� Simulation results for the hydrodynamic
function H�q� at x=3,5 ,10,30,50,100,� �from top to down�.
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The intraparticle flow is attenuated with increasing x �de-
creasing permeability�. The flow reduction enhances both the
interparticle hydrodynamic friction so that U and Ds are de-
creased, and the single-particle hydrodynamic friction, so
that also U0 and D0 are decreased. From Fig. 2 it is clear that

the first effect is stronger because U /U0 and Ds /D0 get
smaller for increasing x.

In contrast to the strong dependence of H�qm�, K and
Ds /D0 on the permeability, the principal peak location qm
and the locations of the secondary maxima of H�q� practi-
cally do not change with x and are nearly coincident with
those of S�q�. As a static equilibrium property, S�q� is inde-
pendent of hydrodynamics and thus of x. This observation
leads to the central result of our study: while H�q� itself is
strongly permeability dependent, its q-dependence can be
mapped essentially on that of impermeable hard spheres. To
show this we introduce a reduced hydrodynamic function,

h�q� =
H�q� − H���

H�0� − H���


, �4�

where H���=Ds /D0 and H�0�=K. Numerical results for h�q�
are shown in Fig. 3�a�.

Quite remarkably, for all wave numbers h�q� is nearly
independent of x. This finding is valid for all �=0.05–0.45.
As a consequence, h�q��hhs�q�, where hhs�q� is the reduced
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FIG. 2. �Color online� Characteristic values of the hydrody-
namic function H�q�, with simulation points connected by spline
fits to guide the eyes. �a� Principal peak value H�qm�. �b� Sedimen-
tation coefficient K. The lower and upper dashed lines �red and blue
online� are the first-order concentration results for nonpermeable
hard spheres, Khs=1–6.546� �22�, and highly permeable particles
with x=10, K=1–5.5� �7�, respectively. �c� Normalized self-
diffusion coefficient. On each plot �a�-�c�, systematically, the larger
x, the smaller the value of the coefficient.
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FIG. 3. �Color online� Reduced hydrodynamic functions h�q�
and hm�q�= �H�q�−H���� / �H�qm�−H����. For each value of the
wavenumber, hydrodynamic functions with decreasing values of x
change monotonically from the hard-sphere limit �dashed line, red
online� to the high permeability limit with x�3 �solid line, green
online�.
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hydrodynamic function of impermeable hard spheres depen-
dent on � only. Accordingly, H�q� can be well estimated in
terms of the coefficients K and Ds /D0, and a x-independent
master curve, hhs�q�. If the same reduction procedure is per-
formed with H�0� replaced by H�qm�, the resulting function
hm�q� coincides with a very high precision with hm

hs�q�, if
qa�2, as shown in Fig. 3�b�. For qa
2, H�q� is a quadratic
function of �qa�2, with a non-negligible �qa�4 contribution
for 1�qa�2.

Our simulations and a large-q asymptotic analysis justify
a suggestion by Pusey �24� that Ds /D0 can be estimated by
H�q�� at a wave number q��qm such that S�q��=1. Accord-
ing to our study, Ds /D0 is obtained within the accuracy better
than six percent for the first q� value to the right of qm. A
high-precision value of Ds /D0 with at most 1% deviation is
obtained for the next larger q�.

In summary, using a versatile simulation method, the
short-time dynamic properties of uniformly permeable
spheres have been calculated as a function of permeability,
concentration and wave number. Our most important result is
that the q-dependence of H�q� can be shifted and scaled to
that of impermeable hard spheres, with the use of coeffi-
cients, which are strongly permeability dependent. The es-
sential information about the hydrodynamic structure of par-
ticles is therefore contained only in the sedimentation, self-
diffusion, and also cage-diffusion coefficients. Figure 3
illustrates that any attempt to obtain transport properties of

porous spheres using a model of impermeable effective hard
spheres with an effective radius aeff rather than a, is not
justified theoretically and will give unsatisfactory results.

The predictions of our study can be scrutinized in dy-
namic scattering experiments on systems of sterically stabi-
lized porous particles. The generic trends for uniformly po-
rous spheres are likely to apply also to hydrodynamically
more complex particles such as the core-shell particles. The
present data can serve as a database for experimentalists
working on the dynamics of neutral porous colloidal par-
ticles and aggregates. Our work highlights the power and
efficiency of the HYDROMULTIPOLE code in obtaining high-
precision simulation data for dynamic properties of particles
with internal hydrodynamic structure, for concentrated sus-
pensions with strong many-body HIs.
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