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The feasibility of path integral Monte Carlo ground state calculations with very few beads using a high-order
short-time Green’s function expansion is discussed. An explicit expression of the evolution operator which
provides dramatic enhancements in the quality of ground-state wave functions is examined. The efficiency of
the method makes possible to remove the trial wave function and thus obtain completely model-independent
results still with a very small number of beads. If a single iteration of the method is used to improve a given
model wave function, the result is invariably a shadow-type wave function, whose precise content is provided
by the high-order algorithm employed.
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Quantum Monte Carlo path integral calculations provide a
powerful approach to many-body physics both at zero �1–3�
and finite temperatures �4�. They rely on using the classical
action of the system in imaginary time to define a path dis-
tribution probability following Feynman’s approach. For sys-
tems with Bose statistics, the probability is positive and the
only approximation involved in the calculations comes from
the discretization of time, which prevents an exact evaluation
of the action. In path integral calculations, chains with large
numbers of time slices or beads are just a realization of these
ideas �5�. If an accurate evaluation of the action for paths
with large time steps were possible, the complexity of path
integral calculations and, in particular, ergodicity issues,
would be greatly reduced.

For ground-state calculations, the path integral ground-
state �PIGS� approach �1–3� provides a method to systemati-
cally improve a trial wave function, by repeated application
of the evolution operator in imaginary time, which eventu-
ally drives the system into the ground state �6�. Here again, if
an accurate implementation of the evolution operator for
large time steps were available, it could be used to build
variational wave functions of very high quality.

In this paper, we focus on high-order short-time expan-
sions of the Green’s function, which have been the subject of
a series of works in recent years �7–9�. This progress has led
to a deep understanding of their properties and provided vari-
ous extremely accurate decompositions of the evolution op-

erator Û=exp��Ĥ�, with Ĥ= T̂+ V̂, expressed as products of

unitary operators of the basic components Û=exp��T̂� and

Û=exp��V̂�. An important result is that the use of a finite
time step � can be renormalized in the potential. This means
that for a range of time steps �, one is in practice virtually
free from finite time step errors. As a consequence, one can
successfully use very few instances of the resulting imagi-
nary time propagator to wipe out any excited state compo-
nent from an initial variational wave function. This allows us
to obtain an accurate description of the exact ground state
wave function with little numerical effort. In this work we
show that this goal can be easily achieved even when the
starting variational wave functions contains no more addi-
tional information than the bosonic statistics, that is, when
one starts from �m=1. This is a relevant feature of the
method as it allows us to get accurate information about a

physical system when no a priori knowledge about the
ground state wave function is available.

We make use of the decomposition schemes proposed by
Chin �9,10� in order to evaluate the feasibility of PIGS cal-
culations with high-order propagators using very few beads
�Nb�. To this end, we revisit the ground state of bulk super-
fluid 4He. We also explore the possibility of performing
ground-state calculations of boson systems without any
model wave function, i.e., to take as a starting point �m=1
and rely in the propagator’s quality to build the actual wave
function exclusively from the Hamiltonian. It is also interest-
ing to note that if one does make use of a trial wave function,
the application of Chin’s evolution operator �9,10� produces
a much enhanced model that actually incarnates a shadow
wave function �6�. In this way, Chin’s analysis provides a
deep understanding of the success of shadowlike wave func-
tions �11,12� and sheds light onto the actual mechanisms
leading to this kind of wave functions.

Decompositions of the evolution operator preserving uni-
tarity in the form,

exp���T̂ + V̂�� = �
i=1

N

exp�ti�T̂�exp�vi�V̂� + O��n+1� , �1�

are the starting point which have culminated in the algo-
rithms due to Chin that we test here. By means of a proper
selection of the factorization coefficients �ti� and �vi�, any
given order can be achieved �the resulting expression is nth

order since the effective Hamiltonian is then T̂+ V̂+O��n��.
However, if some of the ti factorization coefficients are nega-
tive, involving diffusion processes backward in time, the al-
gorithm cannot be used in the context of quantum Monte
Carlo calculations. Fourth-order algorithms, for which Chin
has worked out a complete characterization �9�, happen to be
somehow unique, as for only forward decompositions, the
highest order that can be achieved is four. These develop-
ments result from a careful use of the expansion

�
i=1

N

exp�ti�T̂�exp�vi�V̂�

= exp��eTT̂ + �eVV̂ + �2eTV�T̂,V̂� + �3eTTV†T̂,�T̂,V̂�‡

+ �3eVTV†V̂,�T̂,V̂�‡� + ¯ , �2�
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which allows us to keep only the simplest term [V̂ , �T̂ , V̂�],
which produces a sort of renormalized potential,

†V̂,�T̂,V̂�‡ =
�2

m
�
i=1

N

	Fi	2, �3�

with Fi=� j�i
N �iV�rij�. A remarkable characteristic of the re-

sulting expansions is that they lead to a continuous family of
fourth-order algorithms characterized by one free parameter.
It is interesting to note that with a proper choice of that
parameter �t1 in Eq. �4�� one is able to fine tune the leading
error term of the propagator to any desired value, including
changing sign in a controlled way. Thus, one is enabled to
minimize the value of the fourth-order error coefficient, and
in doing so, even try to cancel, to the largest possible extent,
the contributions of the next orders. In practice, this means
that a particular value of the free parameter entering in the
algorithm produces exceedingly accurate and stable results.
A different strategy to improve the order of the propagator is
the use of a multiproduct expansion with a controlled viola-
tion of positivity �13�.

Among the various decompositions proposed in Ref. �9�,
the particular scheme chosen in this work is

e−�Ĥ = e−v0�V̂e−t1�T̂e−v1�Ŵe−t2�T̂e−v1�Ŵe−t1�T̂e−v0�V̂, �4�

with Ŵ= V̂+ �u0 /v1��2[V̂ , �T̂ , V̂�].
The various factorization coefficients are all dependent on

the single free parameter t1 �9�. The range of possible values
for t1 is 0� t1�0.5 and experience shows that the optimal
value is nearly independent of �=� /Nb. A similar decompo-
sition has been recently used in path integral Monte Carlo
�PIMC� simulations at finite temperature showing high accu-
racy �14�.

The operator splitting �4� allows for an estimation of the
Green’s function G�R ,S ,��= 
R	e−�H	S�, which in turn pro-
vides the mechanism for building accurate wave functions
starting from a trial wave function, ��R�
=�G�R ,S ,���m�S�dS. More explicitly,

��R� =
 e−v0�V�R�e−�R − S1�2/4Dt1�e−v1�W�S1�

�e−�S1 − S2�2/4Dt2�e−v1�W�S2�e−�S2 − S�2/4Dt1�

�e−v0�V�S��m�S�dS1dS2dS . �5�

Actually, Eq. �5� sets the grounds for building wave func-
tions consistent with the decomposition of the propagator
�4�. It has an intuitive content too: it states that the actual
value of ��R� should be taken as a weighted average of
neighbor shadow values ��S�, with a weight given by a pre-
cise combination of exponentials of the �finite time step
renormalized� potential. Moreover, it is also very suggesting
considering the double possibility that Eq. �5� offers, either
as a powerful enhancement of an a priori model wave func-
tion �m�R� or directly as a tool to generate the wave function
directly from the Hamiltonian.

Equation �5� can also be written in terms of relative rather
than absolute auxiliary coordinates,

��R� =
 e−v0�V�R�e−�S1
2/4Dt1��e−v1�W�R+S1�e−�S2

2/4Dt2��

�e−v1�W�R+S1+S2�e−�S2/4Dt1��e−v0�V�R+S1+S2+S�

��m�R + S1 + S2 + S�dS1dS2dS . �6�

While Eqs. �5� and �6� are equivalent, they lead to different
estimators for the kinetic energy. The action of the kinetic
operator on ��R� in Eq. �6� involves derivatives of �m, in
contrast to what happens when the prescription given in Eq.
�5� is used.

It is possible to use the propagator G�R ,S ,�� in order to
improve the quality of any given trial wave function, with
reduced variance in direct proportion to its quality. In fact,
Eq. �6� satisfies the principle of zero variance: as the trial
wave function �m approaches the exact ground state wave
function, the propagation time � can be continuously tuned to
smaller values, with the S distribution approaching a Dirac
delta and ��R� and its derivatives approaching the exact
ones.

In order to test the accuracy of methods �5� and �6�, we
have applied it to liquid 4He, a classical benchmark in quan-
tum many-body physics. The calculations have been carried
out at the experimental equilibrium density �=0.365�−3 ��
=2.556 Å� with N=64 atoms and using the HFD-B�HE�
Aziz potential �15�, which has proven to be highly accurate
in the description of the experimental equation of state �16�.
As a trial wave function, we use a simple Jastrow form based
on the McMillan model, �m�R�=�ijexp�−0.5�b /rij�5� with
b=1.20�, and two additional variational parameters, t1 and �
�5�. After a quick search we found the optimal value t1
=0.35 which was kept fixed for the rest of the calculations.
The dependence of the variational energy on the remaining
variational parameter � is shown in Fig. 1, where the varia-
tional character of the calculation is clear. The horizontal
axis corresponds to the � parameter in K−1 units and the
vertical axis represents the total energy per particle in K. The
data displayed as empty circles is the variational energy for
the wave function based on the high-order action �5�. The
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FIG. 1. Variational energies obtained with a single time step �
and the proposed wave function. Open circles, squares, and dia-
monds correspond to �m�R� of McMillan type, semiclassical
model, and 1, respectively. The corresponding filled symbols stand
for the asymptotic values using the three models and more than one
time step.
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position of the minimum is a compromise between a large �
value suitable for a large suppression of the excited compo-
nents present in �m�R�, and a small one suitable for a proper
behavior of the variational wave function �5�, which relies
itself on a short-time expansion. The minimum is located at
�=0.025 and the variational energy obtained is E=−7.10 K,
only �0.2 K higher than the exact value.

Equally impressive is the data displayed as empty dia-
monds, which is a variational calculation using the same
propagator �5� acting on �m�R�=1, i.e., it is a variational
calculation in which only the Hamiltonian and the statistics
are used. We see in this case that the compromise between a
large suppression of the nonground state components and a
small � parameter has been shifted toward a higher value �
=0.04, as could be expected. A third model for �m�R� con-
sists in a semiclassical approximation, �m-sc�R�=�i	jexp
�−�Vsr�rij��, with Vsr�r�=1 /r12 corresponding to the r depen-
dence of the Lennard-Jones potential around the core. This
third model does not contain any free variational parameter
since � is the total imaginary time of the propagator. The
results obtained with �m-sc�r� �open squares� only improve
slightly the variational energy obtained with �m�R�=1.

It is also possible to apply several times the propagator to
�m�R� in order to obtain better variational results and finally
projecting out any excitation present in the model wave func-
tions. This is shown in Fig. 1 with a filled circle point, which
corresponds to the propagator applied Nb=4 times onto the
Jastrow-McMillan wave function �m�R� for a total time
propagation �=0.04 K−1. The same figure shows with a
filled diamond the result of acting with Nb=10 propagators
on �m�R�=1 for a total time propagation �=0.12 K−1. Be-
tween these two points, the semiclassical model achieves
convergence very fast with Nb=4 and time �=0.06 K−1.

The high-order Green’s function can also be used to ob-
tain the total energy following the standard procedure of
evaluating the local energy of the trial wave function �m�R�
at one end of the chain, and its high accuracy translates again
in the need for a very small number of beads until conver-
gence is achieved. The results obtained for the total and po-
tential energies per particle are reported in Table I as a func-
tion of the total imaginary time �. The potential energies are

calculated in the center of the chain to remove any possible
bias coming from �m�R�; the total energies are estimated in
the extreme, except for the case �m�R�=1 where they are
sampled in the center. The number of beads for a given time
� is determined simply by the requirement that doubling its
number �and simultaneously halving the propagation time
per bead �� does not have any effect, which turns to be
equivalent to keep the propagation time per bead below �
=0.15 K−1. One would expect that this regime corresponds
to keeping the finite time step error just below the detectable
level. This is in accordance with Fig. 1, where we see that a
propagation time per bead near 0.15 K−1 is close to the
maximum value before the time step error starts to become
apparent by bending upwards the variational energy curve.
When both requirements: �=� /Nb to be small enough
���0.15 K−1 in our case� and Nb large enough are met, the
energy becomes independent of both � and Nb and a good
estimation of the ground state energy is achieved.

The results of Table I show that the convergence is
quickly achieved with only a few number of beads: Nb=4 for
the McMillan and semiclassical Jastrow factors, and Nb=8
for �m�R�=1. Concerning the convergence for the potential
energy, one can see in Table I that the exact �asymptotic in ��
value is independent of the trial wave function and its value
is reached with only Nb=4. It should be taken into account
however that, as in any PIGS method, the total length of the
chain corresponding to 	�m�R�	2 is twice that of �m�R�, and
that one � propagator �5� involves three internal shadows.

Unbiased �pure� estimations of operators Ô other than the
Hamiltonian can only be calculated in the center of the chain,


Ô�=N−1
�m	G�� /2�ÔG�� /2�	�m�. This holds, for in-
stance, for the potential energy reported in Table I and the
two-body radial distribution function g�r� shown in Fig. 2.
The present PIGS results for g�r� show an excellent agree-
ment with experimental data �17� for the trial wave functions
used in this work. Even when �m�R�=1 the result is the
same, the calculation requiring only a few more beads.

Another relevant function that can be computed in an un-
biased way is the one-body density matrix ��r�, whose
asymptotic limit is the condensate fraction. The calculation
of ��r� has been carried out by incorporating worm move-

TABLE I. Total and potential energies per particle as a function of the imaginary time � and number of
beads Nb using different models for the initial wave function �m�R�. Figures in parentheses are the statistical
errors.

�
�K−1� Nb

McMillan Semiclassical 1

E /N
�K�

V /N
�K�

E /N
�K�

V /N
�K�

E /N
�K�

V /N
�K�

0.01 1 −6.860�58� −20.924�30� −3.878�76� −17.246�44� −2.81�9� −17.009�52�
0.02 2 −7.175�51� −21.106�37� −6.234�76� −20.285�44� −5.73�12� −20.148�42�
0.04 4 −7.268�44� −21.413�35� −7.121�67� −21.284�43� −6.93�11� −21.186�39�
0.06 4 −7.303�35� −21.538�44� −7.306�64� −21.547�40� −7.15�11� −21.570�31�
0.08 6 −7.299�41� −21.534�38� −7.290�55� −21.583�39�
0.08 8 −7.25�8� −21.381�20�
0.10 8 −7.33�8� −21.498�12�
0.12 10 −7.34�9� −21.524�10�
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ments in the sampling �18�, a technique that has been devel-
oped for path integral Monte Carlo �finite temperature� and
that we have extended to PIGS. One of the main advantages
of this method is that ��r� comes properly normalized, and
thus eliminates any uncertainty introduced by the a poste-
riori normalization factor. In Fig. 3, results for ��r� obtained
using different trial wave functions �m are shown. As one
can see, the results are statistically indistinguishable and pre-
dict a condensate fraction n0=0.080�2�, in nice agreement
with a recent PIMC estimation at T=1 K
�n0=0.081�2���18�.

Summarizing, the high-order short-time expansion of the
Green’s function presented in this work allows performing
high quality variational calculations on systems for which no
model of ground state wave function is known. Although
variational in nature, the accuracy of the used propagator is
so high that marginally small deviations from the exact
ground state can be achieved with very few time steps. This

is illustrated in the case of liquid 4He at equilibrium density,
where the propagator provides for Nb=1 and �m�R�=1 a
variational energy E /N=−6.20 K, and converges to the ex-
act value already with Nb=8. When used to improve a
Jastrow-McMillan wave function, it produces a shadow-like
variational wave function for Nb=1 with a variational
ground-state energy E /N=−7.10 K, only �0.2 K higher
than the exact value. Repeated application of the propagator
leads to variational results which are asymptotically exact for
values as low as Nb=4. The prospects for future work are
promising, since this opens the road to being able to obtain
results for systems whose ground-state wave function is
poorly known or even unknown.
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FIG. 2. Two-body radial distribution function g�r�. The solid
and dotted lines correspond to present results using for �m�R� a
Jastrow-McMillan factor or �m�R�=1, respectively. The dashed
line is the experimental data from Ref. �17�.
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FIG. 3. One-body density matrix ��r�. Filled circles and open
squares stand for PIGS results using for �m�R� a Jastrow-McMillan
factor �Nb=5� or �m�R�=1 �Nb=10�, respectively. The error bars
are smaller than the size of the symbols.
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