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Traveling and solitary wave solutions to the one-dimensional Gross-Pitaevskii equation
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The evolution of traveling and solitary waves in Bose-Einstein condensates (BECs) with a time-dependent
scattering length in an attractive/repulsive parabolic potential is studied. The homogeneous balance principle
and the F-expansion technique are used to solve the one-dimensional Gross-Pitaevskii equation with time-
varying coefficients. We obtained three classes of new exact traveling wave and localized solutions. Our results
demonstrate that the BEC solitary wave solutions can be manipulated and controlled by the time-dependent

scattering length.
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I. INTRODUCTION

The experimental realization of Bose-Einstein conden-
sates (BECs) in ultracold atomic gases [1-3] has triggered
both experimental and theoretical exploration of the proper-
ties of Bose gases [4,5]. One of the important aspects in this
area is the exploration of nonlinear (NL) properties of matter
waves. Localized NL excitations, such as solitons, have been
observed in BECs. These studies have stimulated intense re-
search activities on NL atom optics and other areas of con-
densed matter physics and fluid dynamics.

In the case of NL matter waves, bright solitons (BSs) are
expected only for an attractive interaction (the s-wave scat-
tering length x(f) >0), whereas dark solitons (DSs) are ex-
pected for a repulsive interaction (x(7) <0). Recently, experi-
ments have demonstrated that the variation of the effective
scattering length (SL), including its sign, can be achieved by
utilizing the so-called Feshbach resonance [6,7]. It has been
shown in Ref. [8] that the variation of the nonlinearity of the
Gross-Pitaevskii (GP) equation via Feshbach resonance pro-
vides a powerful tool for controlling the generation of bright
and dark soliton trains, starting from the periodic waves.

The construction of exact solutions of NL partial differ-
ential equations (PDEs) is one of the essential and most im-
portant tasks in NL science. The objective of this paper is to
identify traveling wave solutions of the one-dimensional
(ID) GP equation, by utilizing the homogeneous balance
principle and the F-expansion technique, and to extend the
analysis to include the solitary wave solutions. Generally
speaking, the presence of solitary wave solutions depends on
the s-wave SL x(7) and the trapping potential coefficient B(r)
[appearing below in Eq. (1)], so that we shall also provide a
constraint condition on these coefficients, for exact solution
by the present method.

Owing to the importance of the GP equation with time-
varying coefficients, there have naturally been attempts at its
exact solution before. An early attempt was presented by
Xue [9], who obtained some analytical solutions and showed
that the BSs can be compressed into desired width and am-
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plitude in a controllable manner by changing the SL and the
external potential. Al Khawaja [10] obtained an exact solito-
nic solution by employing the Darboux transformation
method. It required a known “seed” solution of the GP equa-
tion in question, to obtain a general exact solution in terms of
exponential and trigonometric functions. Atre et al. [11] ob-
tained a class of solitary wave solutions to the 1D GP equa-
tion by utilizing the self-similar method. They introduced an
ansatz solution that, via a Riccati equation, can be mapped
into a linear Schrodinger eigenvalue problem. A soliton con-
figuration could be associated with each such solvable prob-
lem, expressible in terms of Jacobi elliptic functions (JEFs).
Our solutions are also expressed in terms of JEFs, and natu-
rally there exist relations between the solutions reported in
[11] and some of the solutions reported here. However, the
methods of solution and the applications of solutions are
different. Our solution method involves the homogeneous
balance principle and the F-expansion technique [12-14]. Tt
is a simple systematic procedure for solving PDEs of the NL
Schrodinger type, which allows an easy determination of the
traveling wave and localized solutions. Another recent ac-
count, involving self-similar solutions (“similaritons”) ob-
tained by a lens-type transformation, is presented by Wu and
Porsezian [15].

The paper is organized as follows. In Sec. II we introduce
the homogeneous balance principle and the F-expansion
technique [12-14]. Applying the solution procedure to the
1D GP we obtain three families of exact solutions. In Sec. III
we further investigate the main features of analytical solu-
tions for a few selected SLs x(r), obtained by computer
simulations. The last section presents a short summary.

II. PERIODIC TRAVELING WAVE SOLUTIONS

The condensate wave function is well described by the
GP equation. In the physically important case of cigar-
shaped BECs, it is reasonable to reduce the GP equation to a
1D nonlinear Schrodinger equation (NLSE) [11,16]

iE+5@+X(t)u|u|2+,8(t)x2u=0, (1)

where the dimensionless time ¢ and the coordinate x are mea-
sured in some convenient units. The s-wave SL x(z) and the
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TABLE I. Jacobi elliptic functions.

Solution o cy Cy F(6) m=0 m=1
1 1 2 m? sn(6) sin tanh
2 1-m? 2m?-1 —m? cn(6) cos sech
3 m2-1 2—-m -1 dn(0) 1 sech
4 m? m? 1 ns(6) cosec coth
5 -m? 2m2-1 1-m? nc(6) sec cosh
6 -1 2-m? m>—1 nd(6) 1 cosh
7 1 2-m? 1-m? sc(6) tan sinh
8 1 2m?-1 —-m*(1-m?) sd(6) cot cosech
9 1-m? 2-m? 1 cs(6) cos 1

10 —-m*(1-m?) 2m?-1 1 ds(6) sec 1

trapping potential coefficient B(z) are assumed functions of
time, so that we consider NLSE with variable coefficients in
an external parabolic potential (PP).

To obtain the solution of Eq. (1), the complex wave func-
tion u(z,x) is written as [17,18] u(r,x)=A(t,x)e®Y), where
the amplitude A(z,x) and the phase B(z,x) are real functions
of x and r. Substituting u(z,x) into Eq. (1) and setting the real
and imaginary parts of the resulting equations to zero, leads
to the following set of PDEs,

JA 1(_0AJdB B

TR T

at 2\ Jdx dx ox
JB 1| PA (aB>2 S BA—0. (2
%2 &xz_A PR + XA+ Bx"A=0. (2b)
We seek traveling wave solutions to Eq. (2), according to the
balance principle and the F-expansion technique [12,13]. Tt
is perhaps worth noting that the balance and F-expansion
methods, originally developed for 1D systems, have been
extended to multidimensional PDEs in [17,18]. The solution
of Egs. (2) is chosen in the following form:

A(t,x) = f()F(60) + g()F'(6). (3a)
0=k(t)x + (), (3b)
B(t,x) = a()x> + b()x + c(1), (3¢)

where f, g, k,w a, b, and ¢ are the functions of time, to be
determined. The function F(6) is one of JEFs, which in gen-
eral satisfy the following general first- and second-order NL
ordinary differential equations: (dF/d6)*=cy+c,F>+c4F?,
and d’F/d@*=c,F+2c,F>, where c, c,, and c, are real con-
stants related to the elliptic modulus of JEFs. Substituting
Egs. (3) into Egs. (2), along with the relations mentioned
above, collecting the terms of different powers of Pyl
(k=0,1,2;n=0,1,2,3) and of Vco+c,F?>+c,F*, and then
setting each of the terms equal to zero (the balance prin-
ciple), we obtain an overdetermined system of 14 first-order
differential and algebraic equations for the unknown func-
tions f, g, k,w a, b, and c. By solving these equations self-

consistently with the help of Mathematica, one finds the fol-
lowing solutions: -

Case 1: g=0, f=fyV|x

; we obtain the solution family 1,

I .
u(x,t) = foV|x|F(6)e®. (4a)
Case 2: =0, g= go\e"|7; we obtain the solution family 2,
=
soVIXl i
Jg)=——-¢". 4b
u(x,t) F) ¢ (4b)

Case 3: f= fo\"m§ g= gov'm; we obtain the solution family 3,

u(x,t) = [f oF(6) + ﬁ] Vxle®. (4¢)

F(0)

In all the cases k=kyy; w=—kobyfx’dt+wy; b=byx; and
c:%(czkz—b(z))f)(zdt. Also a:—i%, so that B:—i%xz
+boxx+5(cokg—by) [x3dt, and  O=ko(xx—bof x*dt—x,),
where xp=-wg/k,. Here and in what follows the symbols
with the subscript O are used to denote the initial values of
the corresponding parameter functions at the initial time
t=0. Essentially, the solution families 1 and 2 are equivalent
to each other, because both F and 1/F are JEFs themselves.
The chirp function a(¢) is directly related to SL. On the other
hand, the SL function () is expressed in terms of the trap-
ping potential coefficient B(r). This relation can be conve-
niently understood as an integrability condition on Eq. (1),

_ 1 (dxy’
'8_)(2<dt)

1dx

- x df*’ )

The form of the solutions depends on what JEFs are utilized.
Table I lists some of the JEFs that may appear in the solu-
tions. As long as one chooses the constants cg, ¢,, and cy,
according to the relations listed in Table I and substitutes the
appropriate F(6) into Egs. (4), one obtains the exact periodic
traveling wave solutions to the 1D GP equation. The elliptic
modulus m varies between 0 and 1. When m — 0, JEFs de-
generate into the trigonometric functions, and the periodic
traveling wave solutions become the periodic trigonometric
solutions. When m — 1, JEFs degenerate into the hyperbolic
functions, and the periodic traveling wave solutions become
the solitary wave solutions.
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TABLE II. Some single-JEF solitary solutions.

Solution type Single-JEF solitary wave

0 B

Bright solitary

(BS) = o\ sec h(6)e™
wave

0=ko(xx = bof Xdt = x;)

1d 1
B=- ——Xx2+b0)(x+5(ké—bg)f)fdt

2x dt
Dark solitary uy=f, \“"m tanh(g)eB) 0= ko(xx = bof X’dt — xo) 1 dy 1, ,
(DS) wave 2 B=- Z(Exz +boxx+ E(ko - bo)szd’

III. SOME CHARACTERISTICS OF THE SOLITARY
WAVE SOLUTIONS

By definition, solitons preserve their form while propagat-
ing; they are localized, and after interacting with other soli-
tons emerge from collisions unchanged (except for a possible
phase shift) [19]. They can also periodically change the
width and the peak maximum, in which case they are known
as the soliton breathers. Since we do not consider here inter-
actions between our solitary waves, we do not claim them to
be true solitons; the task of their interactions will be accom-
plished elsewhere. Nevertheless, the connection of GP equa-
tion with NLSE, which admits soliton solutions, suggests
that our solitary wave solutions are genuine solitons as well.
Still, we refer to our solutions only as solitary wave solutions
and report their existence as m— 1. Trains of soliton solu-
tions in terms of JEFs, as well as bound states of solitons in
ID GP equation have been discussed in [11,20]. It is seen
that the form of localized solutions in GP equation is con-
trolled by the SL x(¢). Obviously, when x(¢)=const, B(r) is
zero, and Eq. (1) becomes the standard NLSE [21], which is
an integrable system. Such a system supports both bright and
dark soliton solutions. When x(¢) is a function of time, the
1D GP equation with variable coefficients is usually nonin-
tegrable, and the solutions must be found numerically or per-
turbatively, from suitably chosen ansatz solutions. Regard-
less of what x(z) is, as long as the condition (5) is satisfied,
the GP equation is an integrable system, and Eq. (1) contains
solitary wave solutions. In Table II we exhibit the most in-
teresting single-JEF solitary wave solutions. The system can
be controlled by choosing different SLs. To display some
unique features of these exact solitary wave solutions, we
choose the SL x(7) in terms of the trigonometric or exponen-
tial functions.

First, we discuss the BS u;. From Table II it can be con-
cluded: (1) the amplitude of the solitary wave is proportional

2
[u |

5 0 °©
FIG. 1. (Color online) Bright breather solitary wave with the
cosine scattering length. The parameters are: = x, cos(?), xo=1,
fo=ko=1, by=0, x7=0. Left: optical intensity distribution. Right:
amplitude variation at the position x=0, as a function of time.

to \e";; the beam width inverses with y, but the shape of the
solitary wave does not change as it propagates, so the total
power (N=[*Z|u|*dx=2f3/ky) is conserved. When we in-
crease the absolute value of SL, the solitary solution u; be-
comes compressed. (2) The center position of the solitary
wave can be expressed as x,.=|(byf x*dt+x,)/ x|; it satisfies
the following equation of motion: d’x./df*+28(t)x,=0. This
equation means that the pulse is located at x,; it behaves like
an oscillator with variable spring constant that moves in time
t under the influence of PP B(f)x>. According to the equation
of motion, we can select an appropriate SL x (that is, the
external PP) to control the solitary wave motion. For the DS
u,, we obtain similar results. In the next subsection we dis-
cuss the representative examples from Table II, to illustrate
the movement of BEC solitary waves under different SLs
and external PPs.

A. Bright solitary waves

A few experimental examples of BS matter waves are
provided in [22,23]. In order to understand physical signifi-
cance of BS from Table II, we present some of its character-
istics. In particular, taking the SL y= x, cos(#), we obtain the
intensity of BS:

Ju(e,0]* = f5lxo cos(@)]sec 1(6), (6)

where 0=k[ xo cos(t)x—%)((z)bo(ﬁsin t cos t)—x]. Figure 1
shows the propagation of the pulse in time ¢. It is periodic;
the BS executes periodic oscillations of a breather, the pulse
amplitude displays a cyclic change.

As another example, we examine the formation and dy-
namics of NL excitations in the presence of periodic SL in

FIG. 2. (Color online) Stable oscillations of a bright breather
solitary wave, in the case y=1+xq sin(z), xo=0.1, fo=ko=bo=1,
xo=0. Left: amplitude of the wave. Right: velocity of the pulse
center.
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FIG. 3. (Color online) Dynamics of the dark solitary wave com-
pression, as given by Eq. (8). The parameters are given as follows:
X=x0e*P, By=0.05, fo=ko=bo=xo=1, xo=0. Left: intensity distri-
bution as a function of 7. Right: View from the above.

the attractive interaction regime. A number of condensate
profiles emerge in the attractive regime, depending on the
nature of SL. Specifically, we take the SL y=1+ x, sin(z),
where 0<y,<1. From the integrability condition (5), we
find the coefficient of the external PP: B(r)=—x,[ xo+sin(z)
+ X0 c0s(1)]/[2+2x, sin(#)]?, from which we obtain the soli-
tary wave intensity, using Table II,

|u(x,0)[?> = f3(1 + xq sin 1)sec h*(6), (7)
where
0= ko[ (1 + xo sin D)x — bo(2xo + 1+ 2x2t
- %(4 + Xo Sin 1) xo cos t) —xo].

In Fig. 2 we display the evolution (left) and the velocity
(right) of a BS wave in time, as given by Eq. (7), with the
parameters x,=0.1, fo=ko=by=1, x,=0. As seen in Fig. 2,
the amplitude of the solitary wave displays periodic oscilla-
tions. Because the external PP changes from attractive to
repulsive alternately, the velocity of the pulse center executes
periodic oscillations, and the magnitude of the velocity is
also increasing gradually.

B. Dark solitary waves

Early experimental observations of DS matter waves are
provided in [24]. By utilizing the solutions reported in Table
II, we demonstrate that the manipulation of SL can be used
to compress a dark solitary wave of BECs into an arbitrary
peak matter density. It has been reported [25] that a change
in the SL can also lead to the splitting of solitons and the
generation of new solitons. For simplicity, we assume that
the solitary wave moves under a repulsive PP, namely S
=2,8% (B, is a positive constant). From the integrability con-
dition (5), we find the SL x(f)=x,e*?'. In particular, the
propagation speed of the solitary wave is increasing. With
the conditions above, the solitary wave intensity can be writ-
ten in the following form

|u(x,1)[? = foe*P0" tanh?(6), (8)

b
where 9=ky(e*P0'x+1— 4—;)6430’ —Xp).
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FIG. 4. (Color online) Broadening evolution of a dark solitary
wave, with the parameters: x=xpe™, xo=1, fo=ko=1, xp=0. Left:
intensity distribution for a=0.02, by=1. Right: cross sections at ¢
=0,10,20 from top to bottom, for a=0.04, by=0.

For a better understanding, Eq. (8) is plotted in Fig. 3,
which depicts the dynamics of the controlled 1D GP system
in a repulsive PP. As one can see from Fig. 3, with the in-
creasing time, the solitonary wave displays an increase in the
peak value and compression in the width. As a result, one
can obtain a pulse with an arbitrary peak matter density. In
the present model these tendencies continue unabated, how-
ever in a real BEC system, such tendencies are suppressed
(and the 1D model becomes invalid). Note that in the repul-
sive background potential the solitary wave is accelerating
and propagating away, instead of oscillating, as in an attrac-
tive PP. The possibility of compressing the soliton of BECs
into an arbitrary peak matter density experimentally could
provide a tool for investigating the range of validity of the
ID GP equation [26,27].

Figure 4 shows how the intensity of DS wave changes
with time, when the SL is y=x,e "% and S, negative, for
different b,. As seen, because SL decays as an exponential,
the amplitude of DS decays also, and the beam width in-
creases. So, one can select an appropriate SL, to make the
solitary wave broaden in a predictable fashion.

IV. CONCLUSIONS

We have determined different classes of exact traveling
wave solutions of the one-dimensional Gross-Pitaevskii
equation using the homogeneous balance principle and the
F-expansion technique. It is noted that the changes in the
scattering length in time can be effectively used to control
the BEC matter waves of solitary type. In particular, we have
shown the effect of pulse compression on both bright and
dark solitary waves in the presence of an attractive/repulsive
parabolic potential. Our results demonstrate that the BEC
solitary waves can be manipulated and controlled by the
time-dependent atomic scattering length.
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