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Dimensional phase transition in small Yukawa clusters
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We investigate the one- to two-dimensional zigzag transition in clusters consisting of a small number of
particles interacting through a Yukawa (Debye) potential and confined in a two-dimensional biharmonic po-
tential well. Dusty (complex) plasma clusters with =19 monodisperse particles are characterized experimen-
tally for two different confining wells. The well anisotropy is accurately measured, and the Debye shielding
parameter is determined from the longitudinal breathing frequency. Debye shielding is shown to be important.
A model for this system is used to predict equilibrium particle configurations. The experiment and model
exhibit excellent agreement. The critical value of n for the zigzag transition is found to be less than that
predicted for an unshielded Coulomb interaction. The zigzag transition is shown to behave as a continuous

phase transition from a one-dimensional to a two-dimensional state, where the state variables are the number
of particles, the well anisotropy and the Debye shielding parameter. A universal critical exponent for the zigzag
transition is identified for transitions caused by varying the Debye shielding parameter.
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I. INTRODUCTION

Consider a strongly coupled, two-dimensional (2D) sys-
tem of n particles with identical mass m and charge g. A
confining potential well is required to balance the repulsive
interparticle force and create a stable configuration. For al-
most any 2D potential well expanded around its minimum,
the lowest order terms in a particle’s potential energy are
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where U, is a constant. Consequently, we can approximate
the confining potential energy as

1 1 1 1
Ux,y) = ko + Zky* = Emwégcz + Emwéyyz, (2)

where k, and k, are force constants, and wy, and w,, are
single-particle (center-of-mass) oscillation frequencies in the
x and y directions, respectively. In 2D, the biharmonic well
[Eq. (2)] gives the general confining potential energy when
higher order terms are negligible.

When charged particles are in free space, they interact
through an unshielded Coulomb potential [ 1-3]. However, if
the particles are in a warm conducting fluid, then the Cou-
lomb interaction is shielded by the medium’s response, and
particles interact through a Yukawa potential (i.e., a shielded
Coulomb or Debye potential),

1
V(r) = —— L, (3)
4meyr

where r is the separation distance, and A is the Debye length.
We call a system of particles confined to two dimensions and
interacting through a Yukawa potential a “2D Yukawa sys-
tem.” If n is small, then the system is a “Yukawa cluster.” In
2D Yukawa systems the finite Debye length allows the
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particle-particle interaction length to be varied from long
range to short range [4], affecting both the system’s static
and dynamic properties.

The case of 2D Yukawa systems in isotropic (w(%x:w(z)),)
potential wells has been explored extensively, both theoreti-
cally [5-7] and experimentally [8—12]. For isotropic wells,
large-n systems form a circular disk where the interior of the
disk has a triangular lattice [2]. For clusters (small-n sys-
tems), different shell configurations become stable as the in-
teraction is tuned from long range to short range. When the
potential well is anisotropic, qualitatively new types of con-
figurations can occur [1,13,14]. If the well is weakly aniso-
tropic then clusters are elliptical and have well-defined shell
structures [13,15]. On the other hand, when the well is highly
anisotropic, the particle configuration is a one-dimensional
(ID) straight line [16—19]. A 1D cluster becomes a 2D clus-
ter through a zigzag transition. Zigzag configurations may
become elliptical and then circular through further structural
transitions [13].

Dusty (complex) plasma should be an ideal experimental
system for studying the zigzag transition in 2D Yukawa clus-
ters. In laboratory dusty plasmas, monodisperse dust par-
ticles interacting through a Yukawa potential [20] are con-
fined near the sheath edge above a horizontal electrode to
form a 2D system. A rectangular confining structure placed
on top of the electrode can produce a biharmonic potential
well [15,16,21].

Melzer [21] experimentally observed zigzag transitions in
dusty plasmas confined in a radio frequency (rf) discharge as
a function of particle number n and neutral gas pressure, and
attempted to infer the well anisotropy and Debye shielding
parameter using a static analysis of the cluster configuration
together with a comparison to unshielded Coulomb theory.
He concluded that the measured cluster properties, including
the critical value of n for the zigzag transition, were not
inconsistent with the physics of an unshielded Coulomb in-
teraction (i.e., A — ).

In this paper, we study Yukawa clusters in one- and two-
dimensional configurations and the transition between these
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configurations. Dusty plasma experiments are performed as a
function of particle number for two rectangular confining
wells, giving two values of the well anisotropy. This work
extends previous experiments [15] on 2D Yukawa clusters in
weakly anisotropic wells. We directly measure the well an-
isotropy and Debye shielding parameter [15]. We find that
Debye shielding is important, i.e., our results are not consis-
tent with physics in the unshielded Coulomb regime. Using
the measured cluster parameters, we compute predicted equi-
librium configurations from the model of Sec. II. The pre-
dicted and measured configurations exhibit excellent agree-
ment. The critical value of n for the zigzag transition is
found to be the same in both experiment and theory, and to
be less than that predicted for an unshielded Coulomb inter-
action. Even though n is small, the zigzag transition is shown
to behave as a 1D-2D continuous phase transition and a uni-
versal critical exponent is identified.

II. MODEL

Two-dimensional Yukawa clusters can be modeled as a
strongly- coupled system of n identical particles with charge
g and mass m at positions {x;,y;} interacting through a
Yukawa potential [Eq. (3)] with Debye length \. The par-
ticles are confined in a 2D biharmonic well [Eq. (2)] where
w, and w,, are oscillation frequencies for the x (longitudi-
nal) and y (transverse) directions, respectively. The separa-
tion _distance between particles i and j is oy
=\(x;—x;)*+(y;—y;)*. The total potential energy of the sys-
tem is [13,15]

U zn: (1 CREI S 2) En: ( q fr"-’“‘)
= —mwy X; + —mwp. y; | + s
=1 \2 0% 2 0 j>i=1 dmey 1 i

(4)

where the first sum in Eq. (4) is the potential energy of
confinement, and the second sum is the potential energy due
to particle-particle interactions. Equation (4) can be nondi-
mensionalized to give

U£=E(§2+a2m2)+ > (e_ ) 5)
0 i=1

j>i=1 \ Pij

where U, is the characteristic potential energy, and
&=x;/ry, m=yi/ry, and p;;=r;;/ 1y are normalized distances.
We define the characteristic length scale

(6)

using the longitudinal oscillation frequency w,,. The dimen-
sionless parameters in Eq. (5) are the particle number 7, the
well anisotropy o and the Debye shielding parameters «,
where

k, o T
a2=%2:—gx, K=f, (7)
x @y

respectively. To compare this model to experiment, o and «
must be measured in the experiment.
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This model [Eq. (5)] has three parameters: n, o, and «.
The isotropic well is given by a?=1. Without loss of gener-
ality, we assume that the anisotropic well has a*>1 (ie.,
w§\,> ) so that the major axis of the potential well lies in
the x (longitudinal) direction. An unshielded Coulomb inter-
action corresponds to k=0. As « increases the interparticle
force becomes more localized. Given n, a2, and , a solution
of the model [Eq. (5)] is a set of particle positions {&;, 7,} that
minimizes U. Properties of such solutions have previously
been investigated by Candido, et al. [13]. To minimize U/ U,
we use simulated annealing together with a final step of con-
jugate gradient minimization [7]. For a given configuration,
normal modes and their associated frequencies can be com-
puted from the dynamical matrix.

A zigzag transition [1] is a transition from a 1D straight
line configuration to a 2D configuration. For particle coordi-
nates {x;,y;} measured with respect to the cluster’s center of
mass, the cluster’s length and width can be characterized by
the rms values

/1 /1
Xrms = - Exiz’ Yrms = - 2 Y,2 (8)
n n

Consequently, a zigzag transition is a transition from
Yuns=0 to y,,,.>>0 caused by a change in one of the model
parameters. If a cluster is initially in a straight line configu-
ration, then for constant o and « a zigzag transition will
occur as n is increased. We denote the critical value of n,
which is the smallest value of n in the zigzag configuration,
by n.. A 1D-2D transition also occurs when « is increased
above a critical value k.. If a cluster is initially in a 2D
configuration, then increasing o causes a transition to a 1D
cluster [13] for which y,;=7,=0 above the critical value a’.
As a consequence, 1D configurations are independent of o
when o?> a?.

An unbounded 1D chain can be modeled by letting
wo,— 0 while wy, remains finite. Longitudinal confinement
can be achieved either by using periodic boundary conditions
[19] or a ring topology [22]. It is then convenient to define
the characteristic length scale using the transverse frequency
woy [19,21],

3
rp=——g =2, 9)

This gives a transverse Debye shielding parameter «; which
is related to « [Eq. (7)] by

ror K
KT=—=WSK. (10)

A zigzag transition occurs when the 1D lattice constant
a<a, where a, is a critical value [19,22]. For an unbounded
Yukawa chain, the dimensionless critical lattice constant
a./ryr is a solution of [22]

223

e—jKT{aL_/rOT)(
Tor j=13.... J

1+m&), (11)
ror

3

which depends only on the transverse shielding parameter
ky. For a pure Coulomb interaction, k;=0, (a./ry)?
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FIG. 1. Schematic of the experimental setup. Nearly identical
spherical dust particles are confined in a biharmonic potential well
created in the rectangular depression between four conducting bars
placed on the rf powered electrode. Experiments were performed
for confinement geometries with bar separations d=25.4 mm and
d=14.0 mm.

=(7/4){(3) so that a./ry;=1.28. The critical lattice spacing
decreases as the Debye shielding parameter increases (see
Fig. 5).

III. EXPERIMENT

Dusty plasma experiments were performed in the Dusty
Ohio  Northern  University  experimenT  (DONUT)
[9,10,15,23,24]. An argon plasma was created around an 89
mm diameter powered electrode in a radio frequency dis-
charge at 13.56 MHz. A blocking capacitor allows the elec-
trode to develop a negative dc self-bias that levitates the
negatively charged dust particles. As shown in Fig. 1, the
biharmonic well is formed at the minimum of a confining
geometry consisting of four rectangular aluminum bars
placed on the powered electrode. The end bars measure
6.35X 12.7X76.2 mm>, while the inner bars measure
6.35%12.7 % 50.8 mm®. The distance d between the two in-
ner bars can be changed to vary the dimensions of the con-
fining rectangular depression, and thereby change the aniso-
tropy parameter . Clusters were made using monodisperse
melamine formaldehyde spheres with a nominal diameter of
9.62+0.09 wm. As explained previously [9], we believe
that the dust particle diameter is closer to 8.94+0.18 wm.

To determine dust particle positions, the particles are illu-
minated by a red diode laser and viewed using a 2/3 inch
CMOS camera with a telecentric lens mounted above the top
face of the electrode. For these experiments, we recorded
4097 frames of video at =30 frames/s for each particle con-
figuration to determine center-of-mass (c.m.) and breathing
frequencies. A side-view camera was used to verify that out-
of-plane motion was minimal.

Two different confinement geometries were studied for
similar plasma conditions. In the first, the inner bars were

PHYSICAL REVIEW E 81, 016404 (2010)

separated by d=25.4 mm, while in the second they were
separated by d=14.0 mm. For the 25.4X50.8 mm? well,
the neutral Ar pressure was 12.4 mtorr (1.65 Pa), the rf
power was =10 W forward, the dc self-bias on the electrode
was —89.0 V, and particle positions were recorded with a
resolution of 16.51 um/pixel. For the 14.0X50.8 mm?’
well, the neutral Ar pressure was 12.1 mtorr (1.61 Pa), the rf
power was =9 W forward, the dc self-bias was —83.0 V,
and positions were recorded with a resolution of
16.77 um/pixel.

Normal mode frequencies were determined by projecting
the particle’s thermal motion onto the center-of-mass and
longitudinal breathing modes [10,24]. A Fourier transform of
the time history of the mode amplitude gives the power spec-
tral density for that mode, which is that of a driven damped
harmonic oscillator. For the neutral pressures used, the oscil-
lations are underdamped and the power spectra display a
clear resonance peak. Measuring the center-of-mass frequen-
cies wy, and wy, directly determines the anisotropy param-
eter o?, while comparing the longitudinal breathing fre-
quency for 1D configurations to model solutions determines
the Debye shielding parameter «.

IV. EXPERIMENTAL RESULTS

For the 25.4 % 50.8 mm? confining well, nine sets of par-
ticles were analyzed with n=2 to 19. Representative configu-
rations are shown in Figs. 2(a)-2(g). For n=35 the particles
are in a 1D linear configuration. When one more particle is
added (n=6) the cluster changes to a 2D zigzag configura-
tion, so n.=6. As n increases the number of zigzags also
increases until zigzags stretch from one end of the cluster to
the other (n=8,9). For n=19 the system displays a full
(5,14) elliptical shell structure [13,15].

For the narrower confining well, d=14.0 mm, we ana-
lyzed twelve sets of particles for nine different values of n
(2=n=17). Measured configurations are shown in Figs.
3(a)-3(g). In comparison to d=25.4 mm, we expect the an-
isotropy parameter to be larger so that the critical value of n
is increased. For these conditions, clusters with #=9 are in a
1D configuration. A zigzag configuration is seen for n=10,
so n.=10. As n further increases the zigzag region expands
away from the center of the cluster. However, even for
n=17 the cluster still has short linear tails at each end [13]
and is not an elliptical configuration.

The anisotropy parameter o for each confining well was
determined from measurements of the center-of-mass fre-
quencies excited by thermal noise [10] for the x and y direc-
tions, as shown in Fig. 4. For the 25.4 X 50.8 mm? well [Fig.
4(a)], mode temperatures were found to be 300-400 K, in-
dicating that the clusters are stable and in equilibrium with
the neutral gas component. The c.m. frequencies do not de-
pend on the number of particles, so the clusters do not per-
turb the potential well. By averaging over the measured c.m.
frequencies, we find ), =7.00£0.06 rad/s and
wp,=212*+0.1 rad/s.  Equation  (6) then  gives
a?=9.24+0.2, so that the anisotropy parameter has been
precisely determined.

For the 14.0 X 50.8 mm? well [Fig. 4(b)], data were taken
at n=06 for two different sets of particles and n=9 with three
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FIG. 2. [(a)-(g)] Measured particle positions for confining bar
separation d=25.4 mm. [(h)-(n)] Computed positions for
?=9.24 and «x=3. By matching y,,, between the experiment and
model, we find ry=1.40 mm. Agreement between measured and
computed configurations is excellent. For n=5 the configurations
are linear, at n=6 a zigzag develops and for n=19 a fully elliptical
cluster with a well-defined shell structure is seen. Both measured
and computed figures have a 1:1 aspect ratio.

different sets to estimate the spread in the measured frequen-
cies, as can be seen in Fig. 4(b). In comparison to
d=25.4 mm, we observed a larger range of mode tempera-
tures, 300-500 K, indicating that the clusters are somewhat
less stable. The c.m. frequencies are again found to be inde-
pendent of n, and the average c.m. frequencies are
wp,=5.37%+0.06 rad/s and wy,=29.7*0.1 rad/s, giving
@*=30.7+0.7. In comparison to the d=25.4 mm case, Wy,
has increased as expected, while wg, has decreased slightly,
even though the long side of the rectangular well (50.8 mm)
has not changed. This indicates that decreasing d is pushing
the sheath out of the concave depression formed by the bars.

The Debye shielding parameter xk was estimated by com-
paring measured longitudinal breathing frequencies for sev-
eral of the linear configurations to normal mode frequencies
calculated using the model. Since the breathing oscillation
varies the interparticle spacing, it probes the dependence of
the interparticle potential on particle separation, and there-
fore . For an unshielded Coulomb interaction =0, the
squared normalized breathing frequency (wy,/ wy,)>=3 irre-
spective of n, and the unshielded Coulomb regime is
k=0.2. For the 25.4 X 50.8 mm? well with n=4, the experi-
mental value w,,=14.08 rad/s, so that (w,/wy,)>=4.05,
giving «=2.6, while for n=5, the experimental value
wp,=14.27 rad/s, so that (wp,/ wy,)*=4.16, giving k=3.1.
The measured values of (w,,/,,)* are clearly not consistent
with k=0, and we conclude that Debye shielding cannot be
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FIG. 3. [(a)—(g)] Measured particle positions for a confining
well with d=14.0 mm. [(h)—(n)] Computed positions for a?>=30.7
and k=4. We estimate ry=~1.65 mm by comparing y,,,, for the
model and experiment. For n=9 the configurations are linear, at
n=10 a zigzag develops. For n=17 the cluster remains in a zigzag
configuration. Both measured and computed figures have a 1:1 as-
pect ratio.

neglected when modeling these clusters. The uncertainty in «
is fairly large, so we take k=3.0. Using this value of «, we
compare the measured cluster width y,,,, to the dimension-
less cluster width to find ryp=1.40 mm, g=—1.3 X 10%, and
A=0.47 mm. These values of ¢ and \ are consistent with
measurements made in isotropic wells for similar discharge
conditions [7,9,10,15,24]. In this case, the particle separa-
tion, which is a=0.72 mm at the center of the n=>5 cluster, is
greater than the Debye length, emphasizing the importance
of Debye shielding.

For d=14.0 mm the Debye shielding parameter was
estimated from the normalized breathing frequencies for
clusters with n=6, 8, and 9 particles. For n=6 we find
(wp,/ wg,)>=4.32 and 4.38, for n=8, (wy,/ wy,)*=4.20 and for
n=9, (wp,/wy)*=3.98, 4.24 and 4.78. From this data we
estimate k=4, giving rp=1.65 mm, g=-1.3X 10%, and
A=0.41 mm. As we show in the next section, k=4 is very
close to the critical value for the zigzag transition, which
may somewhat explain the spread in the breathing frequen-
cies for n=9. The physical parameters ¢ and \ are consistent
with the values found for the d=25.4 mm well even though
k is somewhat larger due to the decrease in wy, [Eq. (7)].

Equilibrium configurations computed from the model [Eq.
(5)] for a*=9.24 and k=3 are shown in Figs. 2(h)-2(n) for
comparison to the experimental configurations. For each
value of n, the experimental and predicted positions are very
similar, and the particle arrangements are identical. In par-
ticular, the zigzag transition occurs at n=6 in both cases, so
that experimentally the critical value n,=6. For a®=9.24 and
k=0, n.=7, which does not agree with the experimental re-
sults. A comparison between the measured configurations
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FIG. 4. Measured center-of-mass frequencies and longitudinal
breathing frequencies vs particle number n determined from ther-
mally excited oscillations in (a) the 25.4 X 50.8 mm? confining well
and (b) the 14.0 X 50.8 mm? well. Broken lines are average values,
and the solid line in (b) is a linear fit to w,.

and configurations computed for a®=30.7 and k=4 is shown
in Fig. 3. Again, the measured and computed configurations
show excellent agreement and the particle arrangements are
identical. Further, the critical value of n for the zigzag tran-
sition is the same for the experimental and the model results.
For o?=30.7 and k=0, the critical value n.=13. In the ex-
periment we find n.=10, so that our results are not consistent
with k=0. The very good agreement between experiment
and model, and the consistency of the results for two differ-
ent confining wells, indicates that the experimental results
are robust.

In Fig. 5 we compare the values of the experimentally
measured lattice constant a for the last straight configura-
tions, n=n,—1, to the unbounded theory of Eq. (11) for the
critical lattice constant. For both potential wells, the last
straight configuration has n odd, so we approximate a by the
average of the distances between the central particle and its
two nearest neighbors. For d=25.4 mm with n=5, we find
a=0.72 mm, and for d=14.0 mm with n=9, we find
a=0.60 mm. Using the measured values of r,, k, and o* we
then calculate for d=25.4 mm: a/ry;=1.08 and «;=1.43,
and for d=14.0 mm: a/ryp=1.13 and x;=1.28. The experi-
mental points lie close to the instability line, but slightly
above it, in the stable region. Since for both cases
alryp<1.28, decreasing k; (e.g., increasing \) while holding
alryr constant moves the cluster into the unstable region,
causing a zigzag transition. Here finite size effects do not
appear to be very important, which may be because for
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FIG. 5. Critical lattice parameter a./ropr for an unbounded
straight chain [Eq. (11)] vs the transverse Debye shielding param-
eter k7. The data points are the experimentally measured values for
the last straight configuration for d=25.4 mm (circle), and
d=14.0 mm (diamond). The measured points lie close to, but
above, the stability curve in the stable region.

k=1 the zigzag instability is dominated by nearest neigh-
bor interactions [22].
In Fig. 6 we compare the measured cluster width y,,,,, with
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FIG. 6. Dependence of cluster width y,,,, on particle number n
comparing experiment and model. (a) Experimental data for bar
separation d=25.4 mm and model solutions with a?=9.24 and
k=3 scaled using ry=1.65 mm. (b) Experimental data for bar
separation d=14.0 mm and model solutions with a?>=30.7 and
k=4 scaled using ry=1.40 mm. The dashed lines are power-law fits
to the model points.
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FIG. 7. Cluster width y,,/ry vs particle number n for Debye
shielding parameters =0, 1 and 4 with well anisotropy a?=30.7.
The critical value of n at which the zigzag transition occurs de-
creases as k increases. Solid lines are power-law curves fitted to the
first five points following the zigzag transition.

model solutions as a function of n for the measured values of
o’ and «. The only adjustable parameter is the length scale
for the cluster r(y, which was chosen to give good agreement
between the model and experiment. In both cases we see an
abrupt increase in the cluster width which is associated with
the zigzag transition. Above the transition, the data exhibit a
power-law behavior which is consistent with a continuous
phase transition. Agreement between the model and the ex-
periment is quite good. For d=25.4 mm there is a second
structural transition at n=15 which corresponds to the
change from a zigzag configuration to an elliptical shell con-
figuration [Fig. 2(g)] [13,15]. This transition may be roughly
analogous to the transition from two to three parallel chains
in the unbounded system [19]. Such a transition is not seen
for d=14.0 mm since 7 is not large enough, as confirmed by
the fact that the n=17 configuration is an extended zigzag

[Fig. 3(g)].

V. DIMENSIONAL PHASE TRANSITIONS

A phase transition is a sudden change in some property of
a system, called an order parameter, due to a small change in
a control parameter. Within this conceptual framework, the
zigzag transition in these clusters can be viewed as a dimen-
sional phase transition between one-dimensional and two-
dimensional states [1]. We characterize the cluster size in the
longitudinal (x) and transverse (y) directions by the rms val-
ues of the particle positions in the respective directions [Eq.
(8)]. In particular, y,,, is a good choice for an (un-
normalized) order parameter since y,,,,=0 in the 1D configu-
ration and y,,,>0 in the 2D (zigzag) configuration. The
state variables that determine the system configuration are
then n, k, and a? where n is discrete and x and o? are
continuous.

Figure 7 demonstrates that n,. decreases as « increases
using @?=30.7. That is, expressions which predict the critical
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FIG. 8. Computed cluster width and length for anisotropy pa-
rameter a’>=9.2 for n=5 and (inset) n=6 particles vs the Debye
shielding parameter . Solid lines show the power-law fit to Eq.
(13), while the dashed line has been added to guide the eyes. For
n=>5 particles there is a critical value x.=4.22 below which the
cluster is one-dimensional and above which it is two-dimensional.
For n=6, k,=0.45.

value of o for a given n with k=0 [13] are incorrect when
the strength of Debye shielding is such that the interaction is
not essentially unshielded. Interestingly, even though n is
small and discrete, the cluster width above the transition is
well characterized by a power law [19]

Yrms & (n_nc!)v’ (12)

where n. is a continuous critical n, and n.=[n_]. That n_ is
continuous indicates there may be a continuum theory for the
zigzag transition where n is also continuous. For a?=30.7
and =0, 1 and 4, we fit the first five points after the transi-
tion to find n;:12.34, 10.82, and 8.99, and a critical expo-
nent v=0.430, 0.387, and 0.310, respectively. Here v de-
creases with increasing . As discussed above, k=4 is very
close to the critical value when *=30.7, and we find n é very
close to an integer value. In fact, for k=4, n.=10 so we
expect n(’ >9, which is not satisfied here due to a small un-
certainty in the fitting coefficients.

The computed dependence of cluster length and width for
n=>5 and 6 and a®=9.2 on the Debye shielding parameter
is shown in Fig. 8. For the finite model, in contrast to the
unbounded case [19], increasing « decreases the nearest-
neighbor distance, and therefore the linear particle density.
For n=5 the critical value of « for the zigzag transition is
k,=4.22. That is, the cluster is in a 1D configuration for
k<4.22. For k>4.22, y,,, is positive and increases rapidly
with k. The cluster length x,,,, has a discontinuous first de-
rivative at the phase transition. The inset of Fig. 8 shows the
transition for n=6, where the critical value is «.=0.45. Con-
sequently, for n=6 and k<<0.45 the cluster is linear. Since
we find experimentally that the n=6 cluster is in the zigzag
configuration, we conclude that the experimental Debye
shielding parameter must lie in the interval 0.45 < x<<4.22.
For k> k., the cluster width has a power-law behavior
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FIG. 9. Computed cluster width and length for n=>5 with shield-
ing parameter k=3 vs anisotropy parameter a’. A 2D-1D phase
transition is with a critical value af=8.74. The fitted power law
(solid line) gives a critical exponent y=0.387.

Yrms & (K_ Kc)Bv (13)

where [ is a critical exponent that is independent of the
normalization of y,,,,. For the n=5 and 6 cases illustrated in
Fig. 8, we find 8=0.463 and 0.450, respectively. This analy-
sis was repeated for a?=30.7 with n=9 and 10. For n=9,
k.=4.08 and B=0.463, while for n=10, «.=1.77 and
B=0.469. Experimentally, we find n.=10, which means that
for the experiment « must lie in the interval 1.77 <k <<4.08.
The critical exponent for the zigzag transition vs « is nearly
the same for the four cases considered here, so it may be that
in Yukawa clusters there is a universal critical exponent
B=0.46 for the zigzag transition caused by changing the
Debye shielding parameter «.

For fixed values of n and «, a 2D-1D transition (an “in-
verse zigzag”) takes place as the anisotropy parameter o’
increases, as shown in Fig. 9 for n=5 and k=3. As o? in-
creases, the dimensionless cluster length increases while the
width decreases. Near the transition, the width exhibits a
power-law approach to y,,,,=0. Assuming

yrmsOc (af—az)y, (14)

we find the critical value @’=8.74 and the critical exponent
y=0.387. That is, if k=3 and a®<8.74 then n=>5 particles
will be in a zigzag configuration. These results are consistent
with the experiment where we observed a 1D configuration
for a=9.24. When o> o’ the model results are indepen-
dent of o?, which can be seen by the constancy of x,,,,, since
v;i=n,=0 and the configuration only depends on n and «.

VI. CONCLUSIONS

We have studied one- and two-dimensional Yukawa clus-
ters with a small number of particles n=19 confined in bi-
harmonic potential wells both experimentally and theoreti-
cally. Experiments were performed in the DONUT. For n
less than a critical value n., the clusters are in a one-
dimensional straight line state. When n=n, the cluster under-
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goes a zigzag transformation to a two-dimensional state. In
our experiments, the anisotropy of the confining potential
well was accurately determined by measuring the frequen-
cies of center-of-mass oscillations excited by thermal noise
in both the x (longitudinal) and y (transverse) directions and
the Debye shielding parameter was estimated from the mea-
sured longitudinal breathing frequency of 1D clusters. Ex-
perimental and model data show excellent quantitative agree-
ment, confirming that dusty plasma is a very good real-world
system for studying 1D and 2D Yukawa systems and the
transitions between these states. In particular, strongly-
coupled linear configurations with n<n, are true 1D systems
for which normal modes are either purely longitudinal or
purely transverse.

Our results clearly show that Debye shielding is important
for our experimental conditions, and our results are not con-
sistent with physics in the unshielded Coulomb regime. For a
given value of the potential well anisotropy, the critical par-
ticle number n,. decreases as the shielding parameter « in-
creases (i.e., as the Debye length decreases). For the mea-
sured well anisotropies, the experimental values of n,. are
below those predicted for an unshielded Coulomb interaction
(k=0), indicating x> 0. This is reinforced by noting that the
measured Debye lengths are less than the particle separation
and that the normalized squared longitudinal breathing fre-
quencies (wy,/ wy,)>>3.

Our finding that k>0 contradicts the conclusion in Ref.
[21] for a similar experiment where the results where said to
be consistent with an unshielded Coulomb interaction. The
method used in Ref. [21] to determine cluster parameters is a
static analysis that treats both the anisotropy parameter o’
and shielding parameter « as free parameters and compares
the observed n,. with that predicted for k=0. When the de-
crease in n. with k described in the present work is consid-
ered, it seems likely that static analysis method [21] is only
weakly constrained and cannot be used to accurately deter-
mine cluster parameters.

Finally, we have demonstrated that the zigzag transition in
a Yukawa cluster can be viewed as a phase transition from a
one-dimensional state to a two-dimensional state. Though
this was previously demonstrated for unbounded systems
[19], here the number of particles is finite and really quite
small. This is true for transitions initiated by changing the
Debye shielding parameter, the potential well anisotropy and
the number of particles. In all three cases, we find that the
transverse cluster width has a power-law dependence near
the transition, indicated that transition behaves as a continu-
ous phase transition with a critical exponent. For 1D-2D
transitions caused by increasing the Debye shielding param-
eter, we tentatively identify a universal critical exponent [Eq.
(13)] with a value B~ 0.46.
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