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We extend our earlier model for Rayleigh-Taylor and Richtmyer-Meshkov instabilities to the more general
class of hydrodynamic instabilities driven by a time-dependent acceleration g�t�. Explicit analytic solutions for
linear as well as nonlinear amplitudes are obtained for several g�t�s by solving a Schrödinger-like equation
d2� /dt2−g�t�kA�=0, where A is the Atwood number and k is the wave number of the perturbation amplitude
��t�. In our model a simple transformation k→kL and A→AL connects the linear to the nonlinear amplitudes:
�nonlinear�k ,A���1 /kL�ln �linear�kL ,AL�. The model is found to be in very good agreement with direct numeri-
cal simulations. Bubble amplitudes for a variety of accelerations are seen to scale with s defined by s
=��g�t�dt, while spike amplitudes prefer scaling with displacement �x=���g�t�dt�dt.
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I. INTRODUCTION, MOTIVATION, AND NOTATION

Fluids undergoing accelerations are subject to hydrody-
namic instabilities whereby small deviations from a perfect
symmetry �such as planarity or sphericity� amplify with time
and eventually lead to mixing between the fluids. Best
known examples are the Rayleigh-Taylor �RT� �1� and the
Richtmyer-Meshkov �RM� �2� instabilities induced by a con-
stant and an impulsive acceleration, respectively. In this pa-
per we study instabilities induced by a time-dependent accel-
eration g�t�.

We are interested primarily in inertial confinement fusion
�ICF� capsules where materials and drives are chosen judi-
ciously to minimize hydrodynamic instabilities �3�. Although
the implosion proceeds mainly by a series of shocks and
constant accelerations, there are periods where the accelera-
tion is not constant. A study of how fluid interfaces evolve
during time-varying accelerations may help design more ro-
bust capsules.

A second motivation is the following: RT and RM insta-
bilities are idealized special cases of this more general class
of g�t� in that they are characterized by a single parameter:
the constant g in the case of the RT instability and the jump
velocity �v in the case of the RM instability. These are, of
course, idealizations almost never realized in actual experi-
ments that start with g=0 and later reach g=const. Similarly,
impulses have a finite width in time before inducing the
jump velocity �v. The start-up and pulse-width issues are
ignored in the classical RT and RM results.

A third reason for this paper is that time-dependent effects
appear even in experiments designed principally for constant
accelerations, as in the original rocket-rig experiments on
turbulent mixing by RT instabilities �4�. More recently, ex-
periments have been performed �5,6� with several deliber-
ately chosen time-dependent g�t�s. These experimental pro-
files for g�t� will form our starting point. Although the
experiments had random multimode perturbations and mea-
sured turbulent mixing widths, we shall consider single-scale
perturbations as in the experiments of Jacobs et al. �7–9�. A
firm understanding of the single-scale problem is needed be-
fore tackling the much more challenging problem of turbu-
lence and mixing.

We consider primarily the bubble amplitude, denoted by
��t�, from its linear regime where �k�1 to the highly non-
linear regime �k�1. Here k=2� /� in plane geometry often
called two dimensional �2D� with �=wavelength of the per-
turbation, and k=�1 /R in three dimensional �3D� or tubular
flow with R=radius of the tube and �1�3.832, the first zero
of J1, the Bessel function of order one. The initial perturba-
tion has the form �0 cos�kx� in 2D and �0J0��1r /R� in 3D,
where �0	��t=0� is the initial value of the bubble ampli-
tude, taken positive in our convention. Spikes, meaning the
penetration of the heavier fluid into the lighter one, will be
negative. As before �10� we shall use the parameter c with
values c=2 for 2D and c=1 for 3D. Like most experiments
�4–8� our direct numerical simulations with the hydrocode
CALE �11� will be in planar 2D geometry although we have
also performed “3D” axisymmetric tubular flow simulations.

In the linear regime no model is needed because the equa-
tion

�̈ − gkA� = 0 �1�

describes the evolution of the bubble �and also the spike� for
arbitrary g�t�. Here A is the Atwood number, �	B−	A� / �	B
+	A�, where 	B�	A� is the density of the heavy �light� fluid
and g is directed from fluid A to fluid B. Although Eq. �1� has
been applied to the RT and RM cases only, it is valid for any
g�t�. The limitation to the linear regime, however, severely
restricts the use of Eq. �1�: ��t� rapidly enters the nonlinear
regime or, even worse, many experiments start with a weakly
nonlinear ��0k�1� amplitude and grow from there, necessi-
tating the use of a nonlinear model.

The solutions to Eq. �1� for the classical RT and RM cases
are

��t� = �0 cosh�
t� �2�

and

��t� = �0 + �̇0t = �0�1 + �vkAt� , �3�

respectively �1,2�, with 
	�gkA. For RT we have assumed
�̇0=0 �otherwise a sinh term must be added�. For RM �̇0
=�0�vkA, as derived by Richtmyer �2�. Corrections for finite
pulse width are given below. The fact that Eqs. �1�–�3� are
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independent of c indicates that they apply to both 2D and 3D
geometry, with appropriately defined k. The nonlinear solu-
tions will be found to depend on c. Analytic solutions to Eq.
�1� for g�t� other than the above two cases are given in this
paper.

In the next section we describe a progression of math-
ematical approaches needed for the nonlinear evolution of
��t�. In Sec. III we apply the model to a number of gedanken
experiments patterned after the linear electric motor �LEM�
experiments of Dimonte and Schneider �5,6�, compare model
results with CALE simulations, and present predictions for
future experiments. In Sec. IV we take up the issue of scaling
of bubbles and spikes. Conclusions are given in Sec. V. The
Appendix presents mathematical solutions for a number of
g�t�s.

II. MODELS AND LEVELS OF ACCURACY

Computations are used to explain and understand past ex-
periments, as well as predict the outcome of future experi-
ments. We shall present briefly four levels of computational
accuracy, starting with the highest level �level 1�, which is
most accurate but also most complicated, and proceed down
to the last level �level 4�, which is least accurate but of
course very simple.

Level 1. It is generally agreed that the Euler equations
expressing conservation of mass, momentum, and energy
provide the most accurate description of fluids neglecting the
effects of viscosity and dissipation. Momentum conservation,
for example, reads as

��	uj�
�t

+ 

i=1

3
��	uiuj�

�xi
+

�p

�xj
= 0 �4�

in Cartesian coordinates, j=1,2 ,3 for 3D. Here 	 is the den-
sity, u� is the velocity, and p is the pressure of the fluid at
point x�. The partial differential equations �PDEs� are solved
numerically by hydrodynamic codes. We use CALE, an arbi-
trary Lagrangian Eulerian code �11�, to evaluate the various
levels discussed below.

Level 2. An assumption, often in the form of a potential,
is made to reduce Euler’s PDEs to ODEs �ordinary differen-
tial equations�. We concentrate on Layzer’s model �12� be-
cause it is widely used, has been successful in the past, and
has been generalized by several researchers �13–17�. In its
most general form it accounts for time-dependent densities,
but the two coupled equations �one for the amplitude ��t�
and the other for the curvature �2�t�� are quite complicated
�17�. In this paper we limit ourselves to constant densities for
which the equations become

F1
�̈

D
+ F2

c2k2�̇2

8D2 + 2gA�2 = 0 �5�

and

�2�t� = − ck�1 + ��1 + c��0k − 1�e−k�1+c���−�0��/4�1 + c� ,

�6�

with

F1 = 2A�2
2 + c2Ak�2/2�1 + c� − c2k2/8�1 + c� , �7a�

F2 = 2A�2
2 + �A + cA − 2c − 1�k�2/�1 + c� + ck2

��3cA/2 + A − c − 1�/4�1 + c�2, �7b�

and

D = �2 − ck/4�1 + c� . �7c�

As before, A is the Atwood number, ��t� is the bubble
amplitude, and �2�t� is its curvature with initial value
�2�0�=−ck2�0 /4. The above equations are derived in the Ap-
pendix of Ref. �17�.

For a single fluid �A=1� Eq. �5� reduces to

�2�2 + ck/2��̈ + c2k2�̇2/4 + 2g�2 = 0, �8�

while Eq. �6� remains the same. The A=1 results were given
in �13� and applied to bubbles only. Zhang proposed using
the same A=1 equations, with a negative �, for spikes �14�.
The generalization to arbitrary A was achieved by Gon-
charov �15� and Eq. �5� above reduces to his Eq. �8� for 2D
and Eq. �18� for 3D, i.e., for c=2 and c=1, respectively.

This model despite being a relatively high level 2 model
suffers from at least three limitations or failures, reported in
�10�. Extending the arbitrary-A model to spikes, as proposed
by Goncharov �15�, does not work. Even for bubbles, one
cannot apply it to just any g�t�—one must maintain the sign
�negative� of �2 �10�. These two failures are related, as
changing the sign of � and �2 is equivalent to interchanging
bubbles and spikes. A third failure occurs for bubbles with
large initial amplitudes �0� ��0�max given by �10�

��0k�max =
c

2�1 + c�
1 +�1 +

4�1 + c�
Ac2 � . �9�

This failure can be remedied in the level 3 model.
Level 3. As noted in Ref. �13�, the Layzer model is sim-

plified not for �0=0, as assumed by Layzer, but by taking
�0=��=1 /k�1+c�. For this value of �0 one obtains a con-
stant �2, i.e., �2�t�=�2�0�=−ck2�0 /4=−ck /4�1+c� �see Eq.
�6��. With a constant �2 Eq. �8� gives explicit RT and RM
solutions �13�. For arbitrary A and �0=�� Eq. �5� reduces to

̈L − gkLALL = 0, �10�

where

kL 	 c�1 + c��1 + A�k/2�1 + c + cA − A� , �11a�

AL 	 2A/�1 + c + cA − A� , �11b�

and

L 	 e��−�0�kL. �11c�

Therefore,

� = �0 +
1

kL
ln L �12�

is the nonlinear solution. Since Eq. �10� has the same form as
the linear equation �Eq. �1�� we see that the nonlinear solu-
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tion is essentially the logarithm of the linear solution. More
explicitly,

�nonlinear = �0 +
1

kL
ln �linear�1,�̇0kL;kL,AL;g;t� , �13�

where �linear��0 , �̇0 ;k ,A ;g ; t� is the solution to Eq. �1� with
obvious notation.

In this model one uses the linear equation �Eq. �1�� until �
reaches ��, then switches to Eq. �10�. For simplicity we have
proposed �18� using Eq. �10� from the start for all �0���,
even for �0� ��0�max where the level 2 model fails, as men-
tioned above. An example later �Fig. 4� will compare these
two models.

For the classical RT and RM cases the nonlinear solutions
follow immediately from Eq. �13� using the linear solutions
�2� and �3�:

��t� = �0 +
1

kL
ln�cosh�
Lt� +

�̇0kL


L
sinh�
Lt�� �14�

and

��t� = �0 +
1

kL
ln�1 + �̇0kLt� , �15�

respectively, where 
L	�gkLAL, and we have restored the
sinh term in the RT expression. The asymptotic bubble ve-
locities are

�̇� = 
L/kL = �gAL/kL, RT, �16�

and

�̇� = 1/kLt, RM. �17�

Note that the nonlinear RM amplitude �Eq. �15�� is the inte-
gral over

�̇�t� =
�̇0

1 + �̇0/�̇�

=
�̇0

1 + �̇0kLt
�18�

given in �13�. This equation can be compared with other,
substantially more complex expressions found in other mod-
els for the bubble velocity �̇ �19,20�.

Given its simplicity �compare Eqs. �5� and �10�� it is sur-
prising how well this level 3 model performs in comparison
with the level 2 model. We know of no example where the
level 2 model does substantially better than this simple level
3 model. Add the advantage just mentioned for �0
� ��0�max, and we see no reason to revert to the full
equations—Eq. �10� is equally, if not more, adequate. This is
fortunate because the next and last model is based on it.

Level 4. The last and simplest model is obtained by ap-
plying a WKB-like approximation to Eq. �10�: define

s 	 �
0

t
�g�t�dt �19�

and cast Eq. �10� into the form

d2L

ds2 − kLALL +
1

2g2

dg

dt

dL

dt
= 0. �20�

For g�t�s where the last term in the above equation can be
neglected, we obtain

L = cosh�s�kLAL� , �21�

where we assumed ̇L�0�=0 and of course L�0�=1 by defi-
nition. Therefore,

� = �0 +
1

kL
ln�cosh�s�kLAL�� �22�

is the nonlinear solution for “all” g�t� and therefore called,
quite appropriately, the scaling solution. This is the level 4
model. The quotation marks around “all” remind us that
g�t��0 and that ġ /g2 must be small enough to justify drop-
ping the last term in Eq. �20� �see Ref. �18��.

From Eq. �22� and the definition of s �Eq. �19��, we obtain

�̇�t� = �gd�/ds = �gAL/kL tanh�s�kLAL� �23�

for the bubble velocity. Asymptotically,

� → �� = s�AL/kL = �AL/kL�
0

t

�gdt �24�

and

�̇ → �̇� = �g�t�AL/kL. �25�

Needless to say, the scaling solution becomes exact for
the standard RT case �g=const�. It fails, of course, for the
RM case �g=0�, but an explicit nonlinear solution is known
and was given in Eq. �15�.

We conclude this section by recalling that our discussion
has been limited to bubbles only. Spikes and their scaling
will be taken up in Sec. IV. We hope it is clear how each
level follows from the previous one. As promised, we evalu-
ate levels 2 through 4 by comparing them with numerical
simulations of gedanken experiments patterned after LEM
experiments �5�.

III. GEDANKEN LEM EXPERIMENTS

Figure 1 displays three acceleration profiles which are
very similar to the experimental g�t�s—see Fig. 2 in Ref. �5�.
A fourth quasiconstant acceleration will be considered below.
We apply these somewhat idealized acceleration profiles
to the top and the bottom of the simulated LEM tank filled
with hexane �	=0.66 g /cm3� and a water/NaI solution
�	=1.87 g /cm3�, for which A�0.48. We use ideal equations
of state with a high “
,” the specific heat ratio, to reduce the
effects of compressibility �CALE is a 2D compressible code
but level 2 through 4 models assume constant 	A,B�. The
interface follows the prescribed acceleration but with some
oscillations induced by sound waves—see Ref. �18� and be-
low.

The interface between the two fluids is initialized as a �
=7.3 /3 cm perturbation, i.e., three wavelengths across the
7.3-cm-wide tank. The height of the tank is 8.8 cm. In some
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A�1 calculations discussed in Sec. IV we needed to double
this height to avoid spikes splashing against the roof of the
tank. The initial amplitude is less than, equal to, or larger
than ��=1 /3k=� /6�=7.3 /18��0.13 cm.

Figure 2 compares the numerical simulations with the
level 2 and 3 models for the three g�t�s shown in Fig. 1,
starting with �0=0.065 cm. It is practically impossible to
differentiate between level 2 and level 3 models and both
come very close to the CALE simulation which, as mentioned
earlier, we use as a measure of quality.

All three profiles in Fig. 1 have one common element:
linearly increasing or decreasing acceleration. As shown in
the Appendix, the solution in such a case is given by Airy
functions. For the first part of the acceleration where g= ġt
and starts with �̇0=0 we can write

��t� =
��0

31/3��1/3�
�Bi�z� + �3Ai�z�� , �26�

where z	 t /T with T	�ġkA�−1/3, assuming ġA�0. For ġA
�0, z	−t /T.

Let us compare with the classical RT case g=const given
by Eq. �2�:

��t� =
�0

2
�e
t + e−
t� , �27�

where 
	�gkA�1/2. The Bi term in Eq. �26� corresponds to
e
t in Eq. �27�, both increasing for large t, while the Ai term

FIG. 1. Three acceleration profiles similar to the ones used in
LEM experiments �5,6� and used in CALE simulations in this work.

FIG. 2. The bubble amplitude ��t�, starting from �0=�� /2
=0.065 cm, for the three acceleration profiles shown in Fig. 1. The
dashed lines correspond to CALE simulations which we label level 1.
The two continuous lines, undistinguishable in these figures, corre-
spond to level 2 and level 3 solutions. The level 2 solution is ob-
tained from the coupled Eqs. �5� and �6�. The level 3 solution is
obtained from Eq. �1� for ����, after which we use Eq. �10�.
Analytic level 3 solutions in terms of Airy functions and level 4
scaling solutions in terms of elementary functions can also be writ-
ten down �see the Appendix�.
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mirrors e−
t, both decreasing for large t. For a stable accel-
eration �gA�0� cosh→cos, i.e., e�
t→e�i
t, both terms in
Eq. �27� oscillate, just as Ai and Bi do for a negative argu-
ment.

We saw how the simple rule of Eq. �13� transformed Lord
Rayleigh’s linear solution �Eq. �2�� and Richtmyer’s linear
solution �Eq. �3�� into our nonlinear solutions Eqs. �14� and
�15� for the classical RT and RM cases, respectively. Simi-
larly, for the case g= ġt the nonlinear solution follows imme-
diately from Eq. �26�:

��t� = �0 +
1

kL
ln� �

31/3��1/3�
�Bi�zL� + �3Ai�zL��� ,

�28�

where zL	 t /TL with TL	�ġkLAL�−1/3.
As mentioned in the Introduction, “constant acceleration”

LEM experiments maintained a constant acceleration only
after a linear climb from g=0 to g=gmax= ġ� at t=�. During
the climb Eq. �26� or, more probably, Eq. �28� describes the
bubble amplitude. After the tank reaches gmax and maintains
a constant acceleration Eq. �14� describes the evolution. If,
instead of maintaining a constant g the tank is brought back
to rest with a linearly decreasing g, as in Figs. 1�a�–1�c�, then
Eq. �28�, with a straightforward generalization to include �̇0,
also describes this phase. The case of an impulse, as in Fig.
1�c�, is treated explicitly in the Appendix.

Any acceleration profile can be broken down into a series
of piecewise linear sections. Any linear g�t�=g0+ ġt can be
cast into Airy’s equation and therefore ��t� in each interval is
given by a linear combination of Airy functions.

We now turn to a quasiconstant acceleration:

g�t� = g��1 − e−t/T� , �29�

varying smoothly from 0 to g� over a time scale T. It is
plotted, using arbitrary units, in Fig. 3. CALE results for g�

=35gE and T=1.2 ms, are also shown in Fig. 3, along with
the analytic solution

��t� = �0 +
1

kL
ln��c+ sin zL + c− cos zL�/�zL� . �30�

We have taken �0=��=0.13 cm, kL=3�1+A�k / �3+A�
�1.28k�3.3 cm−1, and c�	�cos1 /2�sin1 /2� /�2 giving
c+�0.96 and c−�0.28. The variable zL in Eq. �30� is defined
as zL=e−t/2TL /2, where TL	1 / �4�g�kLAL�. The derivation of
Eq. �30� is also left to the Appendix. As expected, �̇ asymp-
totes to the classical result �̇→�g�AL /kL for constant accel-
eration �see Eq. �16��.

Let us use this example of quasiconstant acceleration to
illustrate two points we have briefly discussed in previous
communications: �1� failure of Eq. �5� for �0� ��0�max and
�2� zitterbewegung �17,18�.

We ran the same problem on CALE starting with �0
=4���0.52 cm which, using Eq. �9�, is larger than
��0�max�0.48 cm. The results are shown in Fig. 4. The level
2 model clearly fails. The level 3 model, Eq. �10� for all
�0���, gives a reasonable answer. Since Eq. �30� is this
level 3 solution to Eq. �10�, all we had to do was set �0 to the
appropriate value. In this model, which we prefer, increasing
�0 merely shifts the curve up by a constant.

Turning to zitterbewegung, here meaning rapid oscilla-
tions of g�t� around an average value, we borrowed the term
from quantum mechanics because Eq. �10� �like Eq. �1�� has
the same form as the Schrödinger equation: we solve an ini-
tial value problem in time instead of an eigenvalue problem
in space. As mentioned in �18�, we first became aware of
zitterbewegung when we compared the acceleration of the
interface with the idealized acceleration imposed at the top
and the bottom of the simulated tank in CALE. Sound waves
in the compressible code induce small oscillations. In Fig. 5
we display the idealized g�t� �Eq. �29�� and the code-
calculated acceleration in thin dashed lines, showing these
oscillations. Increasing �decreasing� the compressibility of
the fluids by decreasing �increasing� the specific heat ratio
“
” increased �decreased� the oscillations but made practi-

FIG. 3. Quasiconstant acceleration �in arbitrary units� given by
Eq. �29�, and the corresponding amplitudes as calculated by CALE

for g�=35gE, T=1.2 ms, and the analytic solution Eq. �30�, starting
with �0=��=0.13 cm.

FIG. 4. Same as Fig. 3 with �0=4��=0.52 cm. The level 2
model, based on Eqs. �5� and �6�, fails for amplitudes �0

� ��0�max where, from Eq. �9�, ��0�max�0.48 cm. The level 3
model, using Eq. �10� for all �0���, gives a reasonable result
which, in this case, is equivalent to the analytic solution in Eq. �30�.

ANALYTIC APPROACH TO NONLINEAR HYDRODYNAMIC… PHYSICAL REVIEW E 81, 016325 �2010�

016325-5



cally no difference to the resulting ��t�. Similarly, when we
used the code-calculated rapidly oscillating acceleration as
g�t� in Eq. �10�, we obtained essentially the same result. This
led us to impose deliberately large oscillations on the ideal
g�t� to amplify the effect:

g�t� = g��1 − e−t/T��1 + � cos �t� �31�

also displayed in Fig. 5 with �=1, taking �=2� /10 ms−1.
This caused g�t� to vary by �100%, from 0 to 70gE, instead
of the average 35gE. To focus on the effect of such an oscil-
lation let us define

��t;�� 	
��t;0� − ��t;��

��t;0�
�32�

as the deviation in � without ��=0� and with ���0� oscil-
lations, keeping everything else the same �we suppress the
dependence on ��. Figure 6 shows ��t ;1� as calculated by
CALE and by Eq. �10�. The 100% difference in g�t� translates
to no more than �13% difference in ��t�.

The rest of this section is devoted to what may be called
“double-shock” or “double-impulse” experiments. No physi-
cal experiments of this type have been performed. The con-
cept originated from shock tube experiments in which the
interface, after seeing the first incident shock, is shocked a
second time by the reflected shock, i.e., the incident shock
passes through the interface, hits the endwall of the tube,
reflects, and returns to reshock the �already moving� inter-
face. Since all RM experiments in shock tubes have an end-
wall, they all have a second �and subsequently third, fourth,
etc.� shock. For examples see Refs. �21–23�. A systematic
numerical and analytic treatment can be found in �17�.

If we call the impulse in Fig. 1�c� the first “shock,” a
second shock would be an impulse just like it in the same or,
more interestingly, in the opposite direction, an example of
which is shown in Fig. 7. These are two equal and opposite
impulses so the interface comes to rest immediately after the

second impulse, i.e., at 30 ms. In this case, with the impulses
having �gmax�=70gE, the interface moves 6.2 cm and then
stops.

Since this involves positive as well as negative values of
g�t� the reader may anticipate difficulty with the models and
indeed all models fail except, of course, the level 1 model.
This is shown in Fig. 8 for the “bubble” amplitude calculated
by CALE, showing the phase reversal, i.e., the interchange of
bubbles and spikes, and the level 2 calculation which fails at
30 ms. The level 3 model also fails at the same location. As
for the level 4 �scaling� model, one cannot even define a real
s�t� for negative g�t�. A similar failure was reported in �17�.

After 30 ms, when g=0, it is possible to follow the new
bubble amplitude which grows logarithmically according to
our nonlinear RM formula �Eq. �15�� once ��30 ms� and
�̇�30 ms� are known. Snapshots of the CALE simulation are
shown in Fig. 9, from which ��30 ms��0. A similar proce-
dure, including the spike, will be described in the next sec-
tion. As expected, given g=0 and the correct �0 and �̇0 Eq.

FIG. 5. The idealized acceleration given by Eq. �29� �thick line�
and the code-calculated interface acceleration �thin dashed line�
showing oscillations around an average value. Imposing deliber-
ately large oscillations as in Eq. �31� with �=1 and �
=2� /10 ms−1 varies g�t� by �100% around its average value of
35gE.

FIG. 6. The deviation ��t ;��, as defined by Eq. �32�, in bubble
amplitude with and without the large oscillations in acceleration
shown in Fig. 5. The dashed curve uses CALE and the continuous
line uses Eq. �10� to evaluate the amplitudes ��t ;0� and ��t ;1�
needed to construct ��t ;1�.

FIG. 7. Acceleration profile for a possible double-impulse ex-
periment. The impulses are equal and opposite, bringing the tank to
rest at 30 ms.
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�15� agrees quite well with CALE simulations, as previously
reported for single shock experiments.

Such double-impulse experiments have a great advantage
for diagnostics: the tank comes to rest while perturbations
evolve, similar to what happens in shock tubes where the
interface slows down substantially upon reshock �but does
not quite come to rest�. Obviously, all tanks must come to
rest at the end of an experiment ��0

tfinalgdt=0�; the proposed
double-impulse experiment brings it to rest in the middle of
the experiment and mixing can go on “forever” �we have
neglected earth’s gravity which will probably induce very
slow demixing�.

Note that ��t� overshoots—it changes phase in Fig. 9.
Clearly, a somewhat weaker second impulse can “freeze out”
��t�, again borrowing shock-tube terminology �24�. An ex-
ample of such a g�t� is shown in Fig. 10, and the correspond-
ing �s, starting with �0=0.065 cm, are shown in Fig. 11.
Three curves are plotted in Fig. 11: �1� a calculation by CALE

which shows complete freeze-out; �2� a calculation with Eq.
�5� indicating slow increase; and �3� a calculation with Eq.
�10� indicating slow decrease. Only by going to such “criti-

cal” phenomena do we see a difference between the level 2
and the level 3 models; for most practical purposes there is
no difference. The fourth fast growing curve in Fig. 11 shows
how ��t� would grow without the reshock. Only the CALE

calculation is shown for that no-reshock case because Eqs.
�5� and �10� both get this evolution correctly as it is simply a
“single-shock” problem like Fig. 1�c�.

The strategy for inducing freeze-out is fairly simple. First,
it is necessary to have g=0 so �̇ does not change �see Eq. �1�
or Eq. �10��. This is necessary but not sufficient: not only �̇
must not change, it must be zero, by definition of freeze out.
The strategy is therefore to turn off the acceleration the pre-
cise moment �̇ reaches 0. The acceleration profile prior to
this freeze-out time is almost arbitrary—any g�t� which gives
�̇=0 at some time will do. It may even be possible to stop
the bulk motion at tfreeze−out which would add the constraint
�0

tfreeze−outg�t�dt=0, a rather weak requirement.
We have discussed these issues in a two-shock system and

in the linear regime �24�. Freeze out is possible in the non-

FIG. 8. The “bubble” amplitude for the double-impulse experi-
ment with g�t� shown in Fig. 7 �repeated here in dashed line and
arbitrary units�. The initial amplitude is 0.065 cm. The bubble turns
into a spike after 30 ms, the point where Eqs. �5� and �10� both fail.
Snapshots in Fig. 9.

FIG. 9. Snapshots of the interface as calculated by CALE for the
double-impulse acceleration history shown in Fig. 7, starting with
�0=0.13 cm. We have included the distance traveled in the first
three snapshots. At 30 ms the tank comes to rest 6.2 cm below its
initial position while the perturbation continues to evolve.

FIG. 10. An acceleration history with a weaker reshock that can
induce freeze-out, i.e., make ��t�=const. See Fig. 11.

FIG. 11. The bubble amplitude calculated by CALE, by Eqs. �5�
and �6�, and by Eq. �10�, using the acceleration profile g�t� shown in
Fig. 10. CALE predicts complete freeze-out �we iterated on g�t� to
obtain this result�. Equation �5� plus Eq. �6� or Eq. �10� predict slow
increase or decrease. The calculations start with �0=0.065 cm.
Without reshock � would continue to grow, �� ln t, as in Eq. �15�.
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linear regime also �25�. We have pointed out that in such a
system it is not possible to stop the interface and freeze out �
simultaneously: stopping the tank requires an equal and op-
posite reshock, but since � grows between shock and re-
shock the effect of the reshock is amplified and hence it
causes a phase reversal instead of freeze-out—it is “too
strong.” This is a well-known occurrence in all shock tubes
with a solid endwall. Recently, however, a technique for re-
ducing the reshock was incorporated in a shock tube using
partial shock absorbers �26�. Although this method was used
to investigate the RM turbulent mix �26�, reducing the re-
shock is exactly what is required to freeze out a perturbation
with a judiciously chosen wavelength and reshock time �24�.
We hope future experiments will pursue the detection of this
phenomenon.

IV. SCALING OF BUBBLES AND SPIKES

In all our graphs we have plotted �, the bubble amplitude,
as a function of time, naturally. Induced by different accel-
eration histories g�t�, they have different time
dependences—compare Figs. 2�a�–2�c� and 3. The idea of
scaling is that there may be a variable, in this case s as
defined by Eq. �19�, which collapses all the different time
evolutions into one universal curve. In our model that would
be Eq. �22�. To test this hypothesis we plot in Fig. 12 all four
curves of � as functions of s—these are the solutions to Eq.
�10� starting with �0=��=1 /3k using the four acceleration
histories of Figs. 1�a�–1�c�, and the quasiconstant g�t� of Eq.
�29�, labeled A–D for brevity. For each case we computed
��t� vs t, s�t� vs t, and display � vs s, t being the parametric
variable. Curve E is Eq. �22�. We see that all g�t�s scale,
except for the impulsive case C because g=0 after s
�5 cm1/2. Until that “time” C also scales.

As mentioned in �18�, the parameter s was suggested first
by Read �4� based on his rocket-rig experiments. Subse-

quently, it was confirmed by Dimonte and Schneider �5�, all
for the turbulent bubble mixing width hb, finding hb

��bAs2 with �b�0.05–0.07 �4–6�. For the single-
wavelength bubble amplitude applying a WKB-like approxi-
mation to Eq. �10�, we obtained Eq. �22�, a different scaling
expression, predicting �→s�AL /kL asymptotically. We be-
lieve Eq. �22� is the simplest level 4 model—an explicit so-
lution for “all” g�t�. It is of course less accurate than the level
3 model �Eq. �10��, which described case C even after g=0,
giving Eq. �15�.

Let us now use CALE to test the scaling hypothesis with
three different accelerations, again labeled A–C for brevity.
A is a constant acceleration of 70gE; B is a cubic function of
t,

g = g3t3, �33�

with g3=0.06gE /ms3 so that by 20 ms g=480gE. C is again
an impulsive acceleration reaching a peak of 500gE by �
=1 ms and returning to zero after another millisecond. In
this case a jump velocity �v=�gdt=gmax�=0.49 cm /ms is
achieved by 2 ms and remains constant thereafter. These
three acceleration profiles are plotted in Fig. 13�a�. The cor-
responding displacements �x�t� are shown in Fig. 13�b�, and
the corresponding s�t� in Fig. 13�c�.

The bubble and spike amplitudes �the latter negative in
our convention� as calculated by CALE are shown in Fig.
14�a� as functions of time. All start with ��0�=��=0.13 cm.
Since they all have different g�t�s, it is not surprising to see
different evolutions with time. Let us consider �x�t� and s�t�
as possible candidates for scaling. We plot the same data as
functions of �x�t� in Fig. 14�b� and as functions of s�t� in
Fig. 14�c�.

Figure 14�c� confirms the expected scaling of bubbles
with s: curves A and B are very close to each other in that
figure. So is curve C until, of course, g=0. The spikes do not
scale with s, as reported earlier �18�.

Figure 14�b�, however, shows that spikes scale with �x:
spikes A and B are very close to each other when plotted as
functions of �x. So is C until g=0, i.e., t=2�=2 ms, by
which time �xC�2 ms�=0.49 cm only. As far as we know
there has been no earlier determination of scaling of spikes.
Dimonte and Schneider considered scaling of bubbles with
�x and abandoned it in favor of s �5�. While bubbles do scale
with s, spikes apparently scale with �x.

It is well known that bubbles and spikes differ in shape
and in time evolution at moderate to high Atwood numbers.
All our calculations so far were limited to A�0.48. At low A
bubbles and spikes behave similarly and therefore both must
scale, if at all, with the same variable. We carried out a
low-A simulation �A�0.17� but could not determine whether
s�t� or �x�t� was the better scaling variable: Both were
equally good �or poor� to within 10%–20%.

At high Atwood numbers bubbles scale with s�t� while
spikes scale with �x�t�. We repeated our A, B, and C accel-
erations after replacing the low-density hexane
�	=0.66 g /cm3� with air �	=0.0012 g /cm3� so that A�1.
The resulting amplitudes are displayed in Fig. 15. As ex-
pected, there is now much more contrast between bubbles
and spikes, the latter growing very large. To accommodate

FIG. 12. Bubble amplitudes as functions of s defined by Eq.
�19�. The four cases A, B, C, and D correspond to Figs. 1�a�–1�c�,
and Eq. �29�, respectively �see also Fig. 3 for the quasiconstant
acceleration D�. Initial amplitude �0=0.13 cm. Curve E is Eq. �22�.
Bubbles appear to scale with s except after g=0 �curve C after s
�5 cm1/2�.
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the late-time spikes ��9 cm� and bubbles ��3 cm�, we
doubled the height of the tank. Again, the evolution of
�bubble�t� and �spike�t� as functions of t are different for the
different g�t�s, but spikes prefer scaling with �x �Fig. 15�b��
while bubbles continue to scale with s—see Fig. 15�c�.

The following argument motivates our claim that at mod-
erate to high Atwood numbers spikes scale with �x. We have
seen that for bubbles with ��0 the curvature �Eq. �6�� gen-
erally asymptotes to a constant and can even be kept abso-
lutely constant with the choice �0=��. In contrast, for spikes
with ��0 the curvature cannot be kept constant and, at late
times, �2�t��e−�k→� �14�. Now, with a large �2�t� only the
first and last terms in Eq. �8� contribute:

�2��̈ + g� = 0 �34�

from which

� = −� �� gdt�dt = − �x �35�

confirming the scaling of spikes with �x.
This single-fluid A=1 case remains the most advanced

nonlinear model—the governing equation is Eq. �8� with the
curvature �2�t� given by Eq. �6�. Layzer considered �0=0
and bubbles only �12�. We considered arbitrary �0, noted the
simplification for �0=��, and gave explicit solutions for the

FIG. 13. Three acceleration profiles used for testing the scaling
hypothesis with CALE simulations. A is a constant acceleration at
70gE. B has g=g3t3 with g3=0.06gE /ms3. C is an impulsive accel-
eration reaching 500gE in 1 ms and returning to zero at t=2�
=2 ms. Accelerations in units of gE, displacements in cm, and scal-
ing variables in cm1/2 are plotted in diagrams a, b, and c respec-
tively, all as functions of time in milliseconds.

FIG. 14. Bubble ���0� and spike ���0� evolutions as calcu-
lated by CALE for the three acceleration profiles A, B, and C dis-
played in Fig. 13. They are plotted as functions of time in �a�, �x in
�b�, and s in �c�. Bubbles appear to scale with s, while spikes prefer
�x. The impulsive acceleration C does not scale after g=0.
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RM case with arbitrary �0, again for bubbles only �13�. Sub-
sequently, Zhang proposed using the same equations with
negative �0 and �̇0 for spikes �14�. It follows that the ana-
lytic solutions we had derived for �0��� apply to spikes
also, as noted recently �10�.

The exact RM solution to Eq. �8� is Eq. �11� in Ref. �13�,
valid for g=0 and �0���=1 /3k. �We are considering 2D;
for 3D use Eq. �14� in Ref. �13�.� Let us set �0=0 in that
equation which then becomes

�̇0kt =
2�2

3�3
Y −

2

3
+

1

3�3
ln���3 + 1���2Y − 1�

��3 − 1���2Y + 1�
� , �36�

where

Y2 	 e3�k + 1/2. �37�

As a check, at t=0 Y =�3 /2 and the left- and right-hand sides
of Eq. �36� vanish.

There are two reasons why Eq. �36� is interesting. First,
Layzer obtained a first integral of his equation giving the
bubble velocity �̇bubble by considering �0=0 and g=const. A
second integral needed to obtain �bubble could be done only
by numerical quadrature �12�. Had he considered g=0, he
would have obtained this second integral analytically: the
above Eq. �36�. Of course, Layzer’s paper �12� was pub-
lished five years before Richtmyer’s �2� so the RM instability
was not known at the time to justify g=0. �However, we note
that Richtmyer’s original classified report was written in July
1954 and was probably known to Layzer.�

The second reason why Eq. �36� is interesting is that since
it is derived by setting �0=0 in Eq. �11� of Ref. �13� it
applies, as is, to both bubbles and spikes. For bubbles, �̇0
�0. For spikes, �̇0�0, following Zhang’s suggestion for
spikes �14�.

Equation �36� is compared with a CALE simulation in Fig.
16. The CALE problem, starting with �0=0.13 cm, is the
same as the impulsive problem C considered in Figs. 13–15,
except the impulse is negative, i.e., g goes from 0 to −500gE
by t=�=1 ms, and returns to 0 by 2�=2 ms. As expected,
the perturbation changes phase going through zero at t
�2 ms �the bubble at 2.1 ms and the spike at 1.8 ms� be-
cause the shock is now proceeding from the high density to
the low density fluid—in other words, the tank is jolted up
instead of down. We apply Eq. �36� starting at t=2 ms.

To estimate �̇0	 �̇�2�� in Eq. �36� we use the approxi-
mate expression

�̇�2�� = �0�vkA�1 + 7�vkA�/30 + ¯� �38�

given in �18� and derived in the Appendix �see Eq. �A30b��.
The well-known leading term, �0�vkA, was given by Rich-
tmyer and applies for g→� with �→0. The second term
above reflects the finite width of the pulse and comes from

FIG. 15. Same as Fig. 14 with the hexane �	=0.66 g /cm3� in
the tank replaced by air �	=0.0012 g /cm3�, hence A�1.

FIG. 16. Bubble and spike amplitudes calculated by CALE �thin
dashed line� and by Eq. �36� �thick continuous lines�. The accelera-
tion is the negative of the impulse C in Fig. 13, and A�1. The
insets show the heavy fluid at t=0 and t=24 ms.
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expanding the exact expression �Eq. �A26b��, which involves
Airy functions. We note that Eqs. �A30a� and �A30b� are
valid for both �vA�0 and �vA�0.

Setting �0=0.13, �vA=−0.49 cm /ms, k=6� /7.3
�2.58 cm−1, and �=1 ms, Eq. �38� gives ��̇�2���
�0.12 cm /ms. The solid curves in Fig. 16 are obtained
from Eq. �36� after shifting t by 2 ms and using
�0.12 cm /ms for �̇�2��. We see that starting from �2�=0
the same equation �Eq. �36�� with a positive �negative� �̇2�

gives the bubble �spike� amplitude and agrees well with the
CALE simulation. The insets in Fig. 16 show the beginning
�t=0� and ending �t=24 ms� configurations of the heavy
fluid. Clearly, the spikes are much longer than the bubbles. A
similar configuration is reached with constant g �Fig. 4 in
Ref. �10��.

The spike evolution has several applications as it is simi-
lar to that of shaped charges �27�, ejecta �28�, and of course
jets �29�.

Asymptotic bubble and spike amplitudes can be obtained
from Eq. �36� using Y →e3�k/2 for bubbles ��b�0� and Y
→ �1+e3�k� /2 for spikes ��s�0�:

�b →
2

3k
ln3�3�̇0kt

2�2
� �39a�

and

�s → �3�̇0t . �39b�

Using t=22 ms, �̇0=0.12 cm /ms, and k=2.58 cm−1 in Eqs.
�39a� and �39b� we find �b�0.65 cm and �s�−4.6 cm at
24 ms, in agreement with CALE, as seen in Fig. 16. The
asymptotic bubble velocity �̇b→2 /3kt from Eq. �39a� agrees
with �̇�=2 /3kt given in �13�, and the asymptotic spike ve-
locity �̇s→�3�̇0 from Eq. �39b� agrees with the �0=0 ver-
sion of the equation

 �̇s

�̇0
s �

�s→−�

2

=
1 − �0k

1/�1 + c� − �0k
=

1 + ��0k�
1/�1 + c� + ��0k�

�40�

given in �10�. Note that the �3 in Eq. �39b� is the largest
factor one can have—it is replaced by �2 for 3D spikes. It is
interesting that it gets even smaller if the initial amplitude �0
does not vanish and reduces from �3 to �1 for large ��0k�. It
may be counterintuitive that large initial amplitudes lead to
smaller �̇� / �̇0, as in Eq. �40�, but one must remember that
�̇0 itself is an increasing function of �0 �linearly in the linear
regime� so that shaped charges or ejecta or jets with larger
initial amplitudes will indeed have larger asymptotic veloci-
ties. We ran CALE simulations with �0=0.065, 0.13 �shown
in Fig. 16�, 0.26, and 0.52 cm, obtaining ��̇�

s �=0.09, 0.19,
0.38, and 0.68 cm/ms, respectively, showing almost linear
dependence of �̇�

s on �0. Of course to get the actual �labo-
ratory� speed of the tip of the jets one must add the tank
velocity, 0.49 cm/ms, to �̇�

s . For example, for the case shown
in Fig. 16 the laboratory speed of the jet is 0.19+0.49
=0.68 cm /ms.

What happens if we reshock the tank and bring it to rest?
As expected, the bubble and spike grow faster than the
single-shock case, as shown in Fig. 17 where, starting at 10

ms, we sent an equal and opposite impulse lasting until 12
ms, bringing the tank to rest 4.9 cm above its original posi-
tion. By 24 ms the total extent of the jet ��b�+ ��s� is more
than twice the single-shock case: 10.6 cm here vs 4.8 cm in
Fig. 16. Clearly, the spike is by far the dominant component,
making up 9.5 cm of the 10.6 cm—see Fig. 17. Its motion is
actually quite simple to describe: Since the spike has a small
cross section �1 /�2

s →0� it is not affected much at all by the
reshock and continues as before, i.e., at �0.68 cm /ms in the
laboratory, and indeed from Fig. 17 �̇s�−0.68 cm /ms after
�12 ms. The effect of the reshock is simply to stop the bulk
motion of the tank without affecting the spike; this is the
reason for the apparent increase in ��̇s� seen in Fig. 17 at 12
ms. Figure 18 compares the shock and reshock cases side by
side at 24 ms: In the first, shock-only case �left figure� the
tank is moving up at 0.49 cm/ms and ��̇s� is apparently small;
in the second case with reshock �right figure� the tank is at
rest and ��̇s� is large. In both cases the jet locations and
speeds in the laboratory are approximately the same,
�15 cm and �0.68 cm /ms, respectively.

V. CONCLUDING REMARKS

Layzer’s approach can be summarized as using a simple
potential in the nonlinear Bernoulli equation. Despite its
known failures �10� it is a very powerful technique yielding
explicit, analytic expressions valid mostly for the bubble am-
plitude and, as proposed by Zhang �14�, for the spike when
A=1. Probably the best illustration of the model is Eq. �36�,
valid for both bubbles and spikes. As we reasoned, Layzer
could have derived it had he set g=0 in his equations be-
cause he considered �0=0. For arbitrary �0 one can revert to
Eq. �11� in �13�, using a positive �negative� �0 for bubbles
�spikes�.

Goncharov’s extension of the model to arbitrary A �15�
works very well for bubbles but fails for spikes �10�. We
believe this signals a deficiency in that extension and further

FIG. 17. Same as Fig. 16 with an equal and opposite reshock
added at 10 ms, as shown by the thin dashed line in arbitrary units.
CALE simulations starting with �0=0.13 cm. The spike reaches a
magnitude of 9.5 cm by 24 ms, compared with 4.3 cm for the
shock-only case.
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work is needed. The model has been criticized for using a
potential ��y whose derivative �and hence the light-fluid-
velocity� does not vanish at infinity �30�, but we do not be-
lieve this to be essential—as Goncharov asserted, the poten-
tial is to be used near the interface y�0 only and not at y
→�. What we have found attractive in Goncharov’s exten-
sion is that it allows a simple transformation to convert our
earlier A=1 bubble results to arbitrary A. It remains to be
seen if a more advanced model for arbitrary A will continue
to provide simple explicit solutions such as Eqs. �14� and
�15� for RT and RM instabilities.

Similarly, the scaling of bubbles with s and the scaling of
spikes with �x deserve more scrutiny. Experimentally, scal-
ing has been addressed only for the turbulent mixing width
and only for the bubble width hb �4,5�. We hope other simu-
lations and experiments with single-scale perturbations will
throw light on these issues by considering a variety of accel-
eration profiles g�t�. Even more useful will be the study of
any scaling in the turbulent spike width hs. Turbulence, being
a 3D phenomenon requiring intensive computational capa-
bilities, we leave for the future.
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APPENDIX

In this Appendix we present solutions to Eq. �1� or Eq.
�10� for various g�t�s. As we have repeatedly pointed out,
both equations have the same mathematical structure and are
similar to Schrödinger’s equation. Yet another analogy is the

“harmonic oscillator with a time-dependent spring constant

k�t�,” i.e., Ẍ+k�t�X /m=0, X being the position and m being
the mass of the load attached to the spring. Despite the ap-
pearance of such an equation in many fields of physics and
finance, a general solution valid for arbitrary k�t� �g�t� in our
case� is not known. The results for the RT �g=const� and RM
�g=�v��t�� cases were given in the main body of this paper
and will not be repeated.

�1� g�t�=g� tanh2�t /T�. For simplicity of notation we
solve Eq. �1�. Define y	cosh2�t /T� and substitute in Eq. �1�
to obtain

y�1 − y�
d2�

dy2 + 1

2
− y�d�

dy
− g�

kAT2

4
1

y
− 1�� = 0.

�A1�

Now define �	y���y� where ���−1 /2�	g�kAT2 /4 and
write the above equation as

y�1 − y�
d2�

dy2 + 2� +
1

2
− �1 + 2��y�d�

dy
−

�

2
� = 0.

�A2�

This being a hypergeometric equation, its solution is a linear
combination of hypergeometric functions with the coeffi-
cients determined by the initial conditions �0 and �̇0. The
reader will probably recognize that we have duplicated a
quantum mechanical problem, translating space x in the po-
tential V�x� to time t in the acceleration g�t�.

Of course it is simpler to solve Eq. �1� numerically than
look up tables for hypergeometric functions. Even simpler is
the scaling solution �Eq. �22�� with

s�t� = T�g� ln�cosh�t/T�� . �A3�

We have verified that this is an extremely good approxima-
tion to the numerical solution.

�2� g�t�=g��1−e−t/T�. This was used as an example in
Figs. 3–6. Define

z 	 ne−t/2T, �A4�

where n	2
T	2T�g�kA, not necessarily an integer. Sub-
stituting in Eq. �1� we get

d2�

dz2 +
1

z

d�

dz
+ 1 −

n2

z2 �n = 0, �A5�

where �=��z�. The domain 0� t�� is mapped onto
n�z�0 with �0	��t=0�=��z=n�. We shall take �̇0
��d� /dz�z=n=0. The solution to Eq. �A5� is

��t� = c1Jn�z� + c2J−n�z� , �A6�

where J�n are Bessel functions of the first kind and c1,2 must
be determined, as usual, by the initial conditions �0 and �̇0.
The problem is much simplified for the case n=1 /2 as the
Bessel functions reduce to sin z /�z and cos z /�z. Henceforth
we take n=1 /2, i.e., T=1 /4
=1 /4�g�kA. Then

FIG. 18. Comparison of two tanks with a single shock only �left
figure, �s in Fig. 16� and for shock+reshock �right figure, �s in Fig.
17�, both at 24 ms. The position ��15 cm� and speed
��0.68 cm /ms� of the tip of the jet in the laboratory are approxi-
mately the same in both cases. The tank at left is moving up at 0.49
cm/ms, hence �̇s=0.49−0.68=−0.19 cm /ms. The tank at right is at
rest, hence �̇s=0−0.68=−0.68 cm /ms. Both tanks started with
�0=0.13 cm, y0=0 defining the laboratory position of the initial
interface, carrying a reservoir of heavy fluid 4.4 cm thick.
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��t� = �0�c+ sin z + c− cos z�/�z , �A7�

where c+= �cos1 /2+sin1 /2� /�2�0.96 and c−= �cos1 /2
−sin1 /2� /�2�0.28, satisfying ��0�=��z=1 /2�=�0 and �̇0
=0.

It is interesting that asymptotically, meaning t→� or
z→0, �→�0c− /�z=�0c−��2et/4T�=�0�cos�1 /2�−sin�1 /2��
e
t�0.4�0e
t, compared with the solution to the standard RT
linear problem, �=�0 cosh�
t�→0.5�0e
t.

At late times the amplitude must surely be nonlinear so
instead of Eq. �A7� one should use

��t� = �0 +
1

kL
ln��c+ sin zL + c− cos zL�/�zL� , �A8�

where zL	ne−t/2TL = 1
2e−2
Lt with 
L	�g�kLAL. Asymptoti-

cally, � now grows only linearly with time with the well-
known asymptotic bubble velocity �̇�=
L /kL=�g�AL /kL.

What about the scaling formula �Eq. �22��? For this g�t�
one finds

s�t� = T�g��− 2x + ln1 + x

1 − x
�� , �A9�

where x	�1−e−t/T. It is not necessary to limit to
n=1 /2—one can vary g� and T independently. In other
words, the above s gives the scaling solution to the general
Eq. �A5� which had Bessel functions as exact solutions. This
situation is completely analogous to the case of the “har-
monic oscillator” g=g0�1+�t2�: the scaling solution was
valid for arbitrary g0 and � for which the exact solution
called for Hermite polynomials, but an exceptionally simple
exact solution was obtained if g0 and � satisfied a certain
relationship—see Ref. �18�. In the present case the simple
solution is Eq. �A8� and the required relationship is T

=1 /4�g�kA in the linear regime and TL=1 /4�g�kLAL in the
nonlinear regime.

Asymptotically, Eq. �A9� gives s→ t�g� which, when
substituted in Eq. �22�, gives �→ �
L /kL�t=�g�AL /kLt. The
same result is obtained from the exact solution �Eq. �A8��
after some algebra.

�3� g�t�=gntn. Equation �1� reads as

d2�

dt2 − gnkAtn� = 0. �A10�

Define z	�gnkA�1/2tm /m, where m=1+n /2, let �=F�t��t
and substitute in the above equation to obtain

d2F

dz2 +
1

z

dF

dz
− 1 +

1

4m2z2�F = 0, �A11�

which is the modified Bessel equation solved in terms of
I1/2m and K1/2m �31�. For n=1 �m=3 /2�, which will be our
fourth and last example, the solution involves Airy functions.

It is straightforward to obtain sn�t� needed for the scaling
solution:

sn�t� = �gn� tn/2dt =
�gn

1 + n/2
t1+n/2, �A12�

which must be substituted in Eq. �22�. From Eq. �25� the
asymptotic bubble velocity is �g�t�AL /kL=�gntnAL /kL� tn/2.
The same result is obtained by analyzing the large-z behavior
of I1/2m and K1/2m.

Let us calculate the distance �xn traveled under this ac-
celeration:

�xn =� �� gdt�dt =
gn

�n + 1��n + 2�
tn+2 �A13�

so that

sn�t� = 2��xn�n + 1

n + 2
. �A14�

Since ��n+1� / �n+2� is an extremely weak function of n
varying between 1 /�2�0.707 and 1 for 0�n��, we con-
clude that tanks undergoing different accelerations with dif-
ferent ns will have perturbations differing by no more than
about 30% after traveling the same distance. This applies to
bubbles. Of course spikes are expected to differ even less, if
at all, if they scale with �x. This mental exercise suggests an
interesting and, we believe, well-defined problem: what ac-
celeration history g�t� gives minimum ��tend� if constrained
to move a given �x by t= tend? Variational calculus with
Lagrange multipliers will probably give the optimum solu-
tion. Our intuition, drawing partly on Figs. 14�b� and 15�b�,
favors a shock.

�4� g�t�=g0+ ġt. Change variables by defining

z 	 �g0 + ġt�kA/�ġkA�2/3, �A15�

and substitute in Eq. �1� to obtain Airy’s equation

d2�

dz2 − z� = 0, �A16�

whose solution is

��t� = �Ai�z� + �Bi�z� . �A17�

Ai and Bi are known as Airy functions �31,32�. The constants
� and � are determined by �0 and �̇0 using the explicit forms
�32�:

Ai�0� =
Bi�0�
�3

=
1

32/3��2/3�
, �A18a�

Ai��0� = −
Bi��0�

�3
= −

1

31/3��1/3�
. �A18b�

Substituting these expressions into Eq. �A17� and its deriva-
tive �̇�t�= �� /T�Ai��z�+ �� /T�Bi��z�, where T= �ġkA�−1/3, we
obtain

� = 31/6� �0

��1/3�
−

�̇0T

31/3��2/3�
� , �A19a�
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� =
�

31/3 �0

��1/3�
+

�̇0T

31/3��2/3�
� , �A19b�

where we have also used the relation ��1 /3���2 /3�
=2� /�3.

If we set �̇0=0 we obtain Eq. �26� which we compared
with the classical solution for g=const in Sec. III.

Let us concentrate on a symmetric impulse that increases
linearly from 0 to gmax= ġ� by time �, then decreases linearly
to 0 by time 2�. On the first leg g= ġt, z= t�ġkA�1/3= t /T, and
we write

��t� = �0Ai�z� + �0Bi�z� , �A20a�

�̇�t� =
�0

T
Ai��z� +

�0

T
Bi��z� , �A20b�

with

�0 = 31/6��0/��1/3� , �A21a�

�0 = ��0/31/3��1/3� , �A21b�

which follow from Eqs. �A19a� and �A19b� after setting �̇0
=0.

On the second leg between � and 2�, g= ġ�2�− t�, and

��t� = �2Ai�z2� + �2Bi�z2� , �A22a�

�̇�t� = −
�2

T
Ai��z2� −

�2

T
Bi��z2� , �A22b�

where z2	�2�− t� /T. The constants �2 and �2 are deter-
mined by the initial �t=�� conditions of the second leg, ����
and �̇���, which are the final �t=�� conditions on the first leg
and are therefore given by Eqs. �A20a� and �A20b�:

���� = �0Ai��/T� + �0Bi��/T� = �2Ai��/T� + �2Bi��/T� ,

�A23a�

�̇��� =
�0

T
Ai���/T� +

�0

T
Bi���/T�

= −
�2

T
Ai���/T� −

�2

T
Bi���/T� . �A23b�

From these two equations we obtain

�2 = �0 + 2�Bi��/T���0Ai���/T� + �0Bi���/T��
�A24a�

and

�2 = �0 − 2�Ai��/T���0Ai���/T� + �0Bi���/T�� .

�A24b�

We used the Wronskian, AiBi�−BiAi�=1 /�, valid for any z,
to simplify the result.

Since �2 and �2 are now known, the evolution along the
second leg given by Eq. �A22� is also known for any time
�� t�2�. In particular, at the end of the pulse, i.e., at t
=2� or z2=0:

��2�� = �2Ai�0� + �2Bi�0� , �A25a�

�̇�2�� = −
�2

T
Ai��0� −

�2

T
Bi��0� . �A25b�

These values of � and �̇ can be used as “initial” condi-
tions for the third and last leg of the acceleration where we
maintain g=0 �see Fig. 1�c�� and therefore the solution is
given by Eq. �15� for t�2�.

The main results of this example are the above two equa-
tions giving the amplitude and its growth rate at the end of
the pulse. After some algebra using Eqs. �A18�, �A21�, and
�A24�, a relatively simple form emerges:

��2�� = �0�1 +
�

�3
�Bi − �3Ai��Bi� + �3Ai���

�A26a�

and

�̇�2�� =
2�0

T
 �

31/3��1/3��
2

�Bi + �3Ai��Bi� + �3Ai�� ,

�A26b�

with all Airy functions and their derivatives evaluated at � /T.
The reader will recognize some of the bracketed terms above
as ���� and �̇���. In particular,

�̇�2�� � �����̇��� . �A27�

The above expressions are valid for arbitrary � /T, the
normalized half width of the pulse. To obtain the small-� /T
relations given in �18�, expand Eqs. �A26a� and �A26b� for
� /T�1. This is a somewhat laborious procedure because
most of the leading or next to the leading terms vanish �e.g.,
Bi��0�+�3Ai��0�=0� and one must go to higher order Taylor
expansions to obtain a nonvanishing contribution. A third-
order expansion is needed for ��2�� and a sixth-order expan-
sion for �̇�2��. The final results, however, are exceptionally
simple:

��2�� = �0�1 + ��/T�3 + ¯� �A28a�

and

�̇�2�� = �0��2/T3��1 + 7��/T�3/30 + ¯� . �A28b�

Using the definition T= �ġkA�−1/3 and the relation

�v = �
0

2�

gdt = gmax� = ġ�2, �A29�

we write

��2�� = �0�1 + �vkA� + ¯� , �A30a�

�̇�2�� = �0�vkA�1 + 7�vkA�/30 + ¯� , �A30b�

as reported in �18�.
We now turn to the scaling solution. On the first leg where

g= ġt Eq. �A12� with n=1 gives
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s�t � �� =
2�ġ

3
t3/2. �A31�

On the second leg where g= ġ�2�− t�,

s�t � �� =
4

3
�ġ�3/2�1 −

1

2
�2 − t/��3/2� . �A32a�

In particular,

s�2�� =
4

3
�ġ�3/2. �A32b�

By symmetry, s�2��=2s���.
On either leg the linear-� scaling solution is

��t� = �0 cosh�s�kA� . �A33�

Therefore,

��2�� = �0 cosh4

3
�ġkA�3� = �0 cosh�4

3
��/T�3/2� .

�A34�

When � /T�1, this scaling solution is

��2�� = �01 +
8

9
��/T�3 + ¯� = �01 +

8

9
�vkA� + ¯�

�A35�

to be compared with the exact expansion, Eq. �A30a�, giving
1 instead of 8/9 as the coefficient of the second term. This is
surprisingly good agreement given the lengthy derivation of
the exact expansion and given that g=0 at t=2� where one
cannot justify the scaling solution. This is the reason why
one cannot apply the scaling solution to �̇ because it gives
�̇��g�t�=0 at t=2�, in contrast to the exact result Eq.
�A26b� or its expansion Eq. �A30b�.

Of course the expansions get poorer as the pulse gets
wider. In Table I we compare Eqs. �A26a�, �A28a�, �A34�,
and �A35�.

We believe the small-� expansions �Eq. �A28� or Eq.
�A35�� have a wider application and are not limited to lin-
early increasing or decreasing impulses only. The reason is

the following: we considered an impulse that increases expo-
nentially with time, g�et/T−1 until t=�, and then decreases
exponentially to 0 at t=2�. The exact solution involves
Bessel functions �see example 2�. The scaling solution, how-
ever, is quite simple and involves an elementary integration
only. We omit the details. The point we wish to make is that
when we expand ��2�� for small � /T and of course define
�v=�0

2�gdt, etc., corresponding to this exponential impulse,
we obtain the same equation as Eq. �A35�, with the 8/9 fac-
tor. Apparently, when the impulse is very narrow, it does not
matter how gmax is reached linearly or exponentially or
otherwise.

Asymptotic nonlinear solutions are obtained by the now
familiar procedure of k→kL, A→AL, and taking the loga-
rithm. The case g= ġt was discussed in Ref. �18� and will not
be repeated here. Both the exact and the scaling solutions
give �ġAL /kL�1/2t1/2=�g�t�AL /kL as the asymptotic bubble
velocity �̇�.

We do not investigate other examples. The “harmonic os-
cillator” was discussed in �18�. Other well-known quantum
mechanical potentials V�x� such as the Coulomb, Wood-
Saxon, Hulthén, Pöschl-Teller, etc. can be converted to ac-
celeration histories g�t� and solved by similar techniques. We
concentrated heavily on the linear potential because it is used
in so many experiments and is probably the next logical step
after the classic RT and RM instabilities.
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