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Formation and evolution of bubbly screens in confined oscillating bubbly liquids
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We consider the dynamics of dilute monodisperse bubbly liquid confined by two plane solid walls and
subject to small-amplitude high-frequency oscillations normal to the walls. The initial state corresponds to the

uniform distribution of bubbles and motionless liquid. The period of external driving is assumed much smaller
than typical relaxation times for a single bubble but larger than the period of volume eigenoscillations. The
time-averaged description accounting for the two-way coupling between the liquid and the bubbles is applied.
We show that the model predicts accumulation of bubbles in thin sheets parallel to the walls. These singular
structures, which are formally characterized by infinitely thin width and infinitely high concentration, are
referred to as bubbly screens. The formation of a bubbly screen is described analytically in terms of a

self-similar solution, which is in agreement with numerical simulations. We study the evolution of bubbly
screens and detect a one-dimensional stationary state, which is shown to be unconditionally unstable.
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I. INTRODUCTION

Bubbly liquid presents a well-known example of nonlin-
ear medium [1]. The waves propagating through a bubbly
liquid are able to display a variety of strongly nonlinear phe-
nomena. Of particular interest is the averaged dynamics of
periodically oscillating bubbly liquids. The equations gov-
erning the averaged dynamics of bubbly liquid have been
developed by Kobelev and Ostrovsky [2]. A number of is-
sues dealing with the propagation of acoustic waves in un-
bounded bubbly liquids have been addressed in Refs. [3-5].
From the perspective of applications and as a general aspect
of pattern formation such factor as confinement becomes im-
portant, which particularly implies the consideration of
standing waves. In our study, we focus on confined oscillat-
ing bubbly liquid and show that this system exhibits non-
trivial highly localized states.

To the best of our knowledge, the averaged dynamics of
bubbly liquid under confinement is first studied in Ref. [6],
where a layer of bubbly liquid oscillating normally with re-
spect to walls is considered. It has been numerically shown
that the initially uniform state demonstrates an abrupt growth
of the concentration field in one or several thin sheets paral-
lel to the solid plates. However, the numerical solution does
not allow us to clarify whether these structures develop into
singular states within a finite time. The singular states can be
referred to as bubbly screens as they are characterized by the
vanishing width and infinite concentration of bubbles. Apart
from the possibility of the bubbly screen formation, no
analysis of their evolution has been performed. Additionally,
we note that a bubbly screen can also be thought of as the
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limit of an infinitely thin bubble layer with the infinite aver-
aged concentration of bubbles [7-9].

To describe these singular objects one can employ the
model describing a dilute monodisperse bubbly liquid [2,6].
In these models, one works in terms of an auxiliary field
® =/ €, which is the ratio of the volume fraction of bubbles
¢=(4/3)mR*n <1 to an asymptotically small dimensionless
problem-specific parameter e<<1. Here, n is the number of
particles per unit volume of the medium and R is the time-
averaged radius of a bubble. As a result, the rescaled field ®
is considered finite and can become large without a contra-
diction with the smallness of ¢. For the sake of simplicity, ®
is referred to as the concentration. Furthermore, the vanish-
ing width and the infinite value of the concentration are at-
tributed to the bubbly screen only formally. In any real situ-
ation, these quantities are finite owing to certain factors such
as interaction of bubbles and dissipative effects, which are
usually not taken into account. Different ways are known to
overcome this difficulty.

Although several papers deal with the collisions of
bubbles via the calculation of the collision cross-section (see
Ref. [2] and references therein), such approach does not
seem convincing because various powers of the small ratio
of the mean bubble radius to the mean interparticle distance
are mixed. Another mechanism that allows one to prevent the
infinite growth of the concentration is the diffusivity of
bubbles [10]. On one hand, this diffusivity smears sharp spa-
tial nonuniformities and stops the infinite growth of the con-
centration. As a result, the bubbly screen acquires a finite
width and the maximum of concentration is no longer infi-
nite. On the other hand, if not interested in resolving the
structure of the bubbly screen, the description in terms of
singular objects is possible. We stress that in contrast to the
model of diffusive bubbly liquid [10], where the total amount
of bubbles is kept constant as the bubbles can accumulate
near the wall but cannot leave the system, the nondiffusive
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wall

FIG. 1. (Color online) A sketch of the problem geometry. Bub-
bly liquid filling the space between solid parallel walls subject to
normal oscillations with respect to the walls.

model is different. Mathematically, the flux of bubbles into
the boundary is generally nonvanishing and the bubbles can
leave the system. Physically, this fact suggests that the
bubbles burst upon the contact with the wall. Another impor-
tant distinction is that the stationary states are independent of
initial conditions for diffusive bubbles [10], which is not the
case in the present consideration.

In the present paper, we aim at studying the formation and
evolution of the bubbly screens as singular objects. The
analysis is performed for a layer of bubbly liquid confined by
infinite solid plates. We start by formulating the problem in
Sec. II. In Sec. III, we focus on the peaking regime and
investigate the asymptotical behavior of the concentration
field. The corresponding solution describes the formation of
a bubbly screen. The evolution of the screen is studied in
Sec. I'V. We find a stationary solution that predicts that all the
bubbles either settle at the walls or accumulate in the bubbly
screens. These stationary states are shown to be unstable in
Sec. V. The results are summarized in Sec. VI.

II. PROBLEM STATEMENT

Consider the averaged dynamics of a layer of dilute
monodisperse bubbly liquid confined by the parallel solid
plates separated by a distance 2A. The system is subject to
oscillations of an amplitude b and a frequency @ normally to
the walls, as shown in Fig. 1.

To apply the model developed earlier (see, Sec. IV, Ref.
[6]), we accept a number of assumptions. We assume the
equilibrium radius of bubble R small compared to the size .
As was mentioned in Sec. I, we work in terms of the finite
field ®=¢(h/R)*. Here, ¢ is the volume fraction of bubbles
and the role of small parameter € is played by (R/h)><1. We
consider the oscillations to be small amplitude, ah<R?, and
high frequency, wR>> v. Here, v is the kinematic viscosity
of the liquid. For more general conditions that allow us to
neglect the dissipation of bubble oscillations, see Ref. [11].
At the same time, the frequency w is assumed small in the
sense that wh<<cy, where ¢, is the speed of sound in the
liquid free of bubbles. This requirement means that no acous-
tic waves are possible in the medium in the absence of
bubbles.

For instance, the mentioned requirements are fulfilled for
a 1% water (v=10"2 cm? s™!) suspension of bubbles with
R=3 mm in a layer with #=10 cm, which oscillates with
the amplitude »=10" cm and frequency w=10 rad-s~'.
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Note that such choice of parameter values is in agreement
with a typical vibration experiment, see e.g., Ref. [12].

We choose the Cartesian reference frame with the origin
in the central plane of the layer, see Fig. 1. We measure the
length, time, averaged and pulsation velocities, pressure, and
bubble concentration in the scales of &, h2v™', vh™!, bw,
pv*h?, and ¢,h’R72, respectively. Here, p is the liquid den-
sity and ¢, is the space-averaged volume fraction of the
bubbles. As a result, the dimensionless boundary value prob-
lem is given by [cf. Egs. (52)—(55) in Ref. [6]]

Ju+u-Vu=-Vp+300,0V 7, (1a)

9P + div Pu, =0, (1b)

divu=0, w,=u+QV (1c)
30,0

Vi+ Q;—(f)zp:o, (1d)

z=*Lu=0, e -Vy=1. (2)
Here, u and u,, are the velocities of the liquid and bubble
phases, respectively, p is the renormalized pressure, ¢ is the
amplitude of the velocity potential for the pulsation flow, and
e.=(0,0, 1). Boundary conditions for @ must be prescribed
at the inflow boundaries, namely, if u,-e,>0 at z=-1 and if
u,-e,<0 at z=1. In this case we impose the vanishing flux
of bubbles. At the outflow boundaries, no boundary condi-
tions are required, which implies that the bubbles can settle
on the walls. We assume that the settled bubbles burst and
for this reason are no longer under consideration. Thus, the
total amount of bubbles decreases, which is in contrast to the
case of diffusive bubbles [10], where this quantity is con-
served.

The problem is governed by the three dimensionless pa-
rameters,

2 —
0= — (@) 2 3YPe= 20k
QP-1\2v )" pw’R>

2

q)azqsaﬁ’

where P,, v, and o represent the mean pressure of the gas in
bubbles, the adiabatic exponent, and the surface tension, re-
spectively. The first parameter, Q, is proportional to the
power of external driving and, for this reason, characterizes
its intensity. The parameter () is the ratio of the eigenfre-
quency of the volume oscillations for a bubble to the fre-
quency w of external driving. The last parameter describes
the feedback of bubbles on the liquid motion and rescales the
concentration of bubbles. As ¢, is the small mean (space-
averaged over the system) concentration of bubbles, the field
@ is normalized such that initially its space-averaged value
equals one.
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Consider the evolution of the initial state in the form of
uniformly distributed bubbles and quiescent liquid and look
for the one-dimensional solution. As the liquid remains mo-
tionless [6], u=0, the boundary-value problem is reduced as
follows:

3P = =200 D) = - 3, (u,®P), (3a)
3¢Ll

d?l/f= - ﬁq)l[f, (3b)

2=0:9.D=y=0, (3¢)

z=loy=1, (3d)

where the only nonvanishing is the z component of the
bubble velocity, denoted as u;, =2Qd . Due to the symme-
try of both boundary-value problem (3) and the initial con-
ditions, we treat the problem in half the layer, 0=z=1.
Symmetry conditions (3¢) imply that the concentration, ®,
and the potential, ¢, are even and odd functions of z, respec-
tively.

Hereafter, we are interested in the case of low frequen-
cies, (1> 1. For this consideration, we introduce the auxiliary
parameter [6]

39,
0 -1

a2

Without loss of generality, we can set Q=1 by the appropri-
ate choice of the time scale, which is used in Secs. III and IV,
where we explore the processes of formation and evolution
of bubbly screens.

III. FORMATION OF BUBBLY SCREEN.
PEAKING REGIME

As has been numerically detected earlier [6], the concen-
tration of bubbles demonstrates an abrupt growth in one or a
number of planes with z=z.. We now demonstrate that this
growth results in the development of a singular state at a
certain moment of time f,. To describe such state at times
t=t, (t<ty), a simple self-similar solution can be obtained.

Let us introduce the “fast” coordinate

_z=zl)

g_ 73/2 b

T=1-1<1 4)

and represent the fields of potential and concentration as su-
perpositions

=W+ PIED, D= FEN A, ()

where W and ¢ are the regular parts of the fields and the
functions f and F determine the self-similar contributions,
respectively. Note that the leading term of the potential is
given by the regular contribution, whereas for the concentra-
tion the self-similar term dominates. The function ¥ can be
expanded into the Taylor series near z,. as follows:
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V=200 = W)+ (@) (c=2)+ . (6)

We substitute representations (5) and (6) into problem (3)
and equate the terms of the same powers with respect to 7 to
obtain the differential equations

3
f'+a*V F=0, F+ EgF' +2W . (f'F)=0 (7)

and the relation
Z.C = 2’\1,((&2\[,)6" (8)

which describes the drift of the concentration peaks. Here,
the primes and dot denote the & and f derivatives, respec-
tively.

Equations (7) should be supplemented with the symmetry
conditions

E=0:f = F' =0. (9)

Additionally, we can put f(0)=0, as only derivatives of f
enter Egs. (7).

The solution to the Cauchy problem given by Egs. (7) and
(9) can be presented in terms of an auxiliary function y(&),

y'(€)

2
a~ v,

1 3
f=—3j0 y(pdn, F= (10)

The function y(&) solves the nonlinear ordinary differential
equation

3
()" =S8 -y'=0 (11)
with the conditions
.1
£=0:y=0, y =5 (12)

where the second initial condition follows from Eq. (11) in
view of the requirement F'(0)=0 or y"(0)=0.

Initial value problem (11) and (12) admits the nontrivial
solution

£=2y+16By°, (13)
which leads to the following expressions for F and f:

1
F= ,
20°W2(1 + 24By?)

(14a)

2

f=2—(1+12ByY). (14b)
v,

It is worth noting that the Cauchy theorem is invalid for Eqs.

(11) and (12). Indeed, by solving Eq. (11) with respect to y”,

we obtain

J1=2y
Yay-3g

"_

(15)

Thus, accounting for Eq. (12) we see that both the numerator
and denominator on the right-hand side of Eq. (15) vanish at
£=0, which means the right-hand side of the equation is not
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FIG. 2. (Color online) The comparison of numerical calculations
(lines) and the asymptotic solution given by Egs. (5), (13), and (14)
(circles) presented for a®=12 (,=0.401). The concentration of
bubbles (a) and velocity potential (b) at r=0.350 (solid lines and
closed circles) and at =0.360 (dashed lines and open circles).

continuous with respect to both & and y near the point £=0.
This is why the Cauchy problem has a one-parameter family
of solutions with B serving as the parameter.

At small £ when y~§&/2—B&, we arrive at the approxi-
mation

1 - 6B& 2(1 - B&
_loebg _ £0-pg) 6
2077 4P,
In the opposite case, £ 1, we obtain
C 2
F=———|1-=C 2/3) 2/3, 17
3a2\1f§< 3C6T)E (17
C 4
_ +_C 2/3) /3’ ]8
f= {1+ 5een)e i
where
C3=—L

16B°

Thus, we see that F is finite at §=0 and at large ¢ decays as
&3, cf. Fig. 2(a). Therefore, the maximum of the concen-
tration tends to infinity at 7—0, see Eq. (5). At the same
time, the width of this localized solution becomes vanishing.
In other words, a &-like distribution of the bubble concentra-
tion develops.

As follows from representation (5), the potential at
7—0 is dominated by the regular contribution W, which at z
close to z, corresponds to expansion (6). As the function f(&)
grows as &3 at large £, the correction 7fo(z—z.)%3 is
smaller than the leading terms in Eq. (6), which ensures that
the outer and the inner solutions are consistent and can be
matched.

A comparison of numerical -calculations and the
asymptotic law, Egs. (13) and (14), is illustrated in Fig. 2. In
order to calculate the parameters W., 7, and B included in
self-similar solution (13) and (14), we compare the numeri-
cal data at two successive time moments, ¢, and 7, such that
t,<t;<ty. Since the regular contribution to the concentra-
tion of the bubbles is rather small and varies slowly, we can
assign z.(f;,) such that ®;,=®(z.,1;,)=max, P(z,1,,).
According to Egs. (5) and (16), we have near the point z,
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1 (z- zc)2

b = —6B———— | + ¢, 19
2a2‘lf3 { s ¢ (19)

where ¢,.=¢(z,).

By comparing the numerically obtained values of ®,,
and (?Z(I) at z=z, with those following from Eq. (19), we
0bta1n

(t;—1,)* I —1
o902 2 ,
4 2U26X(D, - D)

2
=— a—‘l’g PP,
6 Z
where 7=1,—(t,+1,)/2. Here, we have neglected variations
of W, and ¢, (and, hence, B) with 7, which leads to unim-
portant corrections of order O(7). As a result, both W, and
&?@ can be taken at either r=¢, or t=t,.

Next, we evaluate the velocity of the concentration maxi-
mum as Z.~[z.(t,)=z.(t})]/(t,~1,) and (3,¥), via Eq. (8).
Finally, we have all necessary ingredients to approximate W
according to Eq. (6). As becomes clear from Fig. 2, good
agreement of numerical data and the analytical solution is
achieved even at 7=0.0509 (¢=0.350).

IV. EVOLUTION OF BUBBLY SCREEN
A. Governing equations and boundary conditions

As we emphasized, at t>1, our model predicts un-
bounded accumulation of bubbles in thin sheets (or bubbly
screens) with the coordinates z=z,.. Formally, ® —  in these
planes and the model becomes inapplicable. As we men-
tioned in Sec. I, the proper treatment of such objects requires
taking into consideration subtler factors such as bubble inter-
actions and some dissipative effects. In this study, we resort
to the approximation of diffusive bubbles [10]. This approxi-
mation, however, is rather a technical trick that helps in ob-
taining one of the matching conditions only and hence in
completing the formulation of the model. As we are inter-
ested in the evolution of the bubbly screens and do not aim at
resolving their structure, the developed model is kept nondif-
fusive and therefore operates by the bubbly screens as sin-
gular objects.

To study how the bubbly screen evolves, we represent the
concentration field as a superposition of the regular contri-
bution, ¢, and a & function,

D=p+A1)z—27.(1)). (20)

Here, z=z.(t) and A(r) are respectively the position and
“power” of the bubbly screen. The latter can be treated as
lim,_ Z§+€<I)dz As for the potential, we can put =Y. In-

deed, although of(jr diverges at z=z,, the field itself, ¢, re-
mains finite. Hence, the regular part of the potential, W, co-
incides with ¢ and no additional terms are required.

We note that the regular contributions to the solution, ¢
and W, obey the same equations as before, see Egs. (3) with
¢ and W instead of ® and #, respectively. To obtain the
boundary conditions at the screen, we integrate Egs. (3a) and
(3b) over z from z,—€ to z.+ € and arrive at the expressions
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9A = [lV+2¥[(0,¥)$] =0, 1)

[0.V]+ ?AV =0, (22)
where we have assumed that
[W]=0. (23)

Here, the square brackets are used to denote the jump of the
corresponding value across the screen

[e]=8(z.+€) gz~ €
and V is the velocity of the bubbly screen,

V=2,

which is yet to be determined. Note that the pair of boundary
conditions, Egs. (22) and (23), resembles the similar condi-
tions at a &-like potential in quantum mechanics [13].

To complete the set of boundary conditions at z=z, we
need a relation that determines the velocity of the bubbly
screen, V. To obtain such relation, we take infinitely small
diffusion of bubbles into account in Eq. (3a) and end up with
(the details are provided in Appendix A)

[(0.9)]
V= A (24)

Equations (21)—(24) present the full set of boundary con-
ditions at z=z., which completes boundary-value problem
(3) in the case of the bubbly screen emergence. We note that
these additional boundary conditions can be easily included
in the numerical algorithm applied earlier, see Sec. V of Ref.
[6]. Therefore, we again apply the method of characteristics
to numerically solve Eq. (3a) and the shooting method for
Eq. (3b).

The initial conditions at z=¢; correspond to A=0 and z,. is
determined by extrapolation of the dependence z.(z) accord-
ing to Eq. (8). Technically, we start the computation of the
bubbly screen evolution at ¢ slightly exceeding #,, which is
done to avoid the divergence of V, see Eq. (24) at A=0. As
the initial distributions of W and ¢ we use the fields ¢ and @
at r—1,—0 except at the close vicinity of the point z=z,.

B. Numerical results and stationary solution

An example of computations for a?=12 is presented in
Figs. 3 and 4. As can be seen from the figures, after the
bubbly screen has formed, its power A monotonically in-
creases. On the contrary, the regular part of the concentration
¢ tends to zero, which becomes clear from the evolution of

(¢) = fol ¢dz,

see Fig. 4(a). It is also worth noting that the potential W
becomes close to the piecewise-linear function that re-
sembles the stationary solution obtained earlier in the limit-
ing case of small diffusivity [10].

Recall that u,(z=1)>0 for ¢(z=1) >0, which means that
the flux of bubbles is positive at the solid wall, z=1, see Eq.
(3a). Hence, a part of bubbles migrates toward the boundary,
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FIG. 3. (Color online) The fields of concentration
® (r<1y=0.401) or its regular part ¢ (t>1,) (a) and velocity po-
tential 4 (b) plotted for a?>=12 at different times before and after
the emergence of a bubbly screen. The dotted, solid, and dashed
lines correspond to t=0.35, t=0.425, and t=0.615, respectively.

settles on it, bursts, and effectively disappears from the con-
sideration. As a result, the total number of bubbles decreases
even before the bubbly screen has formed [see the dashed-
dotted line in Fig. 4(a)]. Thus, after a transient, all the
bubbles either accumulate and compose the bubbly screen or
disappear after settling on the solid wall. The system ap-
proaches the state described by the stationary solution

A=A0’ ic= ¢0=|Z_Zc|_zm (25)

a2 A() > ¢0 - 07
where Aj=1 is the fraction of bubbles that have formed the
screen and therefore remained in the system. This quantity is
determined by initial conditions and the value of «. For in-
stance, for the solid wall repelling the bubbles, u,(z=1) <0,
no bubbles can leave the system and therefore Ay=1.

We stress that Eq. (25) is valid only within the range of
frequencies () at which only one bubbly screen in half the
layer, 0=z=1, exists. A naive estimate of this frequency
range in terms of « results in [cf. Egs. (70) and (72) in Ref.

[6]]
72 < a<3m/2. (26)

For smaller values of «, all the bubbles leave the system,
whereas for larger values of «, two or more screens emerge.

10 [ N T T
' (a)
¢ !
© !
A
5F "\
o\
N
. ~.
l \.\.
O : 1 1 -
0 0.5 1
t

FIG. 4. (Color online) Evolution of the concentration plotted at
=12 (t,=0.401). Variation in maximal concentration, ®,, (solid
line) and mean value of concentration, () (dashed-dotted line) with
t (a). The vertical dashed line shows the moment of formation of the
bubbly screen, r=t;. At t>1tg, only the regular part of the concen-
tration, ¢, contributes into (¢). Characteristics of the bubbly screen
(b): the power A (solid line) and position z.. (dashed-dotted line).
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The generalization of Eq. (25) for the case of several bubbly
screens is straightforward.

In fact, criterion (26) for the formation of a single screen
is not rigorous. For instance, our numerical simulations per-
formed at o?=1.9 and &?=2 (for both cases a</2) show
the formation of a single screen. Here, the bubbles initially
tend to reach the boundary, which is accompanied by the
decrease in the total number of bubbles. However, significant
changes in the concentration field lead to a crossover. After
the movement toward the wall, the bubble flux at the wall
becomes negative and the bubbles start to move backward,
away from the wall. As a result, a band of pure liquid is
formed near the wall. With the time, this band expands away
from the wall, cf. Fig. 6 in Ref. [6].

Mathematically, the appearance of the crossover can be
associated with the dynamics of the potential, ¢, which first
tends to infinity and then changes its sign at =t,. Note that
the infinite value of ¢y means that at a given «, the Helmholtz
equation, Eq. (3b), has a nontrivial solution with the zero
flux at the boundaries, (9de(1= 1)=0 for a certain distribution
of bubbles ®.(z)=®P(z,1.). Physically, a kind of resonance
occurs as one of the eigenfrequencies for the instantaneous
distribution of bubbles coincides with the frequency of oscil-
lations. Interestingly, the evolution at &”=1.8 is similar to the
described scenario but not the same. At the initial stage the
bubbles move toward the wall. However, the process of sedi-
mentation of the bubbles on the wall is so fast that no cross-
over occurs: after the transient, the maximum of the potential
starts to decrease before reaching the infinite value.

On the other hand, the study involving diffusivity of
bubbles [10] claims that n bubbly screens in half the layer
exist provided that 2n(2n—1) < a®< (2n+1)(2n+2). We em-
phasize that this result is inappropriate for the problem under
consideration. The reason is that in the presence of bubble
diffusivity, the steady state does not depend on the initial
conditions, whereas in the present nondiffusive study it does.

Sooner or later, in each half the layer the bubbles sym-
metrically form one or several bubbly screens. The system
arrives at the steady state in which every screen is described
by Eq. (25). The value of A is to be figured out numerically.
Thus, the next question to answer is whether the detected
stationary state is stable.

V. STABILITY OF THE STATIONARY STATE

In this section we explore the stability of the stationary
state obtained in Sec. IV. Although the stationary state is one
dimensional, the stability analysis requires the three-
dimensional generalization of the governing equations,
which is provided in Appendix B. For the sake of simplicity,
we deal with the case of a single bubbly screen in half the
layer, see Eq. (25).

We introduce small perturbations of the power of the bub-
bly screen, a, its position, {, potential of pulsations, W, av-
eraged velocity, U, pressure, P, and background concentra-
tion of the bubbles, c. After the linearization with respect to
small perturbations we arrive at the boundary-value problem

9U=—VP+V2U+30d,(47) ce., (27)
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V-U=0, (28)

dic = =2Q0(cthiy) (29)
V2 = — o2y, (30)
7=+ 1:U=4,¥ =0, (31)

where the primes denote the derivatives with respect to z.
Owing to O, symmetry in the plane (x,y), we restrict our
analysis by the two-dimensional consideration. We set
Uy=0, and ﬂyEO.

Because of symmetry, it is convenient to treat this prob-
lem in half the layer, 0=z=1. At z=0, we impose the sym-
metry conditions, which correspond to either

U,=9,U=¥Y=0,c=0 (32)
for odd perturbations or
U=P=0¥=c=0 (33)

for even perturbations. Here, we bear in mind that in the
former case the functions ¥ and U, are odd, whereas U,, P,
and ¢ are even and vice versa for the latter case.

The matching conditions are formulated at the unper-
turbed bubbly screen, z=z2,,

da=—Aed{U, +20ud (¥ + o)} + 20l iy .

(34a)
[V]=-2¢, (34b)
[(91\1’] == az{‘ﬁoa + AO(\P + lp(,)g)}’ (34C)
6
Ul=0. [P=-Bapow] (4
[0.U.]=-[0.U]- 60D, ikAgihy(\V + yy0),  (34e)
2
= U~ LU0, (341)
a Ao

It is clear that the boundary-value problem for ¢ can be de-
coupled from the other equations. We note that the space-
averaged concentration {(c¢) decays in time, which means that
this mode does not lead to instability. For this reason, here-
after we set c=0.

To separate the time and x dependencies, we consider the
normal modes. Accordingly, the fields of perturbations are
presented as g(x,z,7)=g(z)exp(\t+ikx), where N and k are
the complex growth rate and the wave number, respectively.
We introduce the stream function ¢ by the relations,

l}x:—cﬁ’, ﬁzziké, and obtain for the complex amplitudes

DA(D*-\)¢=0, (35a)

DX =0, (35b)
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Z:l:(/,b:(/,b,:‘ff,: s (SSC)

where D?=d?/dz*—k* is the Fourier image of the Laplace
operator. The symmetry and matching conditions straightfor-
wardly follow from Egs. (32)-(34) and are not presented
here. It is important that Eqs. (35) are not coupled to each
other and therefore their solutions are easily found. The
fields of perturbations in the general case of arbitrary k are
presented in Appendix C. Here we deal with two limiting
cases that admit analytical solutions.

In the “shortwave” limit, k> 1, both the symmetry condi-
tions at z=0 and the conditions at the wall, z=1, become
unimportant. Instead, we only need to ensure that the pertur-
bations decay far away from the bubbly screen. Furthermore,
in Eq. (35a) we can neglect the term %\ in comparison with
k. Note, however, that the similar term in Eq. (34a) must be
retained. As a result, we obtain

¢.=(Co+2ZD.)e™, W.=B.e™, (36)

where Z=z-z. and “+” and “-” correspond to the domains
Z>0 and Z<0, respectively. Matching these solutions at the
bubbly screen, we obtain a set of eight linear algebraic equa-

A

tions for B, C., D, {, and 4. This system has two kinds of
solutions,

(i) {#0, C.=kC+0(1), B,#B_ with the negative
growth rate

3D,
N=—0| 2kz. + | = - 20kz,, (37)
o

and
(ii) B_=B,, 2 =C.=0 with the positive growth rate

N = ke, =340y 38

_Q Zc 2k—a2A0 Q Z(," ( )
Thus, the one-dimensional state is unconditionally unstable,
at least with respect to the shortwave mode.

Another interesting limit corresponds to the case ®,=0.
In this case, the averaged liquid motion and the deformation
of the bubbly screen decouple. Indeed, the evolution of ¢ is
described by a separate boundary-value problem, which is
known to predict monotonic decay of the velocity perturba-
tions (or “hydrodynamic” modes) [15]. So we set $=0 and

pay attention to the boundary-value problem for 4, 2, and .
For this mode, the growth rate N\ obeys a quadratic equation
with cumbersome coefficients, which is not presented here.
The variation in N with & is shown in Fig. 5. Note that for
®,=0 the growth rate is proportional to Q and depends on
the product a?A,=2/z, rather than on each of the parameters,
A and a, separately.

It is important that A — o0 at a certain value k=k,. This
value is determined by the transcendental equations

(k) +T“k,) =2, (39)
where

I',(k) = kz, tanh k(1 - z,),
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FIG. 5. (Color online) Growth rates \ as a function of k plotted
for ®,=0, O=1, Aya®=5. The solid and dashed-dotted lines corre-
spond to the odd and even modes, respectively. Vertical asymptotes
are determined by Egs. (39). Asymptotical formulas (37) and (38),
are shown by circles.

I'9(%k) = kz, tanh kz,, T'”(k) = kz, coth kz,

[TPRL)

and the superscripts “e” and “o” stand for the even and odd
modes, respectively. Consider the eigenvalue problem deter-
mined by

D*¥ =0, (40a)

=19 =0, (40b)
z=z:[P]=0, [¥']+a?4,¥ =0, (40c)
2=0:9© =9 =0, (40d)

where Egs. (40a)—(40c) are valid for both (@) and P,

At k=k,, which plays the role of the eigenvalue, this prob-
lem has a nontrivial solution given by Egs. (C1) and (C2)
with B,=B_. Physically, the obtained solution describes ex-
citation of a wave in the layer of bubbly liquid with a &-like
distribution of bubbles. In fact, Eq. (39) serves as a disper-
sion relation for this wave and ensures that its eigenfre-
quency coincides with the external frequency ). This coin-
cidence, however, does not lead to the resonant amplification
of the base state. The reason is that the external driving is
independent of x, which means that it corresponds to k=0
and has vanishing projection onto the eigenmode with k
=k.. From the mathematical point of view, the existence of
the nontrivial solution of the Laplace equation follows from
the unusual form of the matching condition, Eq. (40c).

While considering the solutions with the wave number
k close to the eigenvalue k., we can expect resonant phe-

nomena. At k=k,, both d and Z are of order O(k—k,). The
growth rate is evaluated to yield
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B0 (LT (ka)
N e BT ey %
ok

where the functions ' and their derivatives are taken at k
=k, and I'_ is for either even or odd mode. As B is positive,
we conclude that at k=k,+0 the perturbation grows infinitely
fast. At k<k,, the corresponding mode is stable,
Nk<k,)<0. Furthermore, the similar divergence of A
at k=k, occurs for ®,+ 0.

Note that except for the shortwave instability, the obtained
spectrum resembles the one found out in a similar study, see
Fig. 7 in Ref. [10]. At first glance, this similarity is quite
unexpected as we investigate the stability of completely dif-
ferent base states: an almost uniform distribution of bubbles
in Ref. [10] and a highly nonuniform &-like distribution in
the present study. However, a closer comparison of the sta-
bility problems reveals the same resonant phenomenon be-
hind the instability. In both situations, it originates from the
nontrivial solution of the boundary-value problem for the
potential at a given distribution of bubbles—spatially homo-
geneous as in the diffusive study [10] or a &like as in the
present work. This nontrivial solution, whose eigenfrequency
coincides with (), exists only at the resonant value of the
wave number (k=a in Ref. [10] and k=k, here). At this
value, the growth rate has a pole and hence diverges, which
causes similar behavior of N near the resonant value of the
wave number in the two problems.

Finally, we emphasize that the variation in parameters
does not lead to qualitative change in the spectrum. The in-
crease in @, weakly diminishes A, but the vertical asymp-
totes at k=k, and the asymptotic behavior at k— % remain
unchanged. Larger values of both A, and o? result in stretch-
ing along k of all the curves A(k) shown in Fig. 5. The
increase in Q basically stretches the curves along the \-axis.
Thus, the one-dimensional bubbly screen is found to be un-
stable.

VI. SUMMARY

We have studied the dynamics of a dilute monodisperse
bubbly liquid confined by a pair of plane solid walls, which
are subject to small-amplitude high-frequency oscillations
normally to the walls. The period of these oscillations is
assumed small in comparison with typical relaxation times
for a single bubble. At the same time, we focus on the case of
low frequencies, where the ratio () of the eigenfrequency of
volume oscillations to the frequency of external driving, is
considered to be 1> 1. We apply the time-averaged descrip-
tion accounting for the two-way coupling between the liquid
and the bubbles and analyze the formation and evolution of
the one-dimensional states in the form of bubbly screens.
The initial state corresponds to the uniform distribution of
bubbles and motionless liquid.

We have shown that the model predicts accumulation of
bubbles in a single or several pairs of planes between the
confining walls. The corresponding singular structures of in-
finitely thin width and infinitely high concentration are re-
ferred to as bubbly screens. The peaking regime that corre-
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sponds to the formation of a bubbly screen can be described
in terms of a self-similar solution. This problem is reduced to
a nonlinear ordinary differential equation that admits an ana-
lytical solution. We have demonstrated that this solution is in
good agreement with the results of numerical simulations.

We have studied the evolution of the bubbly screens and
detected a one-dimensional stationary state. This solution im-
plies that all the bubbles either settle on the walls or accu-
mulate in eventually motionless bubbly screens. We have
explored the stability of this stationary state and arrived at
the conclusion that this one-dimensional stationary state is
unconditionally unstable. We note that except for the short-
wave instability, the spectrum of growth rates is reminiscent
of that found out in a recent study, see Fig. 7 in Ref. [10].
This similarity can be explained by the excitation of a stand-
ing sound wave with the eigenfrequency () and a certain
(eigen or resonant) value of the wave number. At this value
of the wave number, the growth rate has a pole and for this
reason demonstrates similar divergence.
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APPENDIX A: SOLUTION IN THE LIMIT
OF SMALL BUBBLE DIFFUSIVITY

To derive the equation that determines the velocity of the
bubbly screen, V, we provisionally take into account the dif-
fusivity of bubbles. In Eq. (3a), we add a diffusion term with
a small dimensionless coefficient of diffusion D, which has
the meaning of the inverse Schmidt number S [10]. Although
usually S> 1, the diffusive term must be retained in the thin
layer close to the bubbly screen. By introducing the fast co-
ordinate £=(z—z,)/D, we represent the fields inside the tran-
sition layer as follows:

Y=V +Df(§), ®=D"'F(&)+¢(z0).

Here, W,.=V(z=z,) is a constant value. By substituting de-
composition (Al) into Egs. (3), to the leading orders we
obtain

(A1)

f'+a?V F=0, (A2)

—F'V+2W(f'F) = F", (A3)

where the primes denote the derivatives with respect to &.
The integration of Eq. (A3) over £ yields

F' =—FV+2V f'F,

where the constant of integration is set to zero, because both
F and F’ vanish as £€— .
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We integrate this relation from é=- to £=+ and obtain

+00

VA=2V, J fFd¢, (A4)

where we have taken into account the definition of the screen

power
o0 Z.+€

J Fdé¢= J ddz=A.
- €

To evaluate the right-hand side of Eq. (A4), we multiply
Eq. (A2) by 2f" and integrate, which results in

400
200, | fRdE=- () ==[()].  (A5)
Here we postulate a relation between the outer and inner
solutions

0=z = O=f(¢= = ).

Finally, we substitute Eq. (A5) into Eq. (A4) and arrive at
Eq. (24). Note that the final expression is independent of D.

APPENDIX B: GENERALIZATION OF THE MODEL
FOR THREE DIMENSIONS

We now generalize our model for three dimensions. We
start by considering the phase of the formation of the bubbly
screen, t<<t;. We assume that the bubbly screen forms at a
certain “protoscreen” surface G(r,7)=0, at which the con-
centration of bubbles tends to infinity. As in the one-
dimensional consideration in Secs. III and IV, we are inter-
ested in the description of the formation and evolution of the
bubbly screen.

First of all, we outline the equations that describe the
formation of the bubbly screen. Note that in contrast to the
previous sections, no reason exists to neglect the liquid flow
in the three-dimensional consideration. As a result, along
with the fields of potential s and concentration of bubbles ®,
we have to retain the liquid velocity, u. For this reason, we
can no longer apply the condition Q=1, which was accepted
in Secs. III and IV.

We introduce the fast coordinate ¢ in the same way as in
Eq. (4), where z is now the coordinate normal to the (locally
flat) surface G=0, and represent the concentration and po-
tential in the form given by Egs. (5). We note that the liquid
velocity is presented by the regular part only: as it can be
easily shown, the &dependent part of u is o(7).

Thus, the only significant distinction to the one-
dimensional case is that ¥ now varies along the protoscreen
surface. Nevertheless, Eqs. (7) and the solution, Egs. (13)
and (14), remain valid. Although the increase in & is non-
uniform along the surface G=0, the concentration of bubbles
becomes infinite simultaneously in all the points of this sur-
face.

The drift of the protoscreen surface is described by the
kinematic condition

(?,G+ub-VG=0, llb=ll+QV(\p)2,
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which now replaces Eq. (8). Such replacement is quite ex-
pected as the drift velocity of the concentration maximum is
determined by the local velocity of bubbles.

By the time t=1,, the bubbly screen has formed and we
proceed to the consideration of its evolution, #>1, Let
a bubbly screen of power A(r,7) emerge at the surface
G(r,1)=0. Using the same approach as in Sec. IV A, we
arrive at the following set of boundary conditions valid at
this surface:

A +V - (Auy,) + VAV -n=(V-u,)[¢] - 204 ¢V, 4],

®1)

[4]=0, [V,4]=-cayA, (B2)
V=, S0, (83)
=0, [7,]=-600AWy. (B4
[P+ 7,1= [T, 4. (83)

Here, the subscripts 7and n denote the tangential and normal
components of the corresponding quantities, 7 is the viscous
stress tensor, and V is the normal component of the bubbly
screen velocity. The sign of the normal n to the bubbly
screen and the jump across the screen are related to each
other as follows: for a jump [g]=g,—g, the normal vector is
directed from domain 1 to domain 2.

As we can see from the generalized model, the curved
bubbly screen contributes into both the normal and tangential
stresses. The most interesting is the role of the effectively
generated tangential drag on the liquid, which is caused by
the variation in ¢ along the bubbly screen and therefore re-
sembles the Marangoni drag along a nonuniformly heated
interface [14].

APPENDIX C: PARTIAL SOLUTIONS
OF THE STABILITY PROBLEM

For an arbitrary value of k, the solution for the potential
can be presented as

. cosh kz;

Vv, =B,—————— =1- Cl
T T Teosh k(1 -z,), “ ¢ (€
at 7>z, and
. cosh k. A sinh k
go-p T g TO (C2)
cosh kz,. sinh kz,.

at z<z.. Here, again, the superscripts “e” and “o” refer to the
even and the odd mode, respectively.
The stream function is found to be
cosh kz; — cosh gz,
cosh k(1 -z,)
(C3)

s —C q sinh kz; — k sinh gz,
T i sinh k(1 -2,)

at 7>z, and
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cosh k cosh
§0 = SOTE p ST (C4)
cosh kz,. cosh gz,
sinh kz sinh gz
5=~ i (C3)
sinh kz, sinh gz,

at 7<z,. Here, g>=k*>+\.
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These solutions satisfy Egs. (35) and the boundary condi-
tions at the plane of symmetry, z=0, and at the solid wall,
z=1. The substitution of these solutions into the matching
conditions at the bubbly screen, Egs. (34), results in a system
of eight linear homogeneous algebraic equations for B, C,

D., 2, and a. The requirement of the vanishing determinant
provides an algebraic equation for N, which is solved nu-
merically.

[1] K. A. Naugolnykh and L. A. Ostrovsky, Nonlinear Wave Pro-
cesses in Acoustics (Cambridge U.P., New York, 1998).

[2] Yu. A. Kobelev and L. A. Ostrovsky, J. Acoust. Soc. Am. 85,
621 (1989).

[3] I. Akhatov, U. Parlitz, and W. Lauterborn, J. Acoust. Soc. Am.
96, 3627 (1994).

[4] U. Parlitz, C. Scheffczyk, 1. Akhatov, and W. Lauterborn,
Chaos, Solitons Fractals 5, 1881 (1995).

[5] L. Akhatov, U. Parlitz, and W. Lauterborn, Phys. Rev. E 54,
4990 (1996).

[6] A. V. Straube, D. V. Lyubimov, and S. V. Shklyaev, Phys.
Fluids 18, 053303 (2006).

[7] O. A. Druzhinin, L. A. Ostrovsky, and A. Prosperetti, J.
Acoust. Soc. Am. 100, 3570 (1996).

[8] L. A. Ostrovsky, A. M. Sutin, 1. A. Soustova, A. I. Matveyev,

and A. L. Potapov, J. Acoust. Soc. Am. 104, 722 (1998).
[9] S. Karpov, A. Prosperetti, and L. Ostrovsky, J. Acoust. Soc.
Am. 113, 1304 (2003).

[10] S. Shklyaev and A. V. Straube, Phys. Fluids 21, 063303
(2009).

[11] L. V. Wijngaarden, Annu. Rev. Fluid Mech. 4, 369 (1972).

[12] V. G. Kozlov, A. A. Ivanova, and P. Evesque, Europhys. Lett.
42, 413 (1998).

[13] S. Fliigge, Practical Quantum Mechanics (Springer, Berlin,
1994).

[14] A. A. Nepomnyashchy, M. G. Velarde, and P. Colinet, Interfa-
cial Phenomena and Convection (Chapman and Hall, London
/CRC, Boca Raton, 2001).

[15] G. Z. Gershuni and E. M. Zhukhovitsky, Convective Stability
of Incompressible Fluid (Keter, Jerusalem, 1976).

016321-10



