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Roll and square convection in binary liquids: A few-mode Galerkin model
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We present a few-mode Galerkin model for convection in binary fluid layers subject to an approximation to
realistic horizontal boundary conditions at positive separation ratios. The model exhibits convection patterns in
form of rolls and squares. The stable squares at onset develop into stable rolls at higher thermal driving. In
between, a regime of a so-called cross roll structure is found. The results of our few-mode model are in good
agreement with both experiments and numerical multimode simulations.
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I. INTRODUCTION

Compared to convection in ordinary one-component flu-
ids the spatiotemporal properties of binary fluids are far more
complex. The evolution of the concentration field is gov-
erned by the interplay of typically strong nonlinear convec-
tive transport and mixing, weak dissipative solutal diffusion,
and the Soret effect [1,2]. The Soret effect generates concen-
tration gradients in response to the externally applied tem-
perature difference and to local temperature gradients. The
strength of the Soret coupling is measured by the dimension-
less separation ratio . The driving mechanisms are therefore
controlled by the Rayleigh number R, measuring the tem-
perature stress, and by the separation ratio, i.e., the solutal
driving.

In the present paper we focus on two-dimensional (2D)
convective structures consisting of straight parallel rolls in
one lateral direction, and three-dimensional (3D) structures
that look like a nonlinear superposition of two perpendicular
roll sets. These structures exist at positive separation ratios
>0 and arise from a stationary supercritical bifurcation
either directly out of the ground state or out of a primary
convective state.

At onset, the convection is driven mainly by the solutal
gradient established via the Soret effect. Therefore this re-
gime is called Soret regime in the literature, see e.g., [3]. The
stable convection structure is typically a 3D pattern with
square symmetry.

For larger Rayleigh numbers the concentration homog-
enizes and the fluid behaves more like a pure fluid. Convec-
tion is now driven mainly by temperature gradients. The
stable convection pattern is a 2D roll pattern.

In the intermediate regime, where the stability changes
from stationary squares to stationary rolls, there exists an-
other 3D structure, the so-called cross roll pattern. This
structure bifurcates out of the stable square branch and
merges with the roll branch at higher R. Finally, for slow
solutal diffusion, the competition between rolls and squares
leads to an oscillating behavior in an interval of heating rates
around the bifurcation point from squares to cross rolls.

The bifurcation scenario described above has been veri-
fied by several experimental groups, e.g., [4,5]. A detailed
theoretical insight into the bifurcation scenario has been pro-
vided by numerical simulations of Ch. Jung et al. [6].

The numerical analysis [3,6—10] elucidating the influence
of the spatiotemporal behavior of the concentration field on
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various properties of convective states for negative and posi-
tive separation ratio and the model analysis in terms of a
2 X 2 matrix formulation [11] has clearly shown that the suc-
cess of a model description sensitively hinges upon the rep-
resentation of the concentration field. The representation has
to capture the essence of the spatiotemporal structures fol-
lowing from the combined action of strong nonlinear advec-
tion and weak diffusion on the one hand and the generation
of Soret induced concentration currents by temperature gra-
dients on the other hand.

For #>0 a model with few degrees of freedom that re-
produces all essentials of the bifurcation behavior of the flow
amplitude is presently not available. The amplitude equation
approach [12] is restricted to the vicinity of the onset of
convection. The first attempt to model the bifurcation topol-
ogy involving roll as well as square convection also further
away from threshold by Miiller et al. could only generate
stable rolls and unstable squares [3].

Our paper aims at filling this gap. We present a few-mode
Galerkin model which is based upon a careful analysis of the
concentration balance [3,7,8,13] in liquid mixtures. In this
respect it goes beyond a system of equations for two tem-
perature and two concentration modes that has heuristically
been constructed for infinite Prandtl number with symmetry
arguments and that shows stable squares at onset, later on
oscillations, but not stable rolls at larger R [14].

With our model we explain the bifurcation scenario from
stable squares at onset up to stable rolls at larger R. The
model is an extension of the few-mode model [7] for roll
convection for negative separation ratios (<<0). In it the
concentration field subjected to realistic, i.e., no-slip, imper-
meable horizontal boundary conditions was carefully incor-
porated. It was shown that it is ultimately the nontrivial
Galerkin ansatz for the concentration field that then allowed
to well reproduce the complex roll bifurcation scenario for
<0 involving stationary states and traveling waves with
pronounced hysteretic transition behavior. In these respects
this model for roll convection [7] and the present one for
rolls, squares, and cross rolls are further developments of the
earlier few-mode models—whether they are constructed for
idealized, permeable boundaries [15-17], or free-slip, imper-
meable ones [18], or for so-called double diffusive or ther-
mohaline convection [19-21]—in which the representation
of the concentration field is less complex.

We introduce the system and formulate the theoretical
task in Sec. II. The main body of this paper consists of the
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two following sections: In Sec. III we construct the Galerkin
model and give a detailed account of how the concentration
field is represented. Section IV is dedicated to a discussion of
the results. The convection states are compared in quantita-
tive detail with simulations. We summarize our results in
Sec. V.

II. SYSTEM

We consider a convection cell of height d. It contains a
binary fluid of mean temperature 7 and mean concentration

C of the lighter component confined between two perfectly
heat conducting and impervious plates. This setup is exposed
to a vertical gravitational acceleration g and to a vertical
temperature gradient AT/d directed from top to bottom. The
fluid has a density p which varies due to temperature and
concentration variations governed by the linear thermal and
solutal expansion coefficients a——--e and B=- ,, respec-
tively. Its viscosity is v, the solutal d1ffus1v1ty is D and the
thermal diffusivity is «. The thermodiffusion coefficient k7
quantifies the Soret coupling which describes the driving of
concentration currents by temperature gradients.

The vertical thermal diffusion time d?/k is used as the
time scale of the system and Velocities are scaled by K/ d.
Temperatures are reduced by

The scale for the pressure is glven by % L . Then, the balance
equations for mass, momentum, heat, and concentration [1,2]
read in Oberbeck-Boussinesq approximation [22]

0=-V.u, (2.1)

d3
u=-(u-Vu —V|:p+ (—2g>z] +oViu+a(T+Oe,,
K

(2.2)
=-V-Q=-V . [ur-VT], (2.3)
4C=-V-J==V-[uC-LV(C-yT)]. (2.4

Here, the currents of heat and concentration, Q and J, re-
spectively, are introduced and 7" and C denote deviations of
the temperature and concentration fields, respectively, from

their global mean values T and C. The Dufour effect [22]
that provides a coupling of concentration gradients into the
heat current Q and a change of the thermal diffusivity is
discarded in Eq. (2.3) since it is relevant only in few binary
gas mixtures [23].

Three parameters enter into the field Egs. (2.1)-(2.4): the
Prandtl number o=v/ k, the Lewis number L=D/ k, and the
separation ratio ¢=—§k—;. The latter characterizes the sign
and the strength of the Soret effect. Positive Soret coupling ¢
induces concentration gradients parallel to temperature gra-
dients. In this situation, the buoyancy induced by solutal
changes in density enhances the thermal buoyancy. When the
total buoyancy exceeds a threshold convection sets in, typi-
cally in the form of squares for positive . A fourth param-
eter, the Rayleigh number R= AT measuring the thermal
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driving of the fluid enters the description via the boundary
conditions of the temperature field (see below).

The strength of the convection and its influence on con-
vective temperature transport can be measured by the Nusselt
number N =%(Q-ez>xy giving the ratio between the lateral
average of the vertical heat current through the system and
its conductive contribution. In the basic state of quiescent
heat conduction its value is thus 1 and larger than 1 in all
convective states.

Solving the partial differential equations (2.1)—(2.4) re-
quires boundary conditions for the fields. We use realistic no
slip conditions for the top and bottom plates at z= = ;

1
ulx,y,z= * —;t| =0,
(yz 2)

and assume perfectly heat conducting plates by

1 1
T\x,y,z= = =3t] = ¥ =R.
(.X'yZ 2) +2

Furthermore, impermeability for the concentration is guaran-
teed by

1
e.-J=-Lod.(C- ¢T)<x,y,z = = 5;t> =0. (2.5)

III. MODE SELECTION AND GALERKIN MODEL
A. Temperature and velocity field

To describe the convective state we use the Galerkin
method. We should stress that we restrict ourselves to the
description of extended patterns that are periodic in the lat-
eral directions x and y with a certain lateral periodicity
length N\=27/k and fixed phases. We take k=3.117, i.e., the
critical wave number of the pure fluid. Thus, we cannot ad-
dress large-scale patterns that have been observed [24,25]
very close to onset for particular combinations of L, s, o for
which the critical wave number k (L, i) becomes very small
or even zero. However, also for such cases the stationary
nonlinear convective pattern selects the wave number k=
already at a slightly larger driving in the Soret regime, R
<R (#=0) [26], and also in the Rayleigh regime, R>R. (¢
=0) [25].

The temperature field which consists of a linear conduc-
tive profile —z and a convective deviation is truncated as

T(x,y,2:1) = — Rz + Topo(£)\2 sin(272)

+[T101(H)cos(kx) + Tyy, (Hcos(ky) N2 cos(rz)

+T, 12(t)cos(kx)cos(ky)\r’5 sin(27z). (3.1)

The indices (I,m,n) of the amplitudes denote the expansion
in x, y, and z direction, respectively. If we restricted our-
selves to 2D convective patterns only, e.g., homogeneous in
x direction, only the modes with the first index equal to zero
would be taken into account, reducing the temperature ansatz
to that of a Lorenz model. In order to have an analogous
representation of roll patterns in y direction we also include
the mode Ty;;. As we see in Eq. (3.1) a further nonlinear
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mode, T,, caused by the interaction of the two roll patterns
is also introduced. The contribution of this mode vanishes for
2D patterns. Note that only modes with an even index sum
[+m+n appear in the expansion, which is due to a mirror
glide symmetry of the patterns studied [13].

Choosing the first Chandrasekhar function, C,(z) [8,27]
as an approximation to the z profile of the critical mode, the
vertical component w of the velocity field reads

w(x,y,z,1) = [wyg(t)cos(kx) + wo (t)cos(ky)]C;(2).
(3.2)

The x and y components can be derived by using the incom-
pressibility criterion (2.1). As the velocity field is dominated
by its critical modes not only at onset but also far beyond,
these two modes suffice to describe the patterns to be stud-
ied. When discussing bifurcation diagrams we will use the
amplitudes wyy; and wy;; as order parameters.

B. Approximation of the boundary condition

To select adequate concentration modes a detailed analy-
sis of the concentration balance and of the field structure of
roll and square states is necessary.

By introducing the combined field {=C— T expanded as

o) o)

{,2,0) = 20 2 20 Ln c08(Tkx)cos(mky)se, (2),

=0 m=0 n=0
(3.3)

it is possible to fulfill the realistic boundary condition for the
concentration current using appropriate trigonometric func-
tions for the sc,(z) to ensure d,{=0 at the plates.

But as we aim to construct a few-mode model, we have to
consider the balance equations using the concentration field
instead of the { field. As discussed in [7,13,28] for stationary
and traveling patterns in detail, the reason lies in the balance
equation for the ¢ field,

(0,+V-u)l=LV* - yV°T. (3.4)

The fluid mixtures which we refer to have Lewis numbers up
to two orders of magnitude smaller than the separation ratio.
In this work we consider L=0.01, ¢)=0.1 and L=0.0045,
=0.23 for example. Thus, in order to approximate Eq. (3.4)
consistently we have to take into account temperature modes
which are up to two orders of magnitude smaller than the {
modes. Thus, despite the fact that the temperature field is
well described by the critical and the first nonlinear mode
alone, many more modes would be required when using Eq.
(3.4). To avoid this problem, we expand the concentration
field itself. As a consequence, we can guarantee the boundary
condition (2.5) only approximatively.

1. Approach

We adopt Hollinger’s successful approximation for the
boundary condition, which he proposed in [13]. His investi-
gations on the concentration current induced by advection,
diffusion and the Soret coupling support to demand imper-
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meability only for the lateral mean of the concentration field.
In the lateral mean Eq. (2.5) becomes

<ez : J>xy == Lazclat(z) - LRyYN = 0. (35)

Here

Ciu(2) =(C(x,,2;0))y, (3.6)

denotes the lateral mean of the concentration field and N is
the Nusselt number introduced in Sec. II. This suggests the
following multimode Galerkin ansatz for the concentration
field

C(x,v,z;t) == RNz

+ E > Cimn €OS(lkx)cos(mky)sc,(z).

=0 m=0 n=0
(3.7)

In order to avoid introducing temperature modes in Eq. (3.7)
via N we approximate the boundary condition (3.5) by
J{C(x,y,2:0)),,(+1/2)=—R¢. This deviates from the cor-
rect value by a factor equal to the Nusselt number N=0(1).
This approximation can be understood as the leading term in
an amplitude expansion of N around the conductive state
with N=1.

2. Exact versus approximate concentration boundary condition

In this subsection we present a brief comparison of the
results of an “exact” multimode Galerkin simulation [8]
which fulfills the boundary conditions of the concentration
field exactly by introducing the {-field given by Eq. (3.3),
with another multimode simulation. For the latter, we use the
same field ansatz for temperature and velocity as for the
exact one but the concentration field ansatz is given by Eq.
(3.7), with N replaced by 1. We refer to this simulation as
using approximated boundary conditions (ABCs) as opposed
to exact boundary conditions (EBCs).

Figure 1(a) shows the behavior of the vertical mean
Cyeri(xx) of the concentration for roll solutions orientated in y
direction for a reduced Rayleigh number r=R/R.(i=0)
=R/1708=1.5 where the homogenization of the concentra-
tion outside of narrow boundary layers is already apparent.
Both, the EBC and the ABC simulation generate practically
the same result; the ABCs have vanishing influence on the
vertical mean.

The vertical dependence of the first lateral Fourier mode

N

2
Cio(z) = X2 f dxdyC(x,y,z)cos(kx)
0

(3.8)

displayed in Fig. 1(b) shows also good agreement in the
bulk. The influence of the different boundary conditions is
restricted to the boundary layer only. The ABC solution has a
vanishing slope at the plates as has any contribution to the
concentration field except for the vertical mean. The EBC
solution ends with a finite slope at smaller values. These
results imply that the ABCs, that allow the construction of
few-mode models, suffices to describe the concentration field
in the bulk.

016309-3



WEGGLER, HUKE, AND LUCKE

10 T T | T
(a) --- EBC
| I ABC
5h -
Vo 1 fi
< H rL
~ 0 ~_ B
= = S ~——— e —
o e -~
> - N g i
o “ 1
S i —
h
L Iy |
_10 1 | 1 | 1 | |
0 A2 A
T T T X
8 () " [ EBC
n | ABC
i —
R ’, ll_
D " l",‘\ 1 ||
N l‘ :-\\ ,‘f |
N~— 4 ™ [E=
ja) Y IE v
.- l' ,‘_\\ 5 1
: IE |
U 'l" ‘1_\\ ,,‘; ll_
" "\\\ /. ' !
i RSN Rt |
SSTImmonTh Y
or '.
P A T I I A
04 -02 0 02 04
Z

FIG. 1. Comparison of multimode EBC simulations to multi-
mode ABC simulations of roll convection. (a) Vertical mean C(x)
of the concentration field versus x. (b) First lateral Fourier mode
C0(z) versus z. Parameters are #=0.1,0=10,L=0.01, and r=1.5.

C. Selecting the concentration field modes

Analogous to the description of the temperature and the
velocity field we want to include only few modes describing
the concentration field. Still, we found that ten modes are
necessary to reproduce the bifurcation scenario. The concen-
tration field ansatz which we finally used for the few-mode
model is given by

C(x,y,231) = = Rz + oo (N2 sin(mr2) + cop3 ()12 sin(37r2)
+ [e100(f)cos(kx) + cqjo(t)cos(ky)]
+[e10a(t)cos(kx) + copa(t)cos(ky) V2 cos(27m2)
+ [ €901 (1)cos(2kx) + cp()cos(2ky)] \2 sin(7rz)
+ [e300(1)cos(Bkx) + cg3(f)cos(3ky)]. (3.9)

For all amplitudes the index sum /+m+n is odd, reflecting
the mirror glide symmetry already mentioned above. To
check and justify the selection of these modes we analyze the
lateral and vertical mean of the concentration field in the
following subsection and thus demonstrate the relevance of
these modes. We compare our results with the multimode
simulations presented in [8]. Since we found similar results
for both, square and roll solutions, we will concentrate on
rolls here and do not present the detailed comparison of the
square results.
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0 A2 A

FIG. 2. The concentration field of the few-mode model (thick
lines) compared to EBC numerical calculations (thin lines) at r=1
(solid) and r=1.5 (dashed) for rolls. (a) Lateral mean. (b) Lateral
Fourier mode Cj((z). (c) Vertical mean. Parameters are ¢=0.1,0
=10,L=0.01.

1. Lateral average of the concentration field

The lateral mean Cy,(z) of the concentration field is de-
termined by modes of the form cg,. Our few-mode ansatz
takes two such modes into account, namely, coy and cggs3.
Figure 2(a) shows Cy,(z) for two different reduced Rayleigh
numbers r. For r=1 (thin solid line), i.e., at the boundary
between Soret and Rayleigh region, the homogenization of
Ciu(2) in the bulk with pronounced concentration boundary
layers at the lower and upper plate becomes already appar-
ent. The profile hardly changes when switching to a higher
r=1.5 (thin dashed line). The two modes, cyg; and cgs3, that
are also taken into account describe this behavior well (thick

lines), whereas one Fourier mode alone would be insuffi-
cient.
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2. Critical modes of the concentration field

The critical modes have a lateral dependence cos (’,f‘f) de-
pending on the orientation of the rolls studied and are thus

linear combinations of modes with amplitude (Z::"). For each

case, we again took two modes into account, (:JTE) d (;';’2)
The vertical variation of the first lateral Fourier mode Cy((z)
for rolls orientated in y—direction is shown in Fig. 2(b). For
both, r=1 and r=1.5, the field in the bulk is reproduced well,
whereas the boundary layers are not properly resolved. As
we saw before, the reason for this does not lie in an insuffi-
cient number of modes but already in the ABC as the ABC
multimode simulation has shown the same deficiency.

3. Vertical average of the concentration

Cen(x), the vertical mean of C(x,y,z;?) is represented by
the first two lateral modes of the roll patterns, sin ( ky) and
sin (glg) In Fig. 2(c) the vertical average for the multimode
simulation is compared to the results of our few-mode
model. The multimode result shows concentration peaks be-
tween the convection rolls and homogenization inside them.
The inclusion of the higher harmonics in the few-mode
model allows to reflect this to some extent, at least for r=1
where the concentration peaks are still relatively broad. The
more narrow peaks at r=1.5 are not resolved anymore. How-
ever, even then there is still good agreement further away
from the peaks.

4. Further modes

The modes with lateral variation sin (iif) are decoupled
from the others without the inclusion of further nonlinear
modes. Adding the modes c(ggi)occos(gg)sin(m) allows for
driving them via these new modes and w101} in the nonlin-

earity of the concentration field Eq. (2.4). Studies of smaller
models indicate that stable squares at onset are impossible
without including these modes [3,28].

Similarly, the modes C(?(lé) discussed in Sec. III C 2 serve

to drive the mode ¢ ;. While this mode would still be driven
by w((l)?i) and c((l)?g) due to the different z expansion of w and

C, the coupling is weak compared to the one via ¢012).
102

IV. RESULTS

In this section, we elucidate the roll, square, and cross roll
solutions of our model. First, we discuss three different bi-
furcation scenarios. Then, in Sec. IV B, we focus on the
oscillating patterns generated in the few-mode model in con-
trast to the oscillating cross rolls which appear in the exact
simulations. Finally, in Sec. IV C, we present the phase dia-
gram of the few-mode model and discuss it in the light of
numerical results.

A. Bifurcation scenario

In Fig. 3, results for the few—mode model are plotted for
three different Lewis numbers in the interesting range of
heating rates where the transition between small-amplitude
stable squares in the Soret regime and higher-amplitude
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FIG. 3. Bifurcation diagrams and corresponding eigenvalues of
our 16 modes model. (a) Bifurcation diagram of the velocity modes,
(b) important real eigenvalues for (a). (c)—(e) real parts of the im-
portant complex eigenvalues. Square (roll) branches are symbolized
by squares (circles). Thick lines and triangles mark the cross roll
structure. Parameters are o=27, /=0.23.

stable rolls in the Rayleigh regime takes place. All plots pre-
sented were calculated at ¢/=0.23 and 0=27. These param-
eters can be realized by ethanol-water mixtures and have also
been studied in [6].

The upper plot shows a bifurcation diagram representing
the three different stationary structures found. The square (S)
branch is denoted by squares, the roll (R) branch by circles.
Each is represented by a single curve: for square structures it
is w101 W()ll while for rolls one of the amphtudes is zero,
wa, say, and thus only w), is plotted. Tt is wi,/w}y, = \2
throughout the diagram, or in other words, the sum W%m
+wj,, is approximately the same for both structures. For the
third structure the statronary cross rolls (CR), the two am-
plitudes wir and w§R are different and nonzero, and are thus
represented by two curves marked by up and down triangles
respectively. The cross rolls bifurcate out of the square
branch with equal amplitude but their difference grows with
growing r until w$F meets the roll branch and w\ becomes
zero. The plot has been calculated for L=0.003 but it does

016309-5



WEGGLER, HUKE, AND LUCKE

not change qualitatively and hardly quantitatively for the val-
ues of L considered below.

The second plot shows the real eigenvalues tied to the
stationary instabilities for the same value of L. They are
again identified by square, circle, and triangle symbols. On
the small r side rolls exhibit a positive eigenvalue and are
thus unstable. The square eigenvalue is negative even though
this is hardly visible on the scale displayed; the smallness of
the eigenvalue is a consequence of the very slow concentra-
tion dynamics (L<<1) in the Soret regime. On the large r side
the signs of the eigenvalues are reversed: rolls are now stable
while squares are not. At the bifurcation points where the
square eigenvalue crosses the zero axis the cross rolls appear
and vanish again where the roll eigenvalue crosses the zero
axis. In between, cross rolls are the only stationary stable
structure and transfer this stability from the squares to the
rolls.

The stationary bifurcation properties of the few-mode
Galerkin model, and in particular the sequence of stable
squares, stable cross rolls, and stable rolls agree well with
experimental and theoretical results for the system [4—-6] for
not too small L. However, at very small L another, time-
dependent cross roll pattern appears in the vicinity of the
bifurcation point from squares to stationary cross rolls. The
time-dependent cross rolls emerge from an oscillatory pertur-
bation and are thus represented by a complex eigenvalue.

The real parts of the most important complex eigenvalues
for L=0.003 and two further Lewis numbers in our few-
mode model are presented in the lower three plots of Fig. 3.
The results show that when L is small enough, an oscillatory
perturbation destroys the stability of the square pattern al-
ready before the bifurcation point where the stationary cross
rolls appear. These cross rolls are then also oscillatory un-
stable and gain stability only at higher r before meeting the
roll branch (cases L=0.003 and L=0.0037). The real part of
the cross roll eigenvalue has a local minimum at »=0.96
such that cross rolls might temporarily gain stability before
becoming unstable again. This happens for L=0.0037. They
might also lose stability to an oscillatory perturbation only
later on while being stable at the bifurcation point from the
squares. This is the case for L=0.0045. For even larger L the
stationary cross rolls remain stable against oscillatory pertur-
bations everywhere (not shown). Rolls can become unstable
against oscillatory perturbations too, but we only found this
to be the case at heating rates below the cross-roll-roll bifur-
cation point where they are already stationary unstable.

B. Oscillations

In [6], Ch. Jung et al. describe the behavior of oscillating
cross rolls, as they appear in their multimode simulations at
small L between the regimes of stable squares and stable
stationary cross rolls. In this structure, the leading ampli-
tudes wyo; and wy;; oscillate around one of the square fixed
points with opposite phase. With growing r the oscillation
becomes increasingly anharmonic until the oscillatory state
disappears in a subharmonic bifurcation cascade, which is
associated with an entrainment process.

We studied time-dependent patterns in our few-mode
model in the r range where all three stationary structures are
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FIG. 4. Oscillations of the leading w modes in the few-mode
model. The dashed lines mark the fixed points of the stationary
square patterns. Parameters are 0=27, =0.23, and L=0.0037.

unstable. We used the same time-integration method as in
[6]. While the oscillatory instabilities of our few-mode
model occur in the correct region of parameter space, the
oscillating patterns of the model differ from the oscillating
cross rolls discussed in [6]. We found different oscillatory
regimes like those presented in Fig. 4 calculated for a Lewis
number of 0.0037.

The pattern at r=0.95 is a 2D pattern in which only w,
depends on time, while wg;; remains at zero (or vice versa).
For r=0.98, wyo; and wy;; are equal, preserving the square
symmetry. This pattern oscillates around one of the square
fixed points with growing amplitude, followed by chaotic
flips between the vicinities of the two square fixed points.

Since these time-dependent structures disagree qualita-
tively with those found in the multimode simulations, we did
not study them further. We conclude that a few-mode model
does not suffice to capture the nature of the oscillatory cross
rolls.

C. Phase diagram

Figure 5 illustrates the phase diagrams of the few-mode
model in 2D planes of the 4D parameter space of r, ¢, L, and
o. In the following, the results in Fig. 5 are compared to the
EBC results (Fig. 6) taken from [6]. As the stability of struc-
tures is typically most sensitive to model properties these
figures also give an impression of the overall validity of the
approximate boundary conditions and the few-mode model.

We consider first the L—r plane in Fig. 5(a). Qualitatively,
the phase diagram is very similar to the full numerical EBC
result. For small enough L the conductive state loses its sta-
bility against stable squares which in turn lose stability at
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FIG. 5. Phase diagrams of stable convective states in the few-
mode model. The dotted lines refer to the parameters L=0.0045,
=0.23, and 0=27, respectively. Two of them are kept fixed in
each of the diagrams while the third is varied. The ordinate scale is
logarithmic for r<<0.8 to show the bifurcation threshold r,,(k
=3.117,4,L) of the conductive state.

higher r against oscillating structures discussed in the last
subsection. The oscillations are then replaced by stationary
cross rolls. Those finally merge with the roll branch. For
L>0.005 the oscillatory regime is absent, and squares lose
their stability directly to stationary cross rolls. At L= 1, out-
side of the plotted interval rolls are stable at onset. Note the
dent in the region of oscillations at L=0.004, r=0.96 where
the pattern sequence becomes more complicated. Three ex-
ample cases have been studied in Sec. IV A.

Figure 6(a) looks qualitatively very similar. Only the dent
in the oscillatory cross roll region is absent and the sequence
of patterns with increasing r is for small L always squares-
oscillatory cross-rolls-stationary cross-rolls-rolls. However,
there are two main quantitative differences. First, the region
of oscillations is larger in the multimode simulation; the di-
rect squares-stationary cross rolls transition happens only at
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FIG. 6. Exact phase diagram of stable convective states with
wave number k=3.117 in the EBC multimode simulation. Param-
eters are chosen as in Fig. 5. In (b) we additionally illustrate the
phase diagram for ABCs (dashed lines).
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L>0.02. The second important quantitative difference be-
tween multimode and few-mode model lies in the position of
the phase space interface between roll and stationary cross
roll patterns. The maximum in Fig. 5(a) lies at r=1.27,
whereas in Fig. 6(a) the maximum of this curve lies at r
=1.79. In [6], the authors point out that the data gained in
numerical simulations become quantitatively unreliable for
small L combined with large r. Comparing finite difference
calculations and Galerkin models with different spatial reso-
lutions they found that the range of existence of cross rolls
shrinks with decreasing resolution which also explains the
location of the cross-roll-roll boundary in our few-mode
model.

Next, we want to study the ¢ dependence in Figs. 5 and 6.
Note that our chosen fixed value of L=0.0045 is the one
where the dent in the region of oscillations is located in Fig.
5(a) and where the above described sequence of patterns
does not occur with growing r. Thus, the results in Fig. 5(b)
look qualitatively different for this L value from those of Fig.
6(b). Stable stationary cross rolls exist above the oscillatory
structures as well as below for all ¢ where oscillatory struc-
tures exist at all. This was already seen for the special case
#=0.23 which is again marked by a dotted line.

Finally, let us consider the o—r plane in Fig. 5(c). The
stationary stability curves are independent of o. The reason
lies in the ansatz for the velocity. Our ansatz (3.2) takes only
the critical modes into account, which eliminates the nonlin-
earity in Eq. (2.1) and leads to o-independent stationary so-
lutions. In the multimode diagram in Fig. 6, only the region
of stable squares remains roughly independent of o whereas
the range of existence of oscillatory and stationary cross rolls
shrinks with decreasing o. Again, there are qualitative differ-
ences to Fig. 6(c) concerning the appearance of oscillations.
Oscillatory regimes are found in two different regions of Fig.
5(c) and do not exist at small o.

To summarize our comparison between few-mode model
and multimode simulations, we found similar phase dia-
grams in the L—r plane. However, there are qualitative dif-
ferences for the ¢/—r and o—r plane concerning the locations
of oscillatory cross rolls due to the fact that the Lewis num-
ber L=0.0045 studied in [6] lies within a small range of L
values where the pattern sequence is more complicated in the
few-mode model.

Finally, we would like to point at another comparison be-
tween multimode simulations using ABCs and EBCs in Fig.
6(b): we plotted the results of the ABC multi-mode model in
the —r plane (dashed lines). Compared to the EBC results
the ranges of existence for all occurring patterns are nearly
the same. Only the phase space boundary between rolls and
cross rolls that sensitively hinges on the model size is shifted
significantly. There is no qualitative difference in the location
of the oscillatory region as found in the few-mode model.
These results underline again the usefulness of the ABCs
especially considering the fact that stability properties are in
general more model-sensitive than fixed point properties.

V. CONCLUSION

This paper presents results of a new few-mode Galerkin
model for Rayleigh-Bénard convection in binary mixtures
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with positive separation ratio. With only 16 modes it is able
to produce bifurcation and phase diagrams similar to those
found in experiment or stemming from much more extensive
simulations. In particular, it reproduces a sequence of stable
squares, cross rolls, and rolls. The success of this model is
based on and is due to a carefully chosen concentration field
ansatz. This ansatz was obtained from comparisons with
multimode simulations.

We used an approximation to the impermeability bound-
ary condition allowing us to keep the number of temperature
field modes at a minimum. The concentration field ansatz
then fulfills the impermeability condition at the plates in a
strict sense only for the quiescent conductive state. Compari-
sons between results of multimode Galerkin simulations for
rolls and squares using exact and approximated boundary
conditions show that both lead to essentially the same con-
centration field in the bulk. Significant differences appear
only in the concentration boundary layers. Further compari-
sons show that the ABC treatment also leads to qualitatively
the same phase diagram. This is an interesting result as
former theoretical models for roll convection lead with per-
meable boundary conditions to very different features than
with impermeable conditions [29]. It appears that the imper-
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meability condition is the most important condition to fulfill.

In the few-mode model, we found stable squares and un-
stable rolls bifurcating out of the quiescent conductive state
for a wide range of parameters. A transition to stable rolls at
higher temperature differences (Rayleigh regime) happens
via a cross roll pattern. This pattern bifurcates forward out of
the squares and merges with the rolls at larger r. Previous
few-mode models also show an intermediate regime between
Soret and Rayleigh regime, but the behavior of the system
was different from the simulations.

The results for the phase diagrams prove the success of
our model, as we have found qualitatively similar stability
domains for the stationary structures. While our model fails
to generate oscillating cross rolls as they appear in multi-
mode simulations [6], similar oscillatory structures have
been found in roughly the same parameter region.

Our model is analytically manageable along the lines of
the calculation provided in [7], at least in the case of roll and
square solutions where the number of independent modes is
reduced from 16 to 9 and 10, respectively. Further studies
can possibly pave the way for a better understanding of the
behavior and the role of the physically important modes.
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