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We investigate theoretically the onset of capillary-gravity waves created by a small object moving at the
water-air interface. It is well established that, for straight uniform motion, no steady waves appear at velocities
below the minimum phase velocity cmin=23 cm /s. At higher velocities, the emission of capillary-gravity
waves creates an additional drag force. The behavior of this force near the critical velocity is still poorly
understood. A linear-response theory where the object is replaced by an effective pressure source predicts a
singular behavior for the wave drag. However, experimental data tend to indicate a more continuous transition.
In this paper, we show that a proper treatment of the flow equations around the obstacle can regularize wave
emission, even in the linear wave approximation, thereby ensuring a continuous behavior of the drag force.
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I. INTRODUCTION

An object moving uniformly in an incompressible liquid
experiences a drag force that can have several physical ori-
gins: viscous drag, hydrodynamic interaction with close-by
boundaries, or the force due to the emission of waves. The
waves, on which we focus in the present paper, appear when
the object moves in the vicinity of a deformable surface such
as an air-liquid interface �1�. They carry away momentum
from the object which is sensed as the wave drag of the
moving object. The types of waves we expect on an air-
liquid interface are capillary-gravity waves �1,2�. Their dis-
persion relation in an unbounded inviscid liquid of infinite
depth is well known to be �2=gk+�k3 /�. It relates the os-
cillation frequency � to the wave number k and depends on
the gravity constant g, fluid density �, and on the surface
tension �. The wave velocity c�k�=� /k is readily obtained as
c�k�= �g /k+�k /��1/2. The dispersive nature of capillary-
gravity waves creates a complicated wave pattern around a
moving object, yielding a finite wave drag. In naval design,
the wave drag is an important source of resistance, which
stimulated the development of approximate theoretical meth-
ods �3–8�. These methods are valid only for objects larger
than the capillary length �−1=�� / ��g� �9�. The case of ob-
jects of extension comparable to �−1 has been overlooked for
a long time in the literature, but has attracted strong interest
in the context of insect locomotion on water surfaces
�10–13�. In particular, some insect species �for example, wig-
gling beetles� may take advantage of the generation of
capillary-gravity waves for echo-location purposes �14,15�.
In particular, recent observation of the behavior of Gyrinidae
suggests that they select their swimming speed by minimiz-
ing the sum of wave and viscous drags �16–18�.

The first theoretical calculation in this regime predicted a
discontinuity of the wave drag Rw at a critical velocity given
by the minimum of the wave velocity cmin= �4g� /��1/4 for
capillary-gravity waves �9�. For water, this evaluates to
cmin�23 cm /s. An object moving at constant velocity
V�cmin does not generate steady waves and the wave resis-
tance vanishes. Emission of steady waves becomes possible

only when V�cmin, leading to the onset of a finite wave
drag. This striking behavior is similar to the well-known
Cherenkov radiation emitted by charged particles �19�, to the
onset of wave drag for supersonic aircrafts �20�, or to the
Zeldovich-Starobinsky effect in general relativity �21�. The
minimum in the dispersion relation, responsible for this be-
havior, renders the problem challenging. Two experiments
addressed the problem of the behavior of wave resistance at
a liquid-air interface. While the disappearance of wave drag
was confirmed for V�cmin, opposite conclusions were
reached concerning the existence of a discontinuity at the
critical velocity V=cmin. In a first experiment by Browaeys
et al. �22�, the bending of a narrow fiber in contact with the
liquid surface was used to probe the wave drag. The results
evidenced the presence of a jump at V=cmin. However, dur-
ing these measurements, the contact line between the fluid
and the fiber was free to move, thus creating an uncontrolled
contribution to the measured force. A second experiment was
made by Burghelea and Steinberg �23� in which an ingenious
feedback system fixed the immersion depth of the object.
This experiment concluded on a continuous increase of wave
drag around V=cmin.

While it was shown recently �24� that the threshold
V=cmin exists only for an object moving at constant velocity
without acceleration, a theoretical understanding of the scal-
ing of wave resistance is still missing. The theoretical de-
scriptions which are available replace the moving object by
an external pressure source applied at the air-liquid interface.
The hydrodynamic problem is then reduced to a linear-
response theory in the pressure field which has singularities
around V=cmin if viscosity is neglected �9,25,26�. A self-
consistent determination of the pressure distribution was at-
tempted in Ref. �26�. While this theory succeeded in remov-
ing the singularity at V=cmin, it leads to the somewhat
unrealistic prediction that the applied pressure field vanishes
at V=cmin. An alternative approach by Sun and Keller �27� is
based on an asymptotic-matching technique and works for
velocities much larger than cmin. In order to develop a theory
of wave drag valid for V�cmin, we note that the linear-
response theory is successful at reproducing the wave pattern
created in the experiments even for velocities very close to
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cmin. This suggests that it is possible to understand the be-
havior of Rw in a theory where linear capillary-gravity waves
are coupled to an accurate hydrodynamic description of the
flow around the moving object. This theory is developed in
the present paper.

In the situation we have in mind, the perturbation of the
free surface does not come from an external pressure distri-
bution as it was the case in Ref. �9�. Also, we avoid the
difficulties arising from an immersed perturbing needle of
Ref. �26�. Instead, we here use a completely submerged ob-
ject, which is, for reasons of a dimensionality reduction, a
cylinder. It has radius R and is at depth H below the free
surface, as is depicted in Fig. 1. Notice that the dimension
has implications on the nature of the transition near cmin
which we want to describe and might limit comparisons to
experimental data.

The liquid flows only perpendicularly to the axis of the
cylinder and we require only x and z coordinates. This sys-
tem has been analyzed by Lamb �4� without taking into ac-
count the mutual interaction between the two perturbations,
namely, the one created by the moving object and the one by
the emitted waves. He limited his discussion to particles
larger than the capillary length �−1 by neglecting the capil-
lary contribution in the dispersion. We here regard the other
case of small objects, where it becomes necessary to treat the
mutual interaction between the two perturbations correctly.

Generally speaking, the larger the ratio H /R, the better
work the two theories presented below in Secs. II and V. The
numerical example in Sec. IV for H /R=5 /3, however, shows
that the theories are valid already for cylinders quite close to
the surface. This observation is the reason why we are con-
vinced that the completely submerged cylinder presents a
useful approach to understand the experimental setup in
which a partially immersed object was used.

II. FLOW EQUATIONS

We describe the velocity field in the reference frame of
the cylinder. The far-field velocity is thus a nonzero uniform
velocity V. The velocity field is assumed to be irrotational,
given by a velocity potential, where we immediately isolate
the far-field velocity and use only the potential ��x ,z� of the
perturbations due to the obstacle and to the waves

v�x,z� = V + ���x,z� . �1�

The incompressibility condition for the fluid reads

	� = 0. �2�

This equation is complemented by boundary conditions at
the air-liquid interface and at the surface of the cylinder. The
kinematic boundary condition reads

n · �V + ��� = 0, �3�

with the normal vector n oriented as in Fig. 1. For the de-
formable air-liquid interface, the boundary condition is

�V2�x
2� + �g�z� − ��x

2�z� = 0 �at z = 0� . �4�

This boundary condition is obtained as follows. Using a
height profile 
�x�, the kinematic boundary condition be-
comes for a nearly flat interface ��x
�1�,

�z� − �x
�V + �x�� = 0. �5�

Additionally, we have Laplace’s law and Bernoulli’s equa-
tion

− p�x,
�x�� + pair = ��x
2
 , �6�

�

2
v2�x,
�x�� + �g
�x� + p�x,
�x�� = const, �7�

with � the surface tension and with pair the pressure above
the interface, which is assumed to be a constant. The curva-
ture of the interface has been linearized. The boundary con-
dition �4� is obtained by inserting Laplace’s law into the
Bernoulli’s equation, linearized in �. A derivative with re-
spect to x and multiplying with �x� allows to eliminate the
height profile 
 using Eq. �5�. Terms which are either qua-
dratic in � or bilinear in � and 
 are neglected as second-
order perturbations.

The problem we will solve in the following consists of the
Laplace Eq. �2� for the unknown ��x ,z�, together with the
two boundary conditions �3� and �4�. The flow disturbance
must further vanish at very large depths: �z�→0 when
z→−�. These equations cannot be solved directly by nu-
merical means in real space, such as by a finite element
method, since the waves emitted by the cylinder propagate to
infinity whereas any discretization is done in a finite domain.
Hence, additional analytic transformations are needed to cast
the problem in a more accessible form. An overview of the
following transformations is provided in Fig. 2. We split the
potential into two components with different physical origins
�=�0+�1. The term �0 is dominated by the perturbation
stemming from the sphere and �1 is mainly the perturbation
from the free surface. Of course, both perturbations have to
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ζ(x)

2π/kc 2π/kg
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FIG. 1. Geometry of the submerged cylinder and of the free
surface above. The far-field velocity is indicated by the arrows V.
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FIG. 2. Overview of the variable transformations of the full
theory in Secs. II and III �upper panel� and of the dipolar model in
Sec. V �lower panel�.
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mutually respect the presence of the other boundary. In more
precise terms, the potential �0 obeys the Laplace equation
with the boundary condition n ·��0=−VC�
� at the surface
of the cylinder and ��0→0 for r→�.

The unknown function VC�
�=n · �V+��1� describes the
flow created by V and the wake at the cylinder surface
�hence Eq. �3� is always verified�. The flow ��1 created by
the surface waves is oscillatory in the x direction and decays
exponentially with the depth z. These properties are naturally
captured by the integral representation commonly used in
theories of surface waves �3,9�,

�1�x,z� =
1

2�
� dkeikxe	k	zA�k� , �8�

where k denotes the wave number. The two unknown poten-
tials �0�x ,z� and �1�x ,z� are now replaced by the two un-
known functions VC�
� and A�k�. Those have to be deter-
mined self-consistently in order to satisfy the boundary
conditions Eqs. �3� and �4�. This procedure requires an ex-
pression of �0 in terms of VC, which is given by the integral
representation

�0�r,
� = −
R

�
� log	rei
 − Rei
�	VC�
��d
� �9�

which uses the polar coordinates depicted in Fig. 1. Notice
that the origin of these polar coordinates coincides with the
cylinder axis while the origin of the Cartesian coordinates
x ,z is located at the free interface above the obstacle. Rela-
tion �9� is either obtained by expanding VC�
� as a Fourier
series or by solving the Laplace equation for each term. An
alternative way is to use the full Green’s function of the
Neumann problem in the circle �28,29�. The logarithmic in-
tegral kernel appears as a consequence the fundamental so-
lution of the Laplace equation in two dimensions. Notice that
the part of the Green’s function which enforces the Neumann
boundary condition is also logarithmic.

The boundary condition �4� leads to a first relation be-
tween VC�
� and A�k�. Since it is invariant under translations
in the x direction, it takes a simple form in Fourier space

A�k� = −
1

	k	
�2�k� + V2k2

�2�k� − V2k2Vz�k� , �10�

with

Vz�k� ª� dxe−ikx�z�0�x,0� �11�

The expression of Vz�k� as a function of VC�
� is readily
obtained by inserting Eq. �9� into the above Eq. �11�. The
integral with respect to x can be evaluated analytically,
which yields

Vz�k� = − R� e−	k	�H−R sin�
���e−ikR cos�
��VC�
��d
�. �12�

The exponential factors arise from the Fourier transform of
the derivatives of the logarithmic kernel in Eq. �9�. We have
now expressed the unknown function A�k� in terms of the
other, VC�
�. The remaining kinematic boundary condition

�3� at the cylinder surface now serves as a closed equation
for determining VC�
�,

VC�
� = n · �V + ��1� �13�

=n · 
V −
�

2�
� dk

eikxe	k	z

	k	
�2�k� + V2k2

�2�k� − V2k2Vz�k�� . �14�

By injecting Vz from Eq. �12� into the last integral and by
changing the order of integration, VC�
� is found to satisfy an
integral equation of Fredholm’s second kind

VC�
� = V cos 
 +
1

2�
� K�
,
��VC�
��d
�, �15�

with the kernel function

K�
,
�� = R� �i sgn�k�cos 
 + sin 
�
�2�k� + V2k2

�2�k� − V2k2

�eikR�cos 
−cos 
��e−	k	�2H−R sin 
−R sin 
��dk . �16�

In this integral, singular pole contributions appear when
the denominator vanishes, �2�k�−V2k2=0. This happens
only for V�cmin. The two positive solutions of this equation,
which we call kg and kc �kc�kg�, correspond to gravity
waves and capillary waves, respectively. In the far-field re-
gimes, they dominate the flow and thus correspond to the
inverse wavelengths found before and behind the obstacle.
Directly above the cylinder, no unique wavelength can be
identified. In order to ensure that waves only leave the object
and are not coming back from infinity, we introduce an in-
finitesimal imaginary part into the dispersion relation. This
term can be understood as an infinitesimal viscous term
�9,26�. With the correct choice of its sign, the denominator
becomes �2�k�−V2k2− i�k. Notice that this choice also en-
sures that capillary waves are emitted to the front and that
gravity waves rest at the rear of the obstacle.

III. WAVE DRAG

Provided that the self-consistent Eq. �15� has been solved
to find the function VC, one can reconstruct the flow every-
where in the domain around the obstacle. This procedure
requires to calculate in turn �0, A�k�, and �1, using Eqs. �9�,
�10�, and �8�. Once the flow is known, two different strate-
gies offer themselves for the calculation of the wave drag.
Both are indicated in the upper part of Fig. 2. The first,
which is conceptually simpler, passes over the pressure field
p�x ,z� using Bernoulli’s equation

�v2�x,z�
2

+ �gz + p�x,z� =
�V2

2
. �17�

The pressure field can then be integrated around the surface
of the cylinder to find the total drag force. In an inviscid
fluid, d’ Alembert’s theorem ensures that the drag caused by
the emitted surface waves is the only contribution to the drag
force �Ref. �1�, Sec. 11�. The wave drag then reads
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Rw = −
1

V
V · �

SR

dA�x,z�p�x,z�n . �18�

The second approach to calculate the wave drag makes use
of the power carried away by the waves. For the linear waves
used here, the relation between this power and the amplitude
of the velocity oscillations in the far-field regime is well
known �9�. The oscillations in the far-field regime are of the
form 
�x�=a cos�kx+h�. The amplitudes ac ,ag, the wave
numbers kc ,kg, and the phases hc ,hg are different for capil-
lary and for gravity waves. Each energy density of the par-
ticular wave depends quadratically on the amplitude

E�k� =
1

2
�c�k�2ka2. �19�

This energy density may alternatively be expressed in terms
of the amplitude of the velocities, denoted by vz,�, which is
related to the amplitude a of the deformation by vz,�=Vka.
This relation is a consequence of the linearized kinematic
boundary condition �5�. It allows to determine the amplitude
a from the flow once the function VC�
� is known. The two
energy densities allow calculating the power carried away by
the waves, from which the drag results as �9�

Rw =
V − ���kc�

V
E�kc� −

V − ���kg�
V

E�kg� . �20�

The energy of each wave is transported at the group velocity
��.

The two expressions �18� and �20� for the wave drag are
equivalent. Their comparison allows to verify the accuracy
of the numerical solutions below.

IV. NUMERICAL RESULTS

The self-consistent equation Eq. �15� can be solved by
numerical methods. Our first step is to create a numerical
table of the values of the kernel K�
 ,
��, the integral in the
definition of the kernel is computed using standard numerical
routines from the GSL library �30�. It provides special dis-
cretizations for calculating principal values which appear in
Eq. �16� due to the singular integrand. The equation Eq. �15�
is then discretized using finite elements. The function VC�
�
is approximated using a finite set of N basis functions �n�
�,

VC�
� = 

n=1

N

cn�n�
� . �21�

For simplicity, we have chosen a basis of N piecewise linear
hat functions with periodic boundary conditions on the
�−� ,�� interval. Figure 3 shows an example of such an ap-
proximation for a small number of elements N=20. This ex-
pression for VC�
� is then inserted in Eq. �15� and Galerkin’s
method is used to convert it into a matrix equation of size
N�N. Namely, we multiply Eq. �15� by one of the function
�m�
� and integrate over the angle 
. This leads to a linear
equation on the coefficients cn,



n
���m,�n� −

1

2�
��m,K�n��cn = V��m,cos 
� , �22�

where we have introduced the notation K�n�
�
=�K�
 ,
���n�
��d
� and defined scalar product between
two arbitrary functions f�
� and g�
� as

�f ,g� ª� f�
�g�
�d
 . �23�

In a last step, the system Eq. �22� is solved using a LU
decomposition �31�. The integrals involved in the calculation
of the scalar products are determined numerically �30�. It is
possible to check the convergence of our numerical proce-
dure by inserting the obtained approximation for VC�
� into
Eq. �15�. The degree of accuracy can then be estimated from
the difference between the left- and right-hand sides of Eq.
�15�. For the typical number of elements we use in our simu-
lations N�110, the relative difference is of the order of 10−3.

Figure 3 presents the solution of Eq. �15� for the geo-
metrical parameters H�=0.5, R�=0.3, and a flow velocity of
V=1.3cmin. It is compared to the source term of the integral
equation V cos 
 which results if the contribution from the
surface waves is neglected. As can be seen, the function
VC�
� is strongly modified by the self-consistent interaction
between the cylinder and the emitted capillary-gravity
waves.

Once the function VC�
� has been determined, we can
calculate the flow in all the space z�0 around the cylinder
following the steps described in Sec. III. The velocity field
around the cylinder for the parameters of Fig. 3 is depicted in
Fig. 4. Notice that the flow obeys the kinetic boundary con-
dition on the sphere given by Eq. �3� which confirms our
numerical procedure.

Using the results from Sec. III, we can now calculate the
wave drag as a function of the externally applied flow veloc-
ity V. Figure 5 shows this function, as determined numeri-
cally from both the direct integration of the pressure field
around the sphere �18� and from the energy balance in Eq.
�20�. Their difference in Fig. 5 is smaller than the line width.
At velocities V close to the critical value cmin, the drag van-
ishes continuously. This behavior is qualitatively different
from that found from linear-response theory with an external
pressure field as perturbation, as it predicts a divergence at

-1

0

1

0−π/2−π π/2 πθ

V
(

)
/c

θ
C

m
in

V ( ) (N = 20)θ
V ( ) (N = 114)
V cos

θ
θ

C

C

FIG. 3. �Color online� Numerical solution of Eq. �15�. Dashed
lines represent the discretization with linear finite elements. Param-
eters: H�=0.5, R�=0.3, and V=1.3cmin.
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cmin �9�. Our approach reduces to this linear-response theory
if, instead of solving the self-consistent Eq. �15�, VC�
� is set
to the result V cos 
 for a cylinder moving in a quiescent
inviscid liquid without surface. The wave drag obtained in
this case diverges close to V=cmin as shown by the dashed
curve on Fig. 5. At large velocities, the wave drag deter-
mined from the self-consistent model curve rejoins the curve
from linear response.

The observation in Fig. 5, that the drag is a continuous
function at the critical velocity, constitutes the central result
of the present work. The regularization is achieved by the
self-consistent treatment of the emitted waves, which takes
into account the mutual interaction between the perturbations
created by the cylinder and the waves, respectively. The
physical origin of the regularization can be understood with a
simpler model which does not require the full solution of the
self-consistent equation. This model will be detailed in the
following section, where we derive a square-root scaling for
the wave drag close to cmin.

V. DIPOLAR MODEL

We now treat the interaction between the wake and the
cylinder in an approximate manner. Instead of enforcing the
exact kinematic boundary condition �3� at all points on the
cylinder, we impose it only as an averaged constraint. This
approach assumes that the flow v1=��1, created by the
waves, is homogeneous around the cylinder. The response of
the cylinder is now reduced to a simple dipolar potential
which describes the response to a yet unknown uniform flow
�V+v1�,

�0 = R2�V + v1� · � log r . �24�

The name “dipolar” arises from the analogy with the poten-
tial of a dipole in two-dimensional electrostatics. This ap-
proximation reduces the complexity of the Eq. �9�. Figure 2
summarizes the necessary transformations in the same way
as it was done for the sections above. Instead of determining
a whole function �0, we must now only find two parameters
v1,x and v1,z. With these parameters, the function VC�
� from
Sec. II assumes the form VC�
�= �V+v1,x�cos 
+v1,z sin 
,
which can be used immediately to calculate the unknown
function A�k�. The self-consistent Eq. �15� for VC is thus
replaced by a linear set of two equation for the parameters.
The solution is


V + v1,x

v1,z
� =

V

�1 − I1�2 + I2
2
1 − I1

− I2
� , �25�

with the shortcuts

I1 =� dk

2�
�R2e−2H	k		k	

�2�k� + V2k2

�2�k� − V2k2 , �26�

I2 =� dk

2�
�R2e−2H	k	ik

�2�k� + V2k2

�2�k� − V2k2 . �27�

In order to obtain the wave drag Rw from this result, we
follow the same steps as in Sec. III. This time, we can do
them analytically, not only numerically, thanks to the simple
form of the potential �0. In this treatment, we prefer the
energy balance argument instead of the pressure integral. In
the far field, x→ ��, we find the wave amplitude as fol-
lows:

a = 2�R2 kVe−H	k	

	���k� − V	
1

��1 − I1�2 + I2
2
, c�k� = V . �28�

In the course of this calculation, we pass from �0 to A�k�
using Eqs. �10� and �11�. In the far-field regime, the only
contribution to the flow arises from the waves. The flow
potential �1 created by the waves is given by a Fourier-
Laplace transform of A�k� �see Eq. �8��. In the asymptotic
regime 	x	→�, we can keep only the contributions from the
emitted waves of fixed wave numbers k=kc ,kg. They appear
from the delta function contribution of the integration around
the poles of A�k� using the identity �32�

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

-1 -0.5 0 0.5 1x

z

FIG. 4. �Color online� Visualization of the flow velocity around
the cylinder. The velocities are represented by arrows the size of
which is proportional to the velocity magnitude. The color code is
yellow/gray for large magnitudes and blue/black of small ones. Pa-
rameters are as in Fig. 3.
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FIG. 5. �Color online� Wave drag as a function of the far-field
velocity V for the parameters for H�=0.5 and R�=0.3. The results
of three different models are presented: dashed curve corresponds to
a linear-response calculation where VC=V cos 
, red �gray� curve
corresponds to a self-consistent calculation using Eq. �15�, and
black curve corresponds to the dipolar model explained in Sec. V.
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lim
�→0

1

�2�k� − V2k2 − i�k
= P.V.

1

�2�k� − V2k2

+ i�sgn�k����2�k� − V2k2� ,

�29�

where P.V. denotes the Cauchy principal value and the delta
function can be transformed as

���2�k� − V2k2� = 

ki:c�ki�=V

��k − ki�
2V	ki		���ki� − V	

. �30�

Now that we have an expression for the deformation ampli-
tude a, we can find the wave drag using Eqs. �19� and �20�.
The auxiliary integrals I1 and I2 are calculated numerically.
The results are displayed in Fig. 5 and show that the dipolar
model reproduces the behavior of the exact solution from
Sec. II. The accuracy of the dipolar model can be understood
because the radius of the cylinder is small compared to the
capillary wavelength R=0.3�−1. Hence the flow is reason-
ably uniform on this scale. A good agreement is found when
V→cmin because the emitted wavelengths tend both to the
same value �−1, which is larger than the object size. At
higher velocities, where the emitted wavelengths differ, the
agreement decreases because the shorter one may become
smaller than the object size.

Our aim now is to find the square-root behavior of the
drag force Rw��V−cmin in the frame of the dipolar model.
In order to do so, we analyze the scaling of the wave ampli-
tude in Eq. �28� in the vicinity of cmin. We then use Eqs. �19�
and �20� to establish the scaling for the wave drag. All scal-
ing behaviors near cmin stem from the scaling of 	���k�−V	,
where k obeys c�k�=V. Near k=�, the phase velocity shows
a quadratic minimum and the selected wave numbers are

kc,kg � �
1 � 2�V − cmin

cmin
� . �31�

The difference 	���k�−V	= 	���k�−c�k�	 is thus determined
by the linear contribution from the group velocity which is
given by

	���k� − V	 � �cmin�V − cmin� . �32�

Note that the result is the same for both capillary and gravity
waves.

The scaling of 	���k�−V	 is taken over to the amplitude a,
to I2, and to the wave drag Rw. The term I1 becomes constant
in the limit V→cmin, while the term I2 diverges. Indeed I1
involves only the principal-value term from Eq. �29� while I2
depends on the delta function part that scales as
1 / 	���k�−V	. After all these preparations, we are now ready
to provide the scaling of the wave drag

Rw � �cmin
2 �−1�V − cmin

cmin
. �33�

This expression is derived assuming R�H��−1 and it holds
for velocities very close to cmin, where I2�1 �this occurs as
soon as V−cmin� ��2R2�2�.

While our approach is exact for a linear capillary-gravity
waves, nonlinear corrections become relevant when the flat

interface condition �x
�1 is not verified anymore �33�. We
have checked numerically the validity of this assumption for
the parameters of Fig. 5. It is clearly verified at large veloci-
ties but as V approaches cmin, the typical �x
 increases and
reaches a regime where �x
�1 for V�cmin. In this range,
where we find moderate nonlinearities of the order 1, we
expect that they will change only the quantitative predictions
of the self-consistent theory without introducing qualitatively
new features. This is consistent with the observation that
nonlinear waves �for, e.g., solitons� are not seen in the ex-
periments close to cmin and that form of the generated wave
pattern is well described in linearized theory �23�. Hence,
although nonlinearities should be taken into account for a
complete hydrodynamic theory, the regularization of the
wave drag near V�cmin is already present in the linear self-
consistent theory. Notice that approaches that include only
nonlinear effects without a self-consistent treatment fail to
produce stable solutions near V=cmin �34�.

Recently, Moisy et al. �35� developed an experimental
technique that allows to recover the height profile created by
a moving disturbance. This technique is a promising candi-
date for the verification of our theoretical predictions on the
onset of the wave drag and the implied wave pattern close to
cmin.

VI. CONCLUSION

We have addressed the behavior of the wave drag for
objects of extension smaller and close to the capillary length
moving at a speed close to the critical velocity cmin, which is
given by the minimum of the wave velocity for capillary-
gravity waves. It is known that theories where the object is
modeled by an external pressure source lead to singular wave
drag behavior at V=cmin. In this paper, we show that even for
linear capillary-gravity waves, this singularity can be re-
moved, even in the approximation of an inviscid fluid, by
treating the boundary conditions at the object interface in an
exact way. For this purpose, we treat the wave emission
problem by a cylinder submerged near the liquid-air interface
under an external flow. We derive a self-consistent integral
equation describing the flow velocity at the cylinder inter-
face. This equation is solved numerically with a finite-
elements method, which allows us to reconstruct the flow in
the entire space around the cylinder and to determine the
wave drag on the cylinder. In addition to the numerical so-
lution, we propose a simple approximation valid for cylinder
diameters smaller than the wavelength, where the interaction
between the waves and the cylinder is treated in a dipolar
approximation. In this case, it is possible to make analytic
estimates showing that Rw��V−cmin.

Our findings explain why a smooth onset of the wave drag
is observed even if the shape of the wave pattern is well
described by linear response. The validity of our theory is
limited by the validity of the flat interface approximation. In
our simulations, this condition is not well verified for veloci-
ties around cmin. In principle, nonlinear corrections should
therefore become relevant. However, we think that the quali-
tative behavior is already captured by our self-consistent
theory even if the inclusion of nonlinear effects would be
required for quantitative predictions.
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One might be tempted to compare the scaling
Rw��V−cmin, which we found in the dipolar model, to the
square-root fit done by Burghelea and Steinberg �23� in their
Fig. 18. This apparent agreement between theory and experi-
ment must be taken with care. Our results are valid for a long
cylindrical obstacle, while the experiment was done with a
spherical object. Moreover, the experimental data do not al-
low determining unambiguously a square-root scaling at the
onset of the wave drag. Hence, more experiments and a
three-dimensional theory will be required to establish the
exact scaling at the transition. The main point, however,
namely, the fact that our theory is able to recover the con-

tinuous onset of the wave drag at cmin, coincides with the
mentioned experiment. Our finding of a continuous drag
force might serve as an element of understanding the motion
of small insects on or near water surfaces since such animals
have to find a delicate balance between viscous and wave
drags.
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