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Energy localization on ¢-tori, long-term stability, and the interpretation
of Fermi-Pasta-Ulam recurrences
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We focus on two approaches that have been proposed in recent years for the explanation of the so-called
Fermi-Pasta-Ulam (FPU) paradox, i.e., the persistence of energy localization in the “low-¢” Fourier modes of
Fermi-Pasta-Ulam nonlinear lattices, preventing equipartition among all modes at low energies. In the first
approach, a low-frequency fraction of the spectrum is initially excited leading to the formation of “natural
packets” exhibiting exponential stability, while in the second, emphasis is placed on the existence of “q
breathers,” i.e., periodic continuations of the linear modes of the lattice, which are exponentially localized in
Fourier space. Following ideas of the latter, we introduce in this paper the concept of “g-tori” representing
exponentially localized solutions on low-dimensional tori and use their stability properties to reconcile these
two approaches and provide a more complete explanation of the FPU paradox.
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I. INTRODUCTION

In a number of recent papers, Flach and co-workers [1-3]
discussed the role of simple periodic solutions, called g
breathers, in the dynamics of the & and B versions of the
Fermi-Pasta-Ulam (FPU) model with fixed boundaries. A ¢
breather is the continuation, for a # 0 or 8+ 0, of the simple
harmonic motion exhibited by the gth mode in the uncoupled
case (a=B=0) and implies motion by a unique frequency,
which is nearly equal to the frequency of the gth mode in the
uncoupled case. For small values of the coupling parameters
(and the energy), the distribution of energy in g breathers
stays localized in practice upon only a few modes. Thus, ¢
breathers offer insight in understanding the problem of en-
ergy localization, as well as the long-term deviations from
equipartition of the energy among the modes, i.e., the origin
of the FPU paradox [4]. (For a recent and comprehensive
review on discrete breathers see [5].)

Analytical estimates of various scaling laws concerning g
breathers can be obtained via the method of Poincaré-
Lindstedt series [1,2]. In particular, expanding the solutions
for all the canonical variables up to the lowest nontrivial
order with respect to the small parameters yields an expo-
nentially decaying function for the average harmonic energy
of the gth mode, E(g) «exp(—bq). The value of b depends on
(i) a and/or B, (ii) the number of degrees of freedom N, and
(iii) the total energy E given to the system. The most impor-
tant property of the g breathers is that their energy profiles
E(g) are quite similar to those of “FPU trajectories,” i.e.,
solutions generated by initially exciting one or a few low-g
modes, whose exponential localization has been noted since
a long time ago [6-9]. On the basis of this similarity it has
been conjectured that there is a close connection between g
breathers and the energy localization properties of FPU tra-
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jectories. It is intriguing, however, that this localization per-
sists even for values of the parameters (coupling, energy, and
N) for which the corresponding g-breather solution has be-
come unstable. A heuristic argument for interpreting this
phenomenon was offered by Flach and Ponno [3].

Adopting a different approach, Berchialla er al. [10] ex-
plored in detail the question of energy equipartition in FPU
experiments where a constant (low-frequency) fraction of the
spectrum (instead of just one mode) was initially excited.
The numerical indication from this study, based on a limited
range of values of E and N, was that the flow of energy
across the high-frequency parts of the spectrum takes place
exponentially slowly, by a law of the form T«exp(e~"4),
where T is the time needed for the energy to be nearly
equally partitioned and e=E/N is the specific energy of the
system. In fact, this dependence appears as a piecewise
power law, with different “best-fit” slopes in different ranges
of values of &. For example, a power-law behavior of the
type Toce~ was found in a subinterval of & values consid-
ered in [10], which fits nicely previous results on the scaling
of the equipartition time with & beyond a critical “weak
chaos” threshold reported in [11]. Nevertheless, the question
of whether the scaling laws characterizing the approach to
equipartition depend on the total energy E or the specific
energy E/N is still open, since no rigorous results have been
provided so far in the literature. On the other hand, numeri-
cal results are available over a limited range of values of E
and N, in which E is varied proportionally to N. Various
semianalytical or numerical approaches to this question are
reviewed in [12].

Interestingly enough, even if one starts by exciting one
mode with large enough energy, one observes, long before
equipartition, the formation of metastable states coined natu-
ral packets [13], in which the energy undergoes first a kind of
equipartition among a group of low-frequency modes, as if a
fraction of the spectrum (instead of one mode) was initially
excited. We may thus conclude that the phenomenon of
metastability characterizes FPU trajectories resulting from
all types of initial excitations of the low-frequency part of
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the spectrum (see [14] for a review of the “history” of the
metastability scenario in the FPU problem). Furthermore,
empirical scaling laws can be established [ 13] concerning the
dependence of the “width” of a packet on the specific energy
e. These are consistent with the laws of energy localization
obtained via either a continuous Hamiltonian model which
interpolates the FPU dynamics in the space of Fourier modes
[15,16] or the g-breather model [3]. A difference, however,
between the two models is that in the framework of the con-
tinuous model the constant b in E(qg) «exp(—bg) turns out to
be independent of E.

The results reported in the present paper aim to provide a
more complete explanation of the FPU paradox of energy
nonequipartition by reconciling the presence of g breathers
and their induced energy localization on one hand, with the
occurrence of metastable packets of low-frequency modes on
the other hand. To extend the results obtained for FPU tra-
jectories in [10,11], let us observe that the packet of modes
excited in these experiments corresponds to the modes with
spectral numbers satisfying the condition (N+1)/64=gq
=5(N+1)/64, with N equal to a power of 2 minus 1. For
simplicity, let us alter this slightly and consider, instead, the
condition 1 =¢g=4N/64, with N a power of 2. The lowest
possible value of N allowed is N=16, for which the above
condition implies that only the g=1 mode is initially excited,
giving a solution close to a ¢ breather, which is an orbit lying
on an invariant one-torus of the system. Now, if N is doubled
(N=32), the same condition implies that modes g=1 and 2
may now be excited, meaning that the resulting FPU trajec-
tories may be regarded as lying close to invariant two-tori of
the system N=32. In general, for N=16s, the modes ¢
=1,2,...,s are initially excited and the motion should be
regarded as lying close to an invariant s-torus of the system.
The same holds true when natural packets of width s are
formed in experiments in which the initial conditions are as
adopted in [13].

This leads to the idea that the properties of the FPU tra-
jectories could be understood by considering classes of spe-
cial solutions lying not only on one-dimensional tori (as is
the case with g breathers), but also on tori of any low dimen-
sion s<<N, i.e., solutions with s independent frequencies,
representing the continuation of motions resulting from ex-
citing s modes of the uncoupled case. Generalizing the con-
cept of g breathers, we call g-tori the quasiperiodic solutions
on such low-dimensional tori. The main body of the present
paper, therefore, focuses on exploring the properties of these
g-tori solutions, both analytically and numerically. In par-
ticular, we establish for g-tori energy localization laws analo-
gous to those for g breathers, using a semianalytical ap-
proach. Our numerical experiments then show that such laws
describe accurately the properties not only of exact g-tori
solutions, but also of FPU trajectories with nearby initial
conditions.

Our work shares a common starting point with a recent
paper by Giorgilli and Muraro [17], where the authors also
explored the idea of FPU trajectories being confined on
lower-dimensional ~ manifolds = embedded in  the
2N-dimensional FPU phase space. Their main result, proving
that the confinement persists for times exponentially long in
the inverse of e, is obtained in the spirit of the theory of
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Nekhoroshev ([18]; see also [19]), using a variant of the
formulation of the Nekhoroshev theorem for “isochronous”
systems [20-24]. In fact, the theory of Nekhoroshev appears
to offer quite a natural framework for studying analytically
the metastability scenario.

However, as has been pointed out quite early [25] a naive
application of the Nekhoroshev theory in the FPU problem
would break down as N — % since, under the assumption that
the Nekhoroshev time 7" depends on the specific energy &, in
the estimates 7~ exp(1/&€) of the theory the exponent is of
the form ¢=O(1/N) (see [24] for a heuristic explanation).
This bad dependence of ¢ on N actually implies that T
=0(1) as N—; hence, Nekhoroshev’s theory fails to pre-
dict long times for equipartition in that limit (a relevant the-
oretical result has only been obtained in lattices where a clear
separation of the frequencies occurs into low and high bands;
the low frequencies then become small parameters, see [26]).
In [17] one has instead c=0O(1/m), where m is one half the
dimension of the lower-dimensional manifold where con-
fined FPU trajectories are expected to lie. This constitutes a
significant improvement with respect to previous estimates,
but still does not explain the natural packets correctly since
the latter’s width was found in numerical experiments to
vary as m>g'4N [13], i.e., proportionally to N, for fixed &.

Our analytical theory relies on the use of the Poincaré-
Lindstedt method, through which we find scaling laws for the
energy profile E(g) of a trajectory lying exactly on a g-torus.
The consistency of the Poincaré-Lindstedt construction on a
Cantor set of perturbed frequencies (or amplitudes) is explic-
itly demonstrated. Numerically, we find that energy localiza-
tion persists for appreciably long times, for trajectories
neighboring a g-torus, even beyond the energy threshold
where the g-torus becomes linearly unstable. The determina-
tion of linear stability for an s-dimensional torus (s> 1) is, of
course, a subtle question since no straightforward application
of the Floquet theory is available, as in the s=1 case. Nev-
ertheless, by employing an effective and reliable criterion for
the stability of g-tori via the use of the recently developed
method of “generalized alignment indices” (GALIs, see
[27]), we are able to determine approximate critical param-
eter values at which a low-dimensional torus turns unstable,
in the sense that orbits in its vicinity display a chaotic be-
havior.

It is important to remark at this point that, although the
Poincaré-Lindstedt approach is quite distinct from the
Birkhoff method used in the Nekhoroshev theory, it appears
that the properties of exponential localization can be ex-
ploited to demonstrate (by the subsequent use of the Birkhoff
method) an even better behavior of the exponent ¢ of
Nekhoroshev estimates than can be found in the literature so
far. A detailed exploration of this issue is deferred to a sepa-
rate study. Nevertheless, a heuristic argument offered in the
closing section of this paper suggests that the removal of the
dependence of ¢ on the number of degrees of freedom is
possible, at least for trajectories close to g breathers.

Our paper is structured as follows. Section II presents our
analytical results on the existence and scaling laws of the
g-tori. We deal here only with the B case, but our approach
can be readily extended to the « case as well. We focus on
the specific and most relevant subset of g-tori corresponding
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to zeroth-order excitations of a set of adjacent modes g ;=i
(with i=1,...,s), whose energy profile E(q) is calculated
analytlcally. Next our analytical predictions are tested
against numerical integration of specific orbits. Section III
examines the question of stability of g-tori and the persis-
tence of energy localization of the FPU trajectories when the
linear stability of the “underlying” g-tori is lost. Finally, we
deal with the question of the long-term stability of exponen-
tially localized FPU trajectories, via heuristic estimates in-
spired by Nekhoroshev’s theory. Section IV summarizes the
main conclusions of the present study.

II. EXISTENCE AND STABILITY OF ¢-TORI
A. FPU B model
The B-FPU Hamiltonian for a lattice of N particles reads

_5,; Yit ZkEO(ka X7+ 4k20(xk+1 -x)t (D)

where x; is the kth particle’s displacement with respect to the
equilibrium position and y; is its canonically conjugate mo-
mentum. Fixed boundary conditions are defined by setting
X0=XN+1 =0.

The normal-mode canonical variables (Qq,Pq) are intro-
duced by the linear canonical transformations

2 & .| gkm
2 0, sin ,
1.5 N+1

N+
). (2)

N
2 gk

=1/ P si
Tk N+1z qsm(N+1

Substitution of Eq. (2) into Eq. (1) yields the Hamiltonian in
the form H=H,+H, in which the quadratic part is diagonal,

Xp =

N 2 22
P+ Q20
Hy= 2~ (3)
q=1
with normal-mode frequencies
. qm
Q,=2 =g=N. 4
‘ Sm(Z(N 1)) i “

The quartic part of the Hamiltonian reads

H,= E

C,imnf2, 0,0 NG
T, 2, Cin000,00.0.. 0

where the coefficients C,;,, , take nonzero values only for
particular combinations of the indices ¢,/,m,n, namely,

I ifgxl=m=*n=0
qumn= . (6)
-1 ifgxltmxtn==2(N+1),

in which all possible combinations of the * signs are taken
into account. Thus, in the new canonical variables, the equa-
tions of motion are
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N
) B
+Q)0,=- ——— Ctmn2g 2,
Qq qu 2(N l)ln% . q.l.m,n i anQan
)
If B=0, the individual harmonic energies E,= (P2

+Q2 2)/ 2 are preserved by Eq. (7), i.e., the energles Eq
form a set of N integrals in involution. When g # 0, however,
the harmonic energies become functions of time and only the
total energy E :Eg’zlEq(t) is conserved. The specific energy
is then defined as e=FE/N, while the average harmonic en-
ergy of each mode over a time interval 0=¢=T is given by
the integral Eq(T) = legEq(t)dt.

In classical FPU experiments, one starts with the total
energy shared only by a small subset of modes. Then, for
short time intervals 7, we have E,(T)=0 for all g corre-
sponding to nonexcited modes. Equipartition means that, due
to the nonlinear terms, the energy will eventually be shared
equally by all modes, i.e.,

hmE(T)—s g=1,...,N. (8)
T—®
The usual ergodic assumption of statistical mechanics leads
to the conclusion that Eq. (8) is violated only for orbits re-
sulting from a zero measure set of initial conditions. The
FPU paradox owes its name to the crucial observation that

large deviations from the approximate equality Eq(T) =g oc-
cur for many other orbits as well. Depending on the initial
conditions, these deviations are termed “FPU recurrences”
and are seen to persist even when 7 becomes very large.

B. g-tori and their construction by Poincaré-Lindstedt
series

From the above discussion, one infers that the dynamics
of FPU recurrences is governed by particular solutions of the
FPU equations (7) for which energy localization occurs only
on a small subset of Fourier modes. Such solutions lie on fori
of low dimensionality, which we shall henceforth call g-tori
since they also turn out to be exponentially localized in Fou-
rier space, like the g-breather solutions discussed in [1,2].

We now introduce the main ingredients of our method of
g-torus construction, using an explicitly solved example for
N=8, whose solutions lie on a two-dimensional torus repre-
senting the continuation, for 8+ 0, of the quasiperiodic so-
lution of the uncoupled (B8=0) system Q,(r)=A; cos Q,t,
0,=A, cos Qst, for a suitable choice of A; and A,.

To this end, we follow the Poincaré-Lindstedt method and
look for solutions Q,(r) (with g=1,...,8) expanded as a
series in the parameter o=£/2(N+1), namely,

0,0=0"(1+00 () + PP W)+ -, g=1,....8.

)

For the motion to be quasiperiodic on a two-torus, the func-
tions ’)(t) must, at any order r, be trigonometric polyno-
mials 1nV01V1ng only two frequencies (and their multiples).
Furthermore, for the motion to represent a continuation of
the unperturbed solutions Q; and Q,, the frequencies w; and
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, must be small corrections of the normal-mode frequencies
Q, and Q,. According to the Poincaré-Lindstedt method,
these new frequencies are also given by a series in powers of
o, as

wq=Qq+0'w;1>+olwff)+ e, g=1,2. (10)

The corrections are determined by the requirement that all
terms in the differential equations of motion, giving rise to
secular terms (of the form 7 sin w,t, etc.) in the solutions
Q,(1), be eliminated.

Let us consider the equation of motion for the first mode,
whose first few terms on the right-hand side (r.h.s) are

0,+ 070, =- 0(30]0] + 607050,03 + 30703070,
+ 0. (11)

Proceeding with the Poincaré-Lindstedt series, the frequency
), is substituted on the left-hand side (Lh.s.) of Eq. (11) by
its equivalent expression obtained by squaring Eq. (10) and
solving for Qf Up to first order in o this gives

V=0’ -200,0" + -+ (12)

Substituting expansions (9) into Eq. (11), as well as the fre-
quency expansion (12) into the Lh.s. of Eq. (11), and group-
ing together terms of like orders, we find at zeroth order

Q§0)+w%Q(]0)=O, while at first order
01"+ i) =20,0{ 01" - 30100 - 603030}
X(09")7 = 3005(Q)°Q + -+ (13)

Repeating the above procedure for modes 2 and 3, we find
that their zeroth-order equations also take the harmonic-
oscillator form

OV + w20V =0, 0V +020"=0. (14)

Note that the corrected frequencies w; and w, appear in the
zeroth-order equations for modes 1 and 2, while the uncor-
rected frequency ()5 appears in the zeroth-order equation of
mode 3 (similarly, Qy,...,Qg appear in the zeroth-order
equations of modes 4-8). Continuing the construction of a
solution which lies on a two-torus, we start from particular
solutions of Eq. (14) (with zero velocities at r=0) which read

Q(lo)(t) =A, cos wt, Q(ZO)(t) =A, cos wyt,

ng)(t) =Aj cos (st,

where the amplitudes A;,A,,A5 are arbitrary. If the solution
is to lie on a two-torus with frequencies w; and w,, we must
set A;=0, so that no third frequency is introduced in the

solutions. In the same way, the zeroth-order equations Q(O)
+QL21Q(O) 0 for the remaining modes g=4,...,8 yield solu-
tions Q 0)(z‘) =A,cos ,t and we set Ay= A5—---—A8—O
Thus, we are left with only two nonzero free amplitudes A,
and A,.

Now, consider Eq. (13) for the first-order term Q(1 (1).
Only zeroth-order terms Q g (t) appear on its r.h.s., allowing
for the solution to be found recursively. The Cru01a1 remark is
that by the choice A;=---=Ag=0, one also has ng)(t)=
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:Qéo)(t):O; whence, only a small subset of the terms appear-
ing in the original equations of motion survive on the r.h.s. of
E((l (13), namely, those in which none of the functions
0)( Q8 (1) appears. As a result, Eq. (13) is simplified
dramatlcally and upon substitution of Q1 ()= A, cos wt,
)(t) =A, cos w,t reduces to
Q(ll) + le(l) 2Q wmAl cos w;t — 3QIA1 cos® w1
- 60203443 cos w1 cos’ w,t. (15)
This can now be used to fix w) ), so that no secular terms
appear in the solution, yleldmg

of!) = AT0] + 3430,07,
while, after some simple operations, we find for Q(ll)
34307 cos 3wyt 34,A30302 cos(w; + 2w,)1
32w’ 2(w; +2w,)* - 7]
3A,A50303 cos(w; — 2wy)t
2[(w,

By the same analysis, we fix the frequency correction of the
second mode,

o\ =

- 20’2)2 - wf] (1)

oy = 34305 + 341070,
and obtain the solution
34305 cos 3wyt 3A7A,07Q; cosLw; + w,)t
323 22w, + wy)* - 3]
3A3A4,0303 cosLw, — wy)t
22w - w)* - w%]

o(r) =

: (17)

which has a similar structure as the first-order solution of the
first mode. For the third-order term there is no frequency
correction, and we find

A?Q?Q3 ( 3 cos wit cos 3wt )
+
4 -0 9wi-03
3A IA%QIQ§Q3< cos(w) — 2w,)t
+
4 ((1)1 —2(,02)2—9%
cos(w; +2wy)t 2 cos w;t
2 02t T2 o2
(01 +20,)" - Q5 wy—Q;3

oM =

(18)

We may thus proceed to the sixth mode to find solutions in
which all the functlons Q3 v (O) are equal to zero, while
the functions QY,...,Qf" are nonzero. However, a new
situation appears when we arrive at the seventh and eighth
modes. A careful inspection of the equation for the term
0,

8

2 C7,l,m,nQ7QlQanQ§0)Qgr?)QS))’

l,m,n=1

Q(1)+QZQ

(19)

shows that there can be no term on the r.h.s. which does not
involve some of the functions Q(O) ,Qg)). Again, this fol-
lows from the selection rules for the coefficients of Eq. (6).
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Since all these functions are equal to zero, the r.h.s. of Eq.
(19) is equal to zero. Taking this into account, we set

W(£)=0, so as not to introduce a third frequency € in the
solutions; whence, the series expansion (9) for Q(¢) neces-
sarily starts with terms of order at least O(c?). The same
holds true for the equation determining le)(t).

Some remarks regarding the above construction are in or-
der:

(i) Consistency. The solutions (16)—(18) (and those of
subsequent orders) are meaningful only when the frequencies
appearing in the denominators satisfy no commensurability
condition. The spectrum of uncorrected frequencies (1,
given by Eq. (4), is fully incommensurable only if N is either
a prime number minus 1 or a power of 2 minus 1 [28]. In all
other cases, there are commensurabilities among the unper-
turbed frequencies, examples of which are given, e.g., in
[29]. However, such commensurabilities do not affect the
consistency of the construction of the Poincaré-Lindstedt se-
ries, because it can be shown that no divisors of the form
El 1n4£), appear in the series at any order and for any inte-
ger vector n=(n,n,,...,n,) #(0,0,...,0). The proof of
this statement follows from the fact that the kernel differen-
tial equations [like Eq. (15)] determining all terms Qg‘) (with
g=1,...,8) at order k read

OW(1) + ;0P (1)

k-1
= B((]k)w;k)c()s a)qt + E Agjzz],nz COS[(n]a)l + l’lzwz)t]
ny,ny eZ
|| +[n] #0
if g=1,2, (20)

while for ¢=3,...,8 the same equation holds with Bflk):O
and ’ on the Lh.s. replaced with Qﬁ. The coefficients Bflk)
and Aﬁ?’p"z in Eq. (20) are determined at previous steps of
the construction [see Eq. (24) below for arbitrary s]. It fol-
lows, therefore, that all new divisors appearing at successive

orders belong to one of the following sets:

(n] * 1)0)] + n,w,, nw+ (I’lz *+ 1)(1)2,

Q, * (mo; +nw,), ¢=3,...,8

for ny,n, € Z, |n;|+|n,| # 0; whence, we deduce that no zero
divisors can ever show up in the Poincaré-Lindstedt series
due to commensurabilities between the unperturbed frequen-
cies {1,. On the other hand, we can also exclude the appear-
ance of zero divisors due to the perturbed frequencies w,, w,
if the frequencies in a quasiperiodic solution are fixed in
advance so that the two frequencies do not belong to the
countable set of all planes defined by the relations
(mEDo+n0,=0,  no+(n, =) w,=0,  Q +(n 0,
+n,w,)=0, g=3,...,8, for all integer values n,,n, € Z, |n,|
+|n,| # 0. We stress that fixing the frequencies in advance is
a necessary ingredient of the Poincaré-Lindstedt method
since otherwise the equations at all orders [as, for example,
Eqgs. (16)—(18)] would not be solvable. Furthermore, this fre-
quency specification is analogous to the procedure followed
in the construction of Kolmogorov’s normal form represent-
ing solutions on Kolmogorov-Arnold-Moser tori (see [30]
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for a detailed comparison of the two methods). Since the
frequencies w;,w, are functions of the amplitudes A;,A,,
one deduces that the formal consistency of the method can
be established in the complement of all excluded planes, i.e.,
a Cantor set in either the frequency space (w;,w,) or the
amplitude space (A;,A,).

The above demonstration of consistency is readily gener-
alized to the construction of s-dimensional g-tori by the non-
linear continuation of the set of linear modes ¢; (with i
=1,...,s). Namely, one can demonstrate that the consistency
holds on a Cantor set of amplitude multiplets
(AgsAq,s .- +Ay) such that the resulting perturbed frequen-
cies W, (i=1,...,s) do not liec on any one of the planes

(ni+m)o

(g +my)wy, + o+ (ng+m)w, =0

q q

or

Q, = (njo, +no

= + ot nw,) =0,

>
where g¢={1,....N\{qy,....q,}; ny,....,n;eN; |n||+---
+n|#0; and m,=-1, 0, or 1 for all g=1,...,s. For ex-
ample, if the first s modes are excited by amplitudes A; (with
k=1,...s) the formula for the perturbed frequencies reads

w,=Q,+ %’qu ARG - %’Agﬂg +0(0%A), ... Ay,

(21)g=1,...,s.Fixing the values of the frequencies w, in
advance implies that Eq. (21) should be regarded as yielding
the (unknown) amplitudes A; for which the quasiperiodic
solution exhibits the chosen set of frequencies. The case s
=1 implies that the same property holds for the Poincaré-
Lindstedt series representing g breathers [2]. That is, while
by Lyapunov’s theorem the continuation of the periodic or-
bits is guaranteed in an open domain of values A, the
Poincaré-Lindstedt series can only be constructed on a Can-
tor subset of this domain. Yet, this is sufficient for our
present purpose, which is to determine by a semianalytical
approach scaling laws for the energy localization on g-tori
(or g breathers).

(ii) Convergence. Even after consistency is demonstrated,
no proof has yet been provided for the convergence of the
series. As demonstrated in the works of Eliasson [31] and
Gallavotti [32,33], the question of convergence of the Lind-
stedt series is notoriously difficult even in simple Hamil-
tonian systems. This is because the Lindstedt series for orbits
on invariant tori are convergent, but not absolutely (see the
review by Giorgilli [34]). On the other hand, it is possible to
make an absolutely convergent classical expansion by the
use of the Kolmogorov normal form as developed by
Giorgilli and Locatelli [35]. Such an analysis, however, is
quite cumbersome and will be deferred to another publica-
tion as it would obscure the results presented here.

Thus, we prefer to justify our previous statements by nu-
merical simulations, taking our initial conditions from the
analytical solutions (9) at =0 and using the GALI method
[27] to demonstrate that the solutions lie, indeed, on two-
dimensional tori, as shown in Fig. 1. The numerical solution
for the modes Q,(r), Qx(r), and Q4(z) is checked against the
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FIG. 1. Comparison of numerical (points) versus analytical
(solid line) solutions, using the Poincaré-Lindstedt series up to or-
der O(d?), for the temporal evolution of the modes (a) g=1, (b) g
=3, and (c) g=7, when A;=1, A,=0.5 and N=8, =0.1 and (d) the
time evolution of the GALI indices G,—Gg up to a time #=10° show
that the motion lies on two-dimensional torus.

analytical solution via the Poincaré-Lindstedt series, trun-
cated at second order with respect to o, when N=8, 5=0.1,
A;=1, and A,=0.5. The size of the error is found to be pre-
cisely that expected by the truncation order in Figs.
1(a)-1(c), while in Fig. 1(d) the GALI method shows that the
numerical orbit lies on a two-torus.

Let us recall that according to Skokos et al. [27], the
GALI indicators G, (with k=2,3,...), for chaotic orbits, de-
cay exponentially fast due to the attraction of all deviation
vectors by the most unstable direction corresponding to the
maximal Lyapunov exponent. On the other hand, if an orbit
lies on a stable s-dimensional torus, the GALI indices
G,, ...,G, oscillate about a nonzero value, while the indices
G,,; (with j=1,2,...) follows asymptotically power laws
falling at least as /.

This is precisely what we observe in Fig. 1(d). Namely,
after a transient initial interval (required for phase mixing to
become effective), the index G, stabilizes at a constant value
G,=0.1, while all subsequent indices, starting from G5 de-
cay following a power law as predicted by the theory. The
time for phase mixing is estimated to be of order N°/f8
~ 10*. This implies that beyond ¢=10* we should observe the
expected asymptotic behavior of the GALI indices to set in,
as is the case in Fig. 1(d). Thus, we conclude that the motion
lies on a two-torus, exactly as predicted by the Poincaré-
Lindstedt construction, despite the fact that some excitation
was provided initially to all modes.

(iii) Presence and accumulation of small divisors. There
are, of course, small divisors appearing in terms of all orders
beyond the zeroth. First, the low-mode frequencies satisfy
w,~mq/N, and hence divisors like wf or (w1—2w2)2iw%
[appearing, e.g., in Eq. (16)] are small and care must be
taken regarding their effect on the growth of terms of the
series at successive orders. In fact, the most important effects
are introduced by nearly resonant divisors, like 9w%—Q§ in
Eq. (18). Since the first-order corrections of the frequencies
w; and w, are 0(BA§/N4), for A;, B sufficiently small, one
may still use for them the approximation given by the first
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FIG. 2. Same as in Fig. 1, showing the existence of a four-torus
in the system with N=16, B=0.1, when A;=1, A,=0.5, A;
=0.333..., and A4=0.25. The temporal evolution Q,(t) is shown for
the modes (a) g=1, (b) g=5, and (c) g=13. (d) The GALI indices
G, (with k=2,3,4) are seen to stabilize after 1~ 10*, while for k
=5 the indices continue to decrease by power laws.

two terms in the sinus expansion of Eq. (4), namely,
mq ¢’
w = -_—
T (N+1) 24(N+1)°

with the error being O(AJZ-B/N“) for w;,w,, and O((g/N)?)
for all other frequencies. This implies that a divisor like
9w%—Q§ can be approximated by the relation

l¢* i = Q] = [(qgo; + Q) (g - Q)]

(22)

_ 27 T’ ~q)
(N+1)24(N+1)°

of2)

In general, the terms produced at consecutive orders involve
products of divisors, whose influence on the size of the series
terms must be taken into account in estimates of the profile
of energy localization for the g-tori solutions, as explained in
Sec. II D below.

(iv) Sequence of mode excitations. The profile of energy
localization along a g-torus solution is determined by the
sequence of mode excitations arising as the recursive scheme
proceeds to subsequent orders. The term “excitation” here
means that the solutions of the Poincaré-Lindstedt method
should be nonzero for the first time at the order where it is
claimed that the excitation takes place. For example, as al-
ready explained in our previous construction of a two-torus
solution, modes 1 and 2 are excited at zeroth order, modes
3—6 at first order, and modes 7 and 8 at the second order of
the recursive scheme.

Figure 2 presents one more example showing the com-
parison between our analytical and numerical results for the
modes Q,(7), Os(1), and Q5(z), along a four-torus solution
constructed precisely as described above, with N=16, S
=0.1 and by exciting modes 1-4 at zeroth order, via the
amplitudes A;=1, A,=0.5, A3=0.333..., and A4,=0.25. In

B 7T4C]4
12N
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FIG. 3. (Color online) The average harmonic energy E, of the
gth mode as a function of ¢, after a time 7=10° for the (a) two-torus
and (b) four-torus solutions (open circles) corresponding to the ini-
tial conditions used in Figs. 1 and 2, respectively. The stars are E,
values calculated via the analytical representation of the solutions
Q,(t) by the Poincaré-Lindstedt series. The filled circles show a
theoretical estimate based on the average energy of suitably defined
groups of modes [see Eq. (35) and relevant discussion in the text].

this case, we find that the modes excited at the first order of
the recursive scheme are ¢g=5-12, while the modes excited
at second order are g=13—16 and the GALI method shows
that the motion occurs on a four-torus since Gs is the first
index to drop asymptotically like ' [see Fig. 2(d)].

The sequence of excitation of different modes plays de-
monstrably a crucial role in estimating the profile of energy
localization since the amplitudes of all excited modes at the
rth order have a prefactor o”=[8/2(N+1)]". This is the sub-
ject of the next section, in which a proposition is provided
for the sequence of mode excitations, in the generic case of
arbitrary N and arbitrary dimension s of the low-dimensional
torus (with the restriction s <N). Next, the consequences of
this proposition are examined on the localization profile of
g-tori and nearby FPU trajectories.

C. Sequence of mode excitations

In order to motivate the results of this section, let us first
limit ourselves to what happens in the case of the solutions
of Figs. 1 and 2. Figure 3 shows the average harmonic en-
ergy of each mode over a time span 7=10° in the cases of the
g-torus of Figs. 1 and 2, shown in Figs. 3(a) and 3(b), re-
spectively. The numerical result (open circles) compares ex-
cellently with the analytical result (stars) obtained via the
Poincaré-Lindstedt method. The filled circles in each plot
represent “piecewise” estimates of the localization profile in
groups of modes excited at consecutive orders of the recur-
sive scheme. The derivation and exact meaning of these the-
oretical estimates will be analyzed in detail below. Here, we
point out their main feature, showing a clear-cut separation
of the modes into groups following essentially the sequence
of excitations predicted by the Poincaré-Lindstedt series con-
struction. Namely, in Fig. 3(a) we see clearly that the de-

crease in the average energy Eq along the profile occurs by
abrupt steps, with three groups formed by nearby energies,
namely, the group of modes 1 and 2, then modes 3—6, and
then modes 7 and 8. The same phenomenon is also seen in
Fig. 3(b), where the grouping of the different modes follows
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precisely the sequence of excitations (1-4), (5-12), (13-16)
as predicted by the theory.

Let us, therefore, extend our approach to a more general
consideration of the structure of the solutions lying on low-
dimensional tori. Using the Poincaré-Lindstedt method, a so-
lution and its frequencies are expanded in series of the form

0,(0=2 0¥, w,= E ol (23)
k=0

where w(O)EQq. Substituting Eq. (23) into the equations of
motion (7) and separating terms of like orders, the equations
at order k read

k n
0, + w0, = 2 ( >
ni=1 \ny=0
N
- Qq 2 QlQanqumn

I,m,n=1

(ny)  (ny—ny) (k=ny)
wq 2 wq 1772 )Qq 1

k-1

X X

ny2,3=0

0", (24)
ny+ny+ny=k—1

Note that Eq. (24) is still quite general. Let us consider,
therefore, the case where only a subset of modes 1=g,
<g,<---<gy=N is excited at the zeroth order of the per-
turbation theory, assuming that Q‘));&o if and only if ¢
€{q1.95,...,q,}. The modes ¢, ...,q, need not be consecu-
tive. We wish to see how this type of zeroth-order excitation
propagates at subsequent orders. More specifically, we wish

to determine for which ¢ values one has Q(k’<k)=0, ink)
#0, i.e., the modes ¢ are first excited at the kth order. The
answer is provided by the following.

Proposition. Let the starting terms of a Poincaré-Lindstedt
series solution with s frequencies be set as

Qg?) =A, cos(w, f + qu[) for i=1,2,...,s, 1=¢q,=q,
= =¢,=N,
Q(O) =0 for all g # g;. (25)

Then, besides the terms Q (t) the Poincaré-Lindstedt series
terms Q(k)(t) which are permltted to be nonzero at the kth
order of the series expansion are given by the values of ¢
=¢™ satisfying

D=]2AN(N+1)-my|, m[mod(N+1)]#0, (26)

where m; can take any of the values |iq,~l e
with iy,i, ... i €{1,...,s} for any possible combination
of the = signs, and N=[(m;+N)/2(N+1)].

The proof of the proposition is given in Appendix A.
Some simple examples clarify the use of rule (26):

q breathers. If we excite only one mode g, at zeroth order,
new modes are excited one by one at subsequent orders and
one has m;=(2k+1)q,. As long as m; =N, the newly excited
modes are ¢®'=m;=(2k+1)q,, i.e., exactly as predicted by
Flach ef al. [1]. A particular case arises when g;=2(N+1)/
3, (N+1)/2, or (N+1)/3. Then, one readily sees that no new
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modes are excited at any subsequent order, which is in agree-
ment with a well-known result [36] (see also [37]).

Two-dimensional g-tori. Assume we excite the modes g,
=1, g,=2 at zeroth order. At first order (k=1) we have again
q= iqiziqi3| with i,i,,i3 €{1,2}. We readily find that
the newly excited modes are g=1+1+1=3, g=1+1+2=4,
q=1+2+2=5, and ¢g=2+2+2=6. At order k=2, the first
newly excited mode is g=1+1+1+2+2=7, while the last
newly excited mode is g=2+2+2+2+2=10. In general, at
order k=1 the newly excited modes are 2(2k—1)+1=g¢
=2(2k+1).

s-dimensional g-tori. Assume we excite the modes g,
=1, ¢,=2,...,q9,=s at the zeroth order. In the same way as
above we find that the newly excited modes at order k=1 are
s(2k=1)+1=g=s(2k+1). More complicated choices of the
initially excited modes ¢, ... ,q, lead to very interesting lo-
calization patterns that will be the subject of a separate study.

D. Profile of the energy localization

In order to study now in Fourier space energy localization
phenomena associated with FPU trajectories, let us construct
estimates for all Q,(r) terms participating in a particular
g-torus solution in which the s first modes (¢;,q2,--.,q;)
=(1,2,...,s) are excited at zeroth order of the theory, with
amplitudes A|,A,, ..., A, respectively.

Denoting by ¢ the indices of all modes which are newly
excited at kth order, according to the proposition of the pre-
vious section, one has

k-1
® _
Qq<k>+ Wy =—Qn 2
ny2,3=0
ny+ny+ny=k—1

where
D,={(g;,-4),4;,):9 * q;, * q;, = q;,=0}.

Assuming that the Lindstedt series are convergent, the omis-
sion of explicit reference to higher-order terms
Q(qlf;')l),ngZ)Z), ... is justified as long as only an estimate of the
size of the oscillation amplitude of the mode ¢ is sought.

The average size of the oscillation amplitudes of each
mode along an s-dimensional g-torus follows now from es-
timates on the norms of the various terms appearing in Eq.
(31). If we denote by A% the mean value of all the norms

[Q . we find the following estimate:
(C )kA2k+1
SRTETES G2

where Ag=A" is the mean amplitude of the oscillations of
all modes excited at the zeroth order of the perturbation
theory and C is a constant of order O(1). The proof of Eq.
(32) is deferred to Appendix B, in which the analytical esti-
mate C=3/2 is given. In fact, Eq. (32) is a straightforward
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e M, ={max[1,2k-1)s+ 1], ...,(2k+ 1)s}.

(27)

Whence, the following useful estimates are obtained:

q(k) e M, (k=1), q(k) = (2k+1)s,
2k + 1) s
= — 28
“a= TN 28

Let us now define the “majorant” norm in the space of
trigonometric polynomials f,

|lf1l=§

(29)

where Ay are the coefficients of a trigonometric polynomial
with, say (for simplicity), only cosine terms,

= Ay cos(k - ). (30)
k

Quantity (29) satisfies all properties of the norm Since the
serles terms of a mode Q,w(t) satisfy Q (k)—() Vn<k,
o (k> #0, from Eq. (24) we deduce that the equation deter-
mining Q( ), reads

> Q) Q1€ ng)Q("‘l)Q("z) Q<n3) ) (31)

(q(n]>’q(”2),q(’l3)) e Dq(k)

generalization of the estimate given in Flach et al. [2] for ¢
breathers, while the two estimates become identical (except
for the precise value of C) if one sets s=1 in Eq. (32), and
qo=1 in Flach’s g-breather formulae.

Thus, the g-tori provide an explanation for the results re-
ported in [10,11] and offer a bridge between the natural
packet approach and the interpretation of energy localization
for FPU trajectories based on g breathers. In particular, the
physical picture suggested by the above analysis is that,
starting with initial conditions near g breathers, a “backbone”
is formed in the phase space by a hierarchical set of solutions
which are, precisely, the solutions lying on low-dimensional
g-tori (of dimension s=1,2,...,s<N). All FPU trajectories
with initial conditions within this set exhibit a profile of the
energy localization characterized by a “stepwise” exponen-
tial decay, with step size equal to 2s, as implied by Eq. (27).
All the modes ¢ e M s share a nearly equal mean ampli-
tude of oscillations, which follows the estimate of Eq. (32).

Using Eq. (32), we find it convenient to obtain piecewise
estimates of the energy of each group using a formula for the
average harmonic energies E® of the modes ¢®). To achieve
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this, note that the total energy E given to the system can be
estimated as the sum of the energies of the modes 1,...,s
(the remaining modes yield only small corrections to the
total energy), i.e.,

772S3A(2)

E swq(())AO N1

On the other hand, the energy of each mode ¢ can be
estimated from

WZSZ(CSB)ZkAgIHQ

w L2 B\
£ 1l se) 4O~ SR

2N\ oV + 1)

which, in terms of the total energy E, yields

E(k) E(CZBZ(N-'- I)ZEZ)k

st (33)

s
Once again, the similarity of Eq. (33) with the corresponding
equation for g breathers is obvious. The latter equation reads

(2]

2 22\ k
93 (N+1)E>’ (34)

Ering, ~ qu< 6amq
where ¢, is the unique mode excited at zeroth order of the
perturbation theory. Note, in particular, that the integer s
plays in Eq. (33) a role similar to that of ¢, in Eq. (34). This
means that the energy profile of a g breather with gy=s pre-
sents the same exponential law as the energy profile of the
s-dimensional g-torus. But the most important feature of the
latter type of solutions is that the profile remains unaltered as
N increases, provided that (i) a constant fraction M=s/N of
the spectrum is initially excited (i.e., that s increases propor-
tionally to N) and (ii) the specific energy e=E/N remains
constant. Indeed, in terms of the specific energy e, Eq. (33)

takes the form
E® ~ £ C2'8282 ‘ 35
M\ =Mt ) (35)

i.e., the profile becomes independent of N. A similar behavior
is recovered in the g-breather solutions provided that the
“seed” mode ¢, varies linearly with N, as was shown in
detail in Refs. [38,39].

E. Numerical results for FPU trajectories

Examples of the stepwise profiles predicted by Eq. (33) in
the case of exact g-tori solutions are shown by filled circles
in Fig. 3, concerning the solutions depicted in Figs. 1 and 2
(in all fittings we set C=1 for simplicity). From these one
can see that the theoretical piecewise profiles yield nearly the
same average exponential slope as the profiles obtained ei-
ther numerically or analytically by the construction of the
solutions via the Poincaré-Lindstedt method. Thus, estimates
(33) or (35) appear quite satisfactory for characterizing the
localization profiles of exact g-tori solutions.

The key question now, regarding the relevance of the
g-tori solutions for the interpretation of the FPU paradox, is
whether Eq. (33) or Eq. (35) retains its predictive power in
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FIG. 4. (Color online) The average harmonic energy E, of the
gth mode over a time span T=10° as a function of ¢ in various
examples of FPU trajectories, for 8=0.3, in which the s(=N/16)
first modes are only excited initially via Q,(0)=A,, Qq(0)=0, and
g=1,...,s, with A, selected so that the total energy is equal to the
value E=H indicated in each panel. We thus have (a) N=64, E
=107 (b) N=128, E=2X107; (c) N=256, E=4 X107 (d) N
=64, E=1073; (e) N=128, E=2X1073; and (f) N=256, E=4
X 1073, The specific energy is constant in each of the two rows, i.e.,
£=1.5625X 1075 in the top row and &=1.5625 X 10~ in the bottom
row. The dashed lines represent the average exponential profile E,
obtained theoretically by the hypothesis that the depicted FPU tra-
jectories lie close to g-tori governed by profile (35).

the case of generic FPU trajectories which, by definition, are
trajectories started close to, but not exactly, on a g-torus. An
answer to this question is partly contained in the results pre-
sented in Figs. 4 and 5. Figure 4 shows the energy localiza-
tion profile in numerical experiments in which S is kept fixed
(B=0.3), while N takes the values N=64, 128, and 256 (al-
though in Sec. II B the derivation of explicit g-tori solutions
was practically feasible by computer algebra only up to a
rather small value of N (N=16), in the present section the
results with numerical trajectories are extended to much
higher values of N). In all six panels of Fig. 4 the FPU
trajectories are computed starting with initial conditions in
which only the s=4 (for N=64), s=8 (for N=128), and s
=16 (for N=256) first modes are excited at r=0, with the

N=64p=0.3 (a)
H=0.05 s=4

(c).

N=64 3 =0.3

N=64 3 =0.3
p ™ H=0.2 s=6

H=0.1 s=4 ™~

\,

N=64 $=0.3 (d)
H=0.3 s=7

N=64 §=0.3
H=0.4 s=10 N

N=64 3 =0.3 ~
H=0.5 s=12

10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
q q q

FIG. 5. (Color online) Same as in Fig. 4(a) but for larger ener-
gies, namely, (a) E=0.05, (b) E=0.1, (c) E=0.2, (d) E=0.3, (¢) E
=0.4, and (f) E=0.5. Beyond the threshold E=0.05, theoretical
profiles of form (33) yield the correct exponential slope if s is
gradually increased from s=4 in (a) and (b) to s=6 in (c), s=7 in
(d), s=10 in (e), and s=12 in (f).
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excitation amplitudes being compatible with the values of
the total energy E indicated in each panel, and constant spe-
cific energy £=1.5625X 107° in the top row and £=1.5625
X 107 in the bottom row of Fig. 4.

The resulting trajectories differ from g-tori solutions as
follows: in the g-tori all modes have an initial excitation,
whose size was estimated in Eq. (32) or Eq. (33), while in
the case of the FPU trajectories only the s first modes are
excited initially, and one has Q,(0)=0 for all modes g>s.
Furthermore, since in the g-tori solutions one also has
[0,=5()|<]|Q,=s®)|| for all ¢, the FPU trajectories can be
considered as lying in the neighborhood of the g-torus solu-
tions, at least initially. The numerical evidence is that if E is
small, they remain close to the g-tori even after relatively
long times, e.g., r=10°.

This is exemplified in Fig. 4, in which one sees that the
average energy profiles of the FPU trajectories (at #=10°)
exhibit the same behavior as predicted by Eq. (33), for an
exact g-torus solution with the same total energy as the FPU
trajectory in each panel. For example, based on the values of
their average harmonic energy, the modes in Fig. 4(a) (in
which s=4) are clearly separated in groups (1-4), (5-12),
and (13-20), etc., as foreseen by Eq. (27) for an exact four-
torus solution. The energies of the modes in each group have
a sigmoid variation around a level value characteristic of the
group, which is nearly the value predicted by Eq. (33). The
grouping of the modes is distinguishable in all the panels of
Fig. 4; a careful inspection of which verifies that the group-
ing follows the laws found above for g-tori. Also, if we su-
perpose the numerical data of the three top (or bottom) pan-
els we find that the average exponential slope is nearly
identical in all the panels of each row, a fact consistent with
Eq. (35), according to which—for a given fraction M of
initially excited modes—this slope depends on the specific
energy only, i.e., it is independent of N for constant &.

When we increase the energy, the FPU trajectories result-
ing from s initially excited modes start deviating from their
associated exact g-tori solutions. As a consequence, the en-
ergy profiles of the FPU trajectories start also deviating from
the energy profiles of the exact s-tori. This is evidenced by
the fact that the profiles of the FPU trajectories become
smoother, and the groups of modes become less distinct,
while retaining the average exponential slope predicted by
Eq. (35). This “smoothing” of the profiles is discernible in
Fig. 5(a), in which the energy is increased by a factor of 50
with respect to Fig. 4(d), for the same values of N and B.
Also, in Fig. 5(a) we observe the formation of the so-called
“tail,” i.e., an overall rise of the localization profile at the
high-frequency part of the spectrum, accompanied by spikes
at particular modes. This is a precursor of the evolution of
the system toward equipartition, which manifests itself ear-
lier in time for larger energies.

Nevertheless, the important remark is that the phenom-
enon of exponential localization of the FPU trajectories per-
sists and is still characterized by laws like Eq. (33), even
when the energy is substantially increased. Furthermore, at
energies beyond a threshold value, an interesting phenom-
enon occurs which is worth mentioning: for fixed N (see,
e.g., Fig. 5, where N=64), as the energy increases, a progres-
sively higher value of s needs to be used in Eq. (33), so that
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the theoretical profile yields an exponential slope that agrees
with the numerical data.

As evidenced in Fig. 5 for 8=0.3, N=64, the threshold is
E=0.1. This value splits the system in two distinct regimes:
one for £<0.1, where the numerical data are well fitted by a
constant choice of s=4 in Eq. (33) (indicating that the FPU
trajectories are indeed close to four-tori), and another for E
> 0.1, where best-fit models of Eq. (33) occur for values of s
increasing with the energy, e.g., s=6 for E=0.2, rising to s
=12 for E=0.5. This indicates that the respective FPU tra-
jectories are close to g-tori with a progressively higher value
of s (with s>4), despite the fact that only the four first
modes are excited by the initial conditions of these trajecto-
ries.

This behavior is analogous to the natural packet scenario
described by Berchialla er al. [13], in which a set of modes is
seen to share the energy after some time even if this energy
is initially given to only the first mode. These authors also
observed that the law giving the localization profile of their
metastable states stabilizes as the energy increases. Indeed,
according to Eq. (33), such a stabilization implies that in the
second regime the width s depends asymptotically on E as
s E'2 or from Eq. (35) that M &', This agrees well with
estimates on the width of natural packets formed by the
B-FPU model described in [12].

III. STABILITY OF THE MOTION NEAR ¢-TORI
A. Linear stability

The linear stability of g breathers can be studied by the
implementation of Floquet theory (see [2]), which demon-
strates that a g breather is linearly stable as long as

6BE,(N+1)
P

This result is obtained by analyzing the eigenvalues of the
monodromy matrix of the linearized equations about a
g-breather solution constructed by the Poincaré-Lindstedt se-
ries. Numerical verification can also be used to analyze the
dynamics about the fixed point corresponding to a g breather
under the Poincaré map of the flow of Eq. (7).

In the case of g-tori the above techniques are no longer
available. Nevertheless, a reliable numerical criterion for the
stability of g-tori is provided by the GALI indices [27]. Ac-
cording to this method, if a g-torus becomes unstable beyond
a critical energy threshold, the deviation vectors of trajecto-
ries started exactly on the g-torus are attracted by its unstable
manifold; whence, all the GALI indices beyond and includ-
ing G;,, (k being the dimension of the unstable manifold)
fall exponentially fast. Naturally, if one starts with trajecto-
ries in the vicinity of an unstable g-torus, these trajectories
are weakly chaotic. Thus, it turns out that all GALI indices
start falling exponentially after a transient time, and this can
be checked by calculating the time evolution of the lowest
index, i.e., G,.

Using this criterion, we examined the stability of g-tori
and determined approximately the value of the critical en-
ergy E,. at which a g-torus turns from stable to unstable.

<1+ O0(1/N%. (36)
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FIG. 6. (Color online) Assuming that the critical energy E,, at
which the GALI index G, shows that a g-torus destabilizes is fitted
by the law E.=AB!, we show in the upper curve (triangles) the
dependence of A on N for an FPU trajectory started by exciting
initially only the g=1,2 modes. The middle curve (filled circles)
corresponds to a similar calculation for FPU trajectories started near
a g-breather solution, where only the g=1 mode is excited. The
dashed line corresponds to A~N~!, according to the law of Eq.
(36).

Figure 6 shows an example of this calculation using FPU
trajectories started close to two-tori. The quantity A shown in
the ordinate corresponds to a calculation keeping N fixed and
varying B, until a critical energy E, is determined, beyond
which the GALI index G, loses its asymptotically constant
behavior. All calculations refer to a maximum time f,,,,
=107 up to which we require that the exponential falloff of
G, must have been observed (in general E,. decreases as f,,,,
increases, tending to an asymptotic limit as f,,,,— ). The
values of E, found this way provide upper estimates for the
transition energy at which the exact g-torus turns from stable
to unstable, i.e., for any choice of t,,,, the transition energy is
lower than the value of E,. found by the GALI method.

As expected, due to the obvious scaling of the FPU
Hamiltonian by S, the critical energy for all considered val-
ues of N turns out to be well fitted by a power law E,
=AB~'. However, the fitting constant A depends also on N, as
seen in Fig. 6. From the triangle data in the figure it is clear
that the dependence of A on N is weaker than N7, ie., the
law predicted by Eq. (36) for the ¢ breathers.

On the other hand, the dependence A xN~' was approxi-
mately found for FPU trajectories started close to a ¢
breather, where only the mode ¢g=1 is initially excited. In
that case the numerical data (filled circles) have a slope close
to that predicted by Eq. (36), although the whole numerical
curve is shifted upward with respect to the dashed line, a fact
verifying that the GALI method yields critical energies E.
which are higher than the value at which the ¢ breather be-
comes unstable.

The weak dependence of A on N on the upper curve of
Fig. 6 is a numerical indication that the g-tori solutions are
more robust than the g breathers regarding their linear stabil-
ity. This numerical behavior is related to the results of the
previous section, which indicate that the number of modes
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FIG. 7. (Color online) (a) Time evolution of the GALI index G,
up to r=107 for an FPU trajectory started by exciting the g=1 and
2 modes in the system N=32, 8=0.1, with a total energy E=2, i.e.,
higher than E.=1.6. (b) Instantaneous localization profile of the
FPU trajectory of (a) at =107 (c) Same as in (a) but for N=128,
E=1.323 (in this case the critical energy is E.=1.24). (d) Same as
in (b) but for the trajectory of (c).

excited initially does not always coincide with the dimension
of the g-torus which the FPU trajectory eventually ap-
proaches. Also, the destabilization of simple periodic orbit
represented by a g breather does not imply that the tori sur-
rounding the breather are also unstable.

At any rate, the most important remark concerning the
linear stability of g breathers or g-tori is that the exponential
localization of FPU trajectories persists even after the asso-
ciated g breathers or g-tori have been identified as linearly
unstable by the GALI criterion. This behavior is exemplified
in Fig. 7, where Figs. 7(a) and 7(c) show the time evolution
of the index G, for two FPU trajectories started in the vicin-
ity of two-tori of the N=32 and N=128 systems, when S
=0.1 and t,,=10". In both cases, the energy satisfies E
>FE,., as the exponential falloff of the index G, is already
observed at t=10". However, a simple inspection of Figs.
7(b) and 7(d) clearly reveals that the exponential localization
of the energy persists in the Fourier space of both systems. In
fact we have found that the exponential localization persists
for energies much larger than E,, but for time scales which
become smaller as E increases.

B. Heuristic argument on exponential stability

The results of the previous section confirm the observa-
tion made on the basis of numerical experiments in [10] that
a result establishing exponential stability for FPU trajectories
close to g-tori should be possible. This has already been
discussed in the Introduction, where we mentioned a partial
result in this direction obtained recently in [17]. It was
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pointed out, however, that so far the main obstruction to
precise analytical statements lies in the bad dependence of all
existing estimates on N.

Thus, in closing our paper, we would like to offer a heu-
ristic argument on how the property of exponential localiza-
tion of the energy for particular FPU trajectories could serve
as a basis for further improvement of rigorous results. For
definiteness, we refer below to the case of FPU trajectories
for which the question of exponential stability can be exam-
ined in the framework of a variant of Birkhoff’s method due
to Giorgilli [20], based on the direct calculation of approxi-
mate integrals of motion without the use of normal forms
[40-42].

The trajectories we are referring to have initial conditions
close to a particular family of g-breather solutions consid-
ered in [38,39], whose “seed mode” g, varies proportionally
to N. We thus take the seed mode to vary as go=(N
+1)/2u, where p can be any large number that is a power of
2, while N is a power of 2 minus 1, so that no commensura-
bilities exist in the set of N unperturbed FPU frequencies (2,
(with g=1,...,N). The exact g-breather solution oscillates
with just one frequency and thus lies on a one-dimensional
torus. However, perturbing this trajectory, we obtain solu-
tions lying on u-dimensional tori involving the modes ¢
=(2j-1)qq (with j=1,2, ..., u). Furthermore, the energy lo-
calization profile for the g-breather solution is the same as
that of a s-dimensional g-torus solution with s=¢, given by
Eq. (35), where M=¢qy/N=1/2p.

Let us assume that this localization profile holds also ini-
tially for the FPU trajectory that is a perturbation of the exact
g-breather solution. Our aim then is to demonstrate that
when one establishes estimates of exponential time of stabil-
ity T~exp(1/&°) for the energy localization profile of this
type of FPU trajectories, the exponent ¢ does not depend on
the number of degrees of freedom (i.e., it is independent of
w), despite the Diophantine character of the unperturbed fre-
quencies (), of the u modes g=(2j-1)q, (with j
=1,2,...,1).

To this end, we recall that, according to [20], the question
of the long-term stability of particular trajectories can be
examined by constructing approximate integrals of motion in
the form of truncated series starting with harmonic energies

D=0+ P4 - (37)

where @ is an rth degree polynomial in the canonical vari-

ables (g, ....qnsP15---,py) defined by
V0,0, - PO, -iNQ,0,+ PO,
q;= = > Pj= ., (38)
V2 \'2
Q=p. —; ; (r) ;
and ®;”'=E;=i{);p;q;. The functions ;" are determined re-

cursively, by solving formally the Poisson bracket condition
{(IJJ(-Z)+CI>;4)+---, H,+H4}=0, demanding that the series ®;
be an integral. Here, H, and H, are the quadratic and quartic
terms of the B-FPU Hamiltonian written in the variables
(¢;,p)). The order by order solution is then found via the
so-called homological equation
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(@2 HY+{DV Hy}=0, r=4.6,.... (39

which has the same algebraic structure as the homological
equation of Birkhoff’s normalization scheme. The solution
reads

oo > ™"
J ey (m—m)-Q’

m+n=r

(40)

where the use is made of the compact notation q™p"
=q\"q5% - qy'p'py PN, m=(my,my, ... my), m=m,
+my+ -+ -+my (similarly for n), and h(’ are the polynomial
coefficients of the Poisson bracket {CD ) ) H,}.
It is well known that the series (37) is asymptotic. We thus

consider the rth order finite truncation @, , <I>(2)+(I) 4y

CID(’ representing an approximate 1ntegral of motlon whose
tlme variation is given by

dd;
=R, = {00 Hy). (41)

The quantity R;, is called the remainder function. The
asymptotic character of the series implies that the size of R; ,
decreases initially as r increases, up to an optimal order r
=r,, beyond which the size of the remainder increases with
r, becoming ultimately divergent as r— . Recursive appli-
cation of the homological equation (39) (see [20,24] for de-
tails) yields that the size of the remainder at order r can be
estimated by

||R || " (”—2)||Rg,r—2||
o ar
== 4R,
ar20r4
-2) ! IR;
_ (r=2)!1] 1,4”’ (42)

ArpQp g Ay

where ||R; || denotes the absolute sum of the polynomial co-
efficients h,,, for all (m,n) with |m|+|n|=r and a; (k
=4,6,...,r—2) denotes the minimum of all divisors (m
—n)-Q, =k at order k. The prefactors (r—2),(r
—4),... come from the derivatives of the functions
CD;"”,@;"“, .., with respect to the canonical variables
(q,p), appearing in Poisson brackets due to recursive appli-
cation of the homological equation which yield factors
. within the func-

tions q> S Y

Our heur1stlc argument now goes as follows: since in the
considered trajectories the total number of participating
modes is equal to u, and N is a power of 2 minus 1, the
associated divisors satisfy a Diophantine condition of the
form

1-o/=>
|
with 7> u—1. The estimate 7~ u holds for u large. One
then has a,_,a, 4 a,~ y"~"(r—=2) ! 1"#, which, upon sub-
stitution in Eq. (42) leads to

for all 1 € ZV,

(43)
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18 /2

e L
where the estimate ||H,||=0(B/N) is taken into account and
C. is a O(1) positive constant. These estimates, based on
small divisors, are standard and lead by themselves to no
improvement as far as the dependence of the asymptotic
character on w is concerned. However, an improvement can
be achieved if we also take into account the numerators of
the remainder series, which for FPU trajectories possess the
exponential localization profile shown in Eq. (34). In other
words, the size of the remainder depends also on the size of
the monomials

A/_L = (Q%/zgl)sl(ﬂéugZ)sz T (QL/Zgﬂ)s#’

where &, stands for either ¢, or p, since each term of the
remainder consists of one such a monomial multiplied by a
coefficient bounded by an estimate of form (44). In view of
Eq. (38), one has |Q2&|~E;">. Thus, taking into account
the form of profile (34), the size of the above monomial at
the rth order of normalization can be estimated as

|Au| ~ (E)VA(Ey)*?- - (EM)S"/2

- E(51+52+~ . ~+s'u)/2(ﬁ’u28)sz+23'3+' . ‘+(M—1)SF,’

where s;+5,+ - - -+s,=r. For the leading terms (with smallest
divisors) in the series the exponents s;,s,,...,s, typically
take values such that the estimate sp+2s3+- - +(u—1)s,
~ ur/2 holds. Thus,

|A rD;Er/ZS,urQ (45)

M| -
where D, is a new constant. Combining now estimates (45)

and (44) yields a final estimate for the size of the remainder
of the form

ﬁ 12
Rt L e
N |Rr|| — B*[(r— 2)!](M+1)/28(;L+1)r/2, (46)
The optimal order of truncation is found by taking the loga-
rithm of Eq. (46), using Stirling’s formula In n! =n In n—n,

as well as r=2=r (for r large), using d In||R,||/dr~0. We
thus find r,,, ~ 1/&; whence, the optimal value of the remain-

der is
Mm+ l)
, 47
e (47)

ol ~ x| -

i.e., the time variations of the integrals & jur,p AT€ EXpONEN-
tially small in 1/e. This yields an estimate of exponential
stability of the form T~exp(1/&°), where c=1, i.e., the num-
ber of degrees of freedom no longer appears in the exponent
c. Compared to general estimates yielding ¢ ~ 1/ u, it is seen
that the removal of the dependence of ¢ on u was possible
thanks to the assumed exponential scaling of the energy lo-
calization profile that allows for estimate (45). In turn, since
this localization profile is the same as for g-tori, the above
analysis is suggestive of the usefulness of exponential local-
ization in the ¢ space in order to obtain improved estimates
in the case of g-tori solutions as well. However, in the lack of
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a rigorous demonstration, it remains an open question
whether such a strategy can lead to estimates of a stretched
exponential law for the dependence of ||R,,|| on &, as evi-
denced also to a limited extent by the numerical experiments
of [10].

IV. CONCLUSIONS

The main conclusions of the present study can be summa-
rized as follows:

(1) We introduced the concept of g-tori in FPU lattices,
which represent a generalization of the concept of ¢ breath-
ers. The g-tori have low dimensionality s <N and arise from
the continuation of motions with s independent frequencies
of the unperturbed problem.

(2) We explicitly calculated FPU solutions lying on g-tori
by employing the method of the Poincaré-Lindstedt series.
Based on estimates of the leading terms of these series, we
provided a theoretical law yielding the average exponential
localization of the energy in Fourier space for solutions on
g-tori. Furthermore, a proposition was proved which explains
how different groups of modes are excited at consecutive
orders of the perturbation theory. The most important con-
clusion from this analysis is that, if the fraction s/N is kept
constant, it appears that the localization profile depends on
the specific energy e=E/N of the system, i.e., it is indepen-
dent of N. Some numerical evidence is provided in support
of the above theoretical analysis, but further numerical work
is necessary, in order to clarify the extent of its validity.

(3) We explored numerically the relevance of g-tori of
dimension s to the dynamics of FPU trajectories started
nearby, by exciting s modes only. The localization laws
found analytically for g-tori accurately describe the localiza-
tion of energy in Fourier space for the FPU trajectories as
well. We also gave numerical evidence of the existence of
two regimes separated by a critical energy value. Below this
energy, the localization profiles E(q) «exp(—bg) have a slope
b depending logarithmically on &, while the fraction M
=s/N of modes sharing the energy is constant. Furthermore,
beyond this critical energy the slope of the localization pro-
file tends to stabilize, and M tends asymptotically to the law
M x ' as g-tori of progressively higher dimension begin to
describe the dynamics of the numerical FPU trajectories.

(4) We examined the stability of g-tori using a numerical
criterion provided by the GALI indices [27] and provided
numerical evidence demonstrating that the localization in
Fourier space persists for energies well above the threshold
value at which the underlying g-tori turn from stable to un-
stable.

(5) Finally, we provided a heuristic argument suggesting
that the exponential energy localization in g-mode space im-
plies a particular analytical structure of the Birkhoff series
obtained for associated FPU trajectories that could lead to
improved estimates of the long-term stability in the spirit of
the Nekhoroshev theory. In the example of FPU trajectories
started close to g-breather solutions exhibiting the same en-
ergy localization as for g-tori, our arguments suggest that in
stability estimates of the form 7~ exp(1/&°) it is possible to
remove the bad dependence of ¢ on the number of degrees of
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freedom of the problem. Of course, further study, substanti-
ated by numerical experiments, is needed before rigorous
statements become available on this issue.

ACKNOWLEDGMENTS

We wish to thank Dr. S. Flach, Dr. A. Ponno, and Dr. A.
Giorgilli for useful discussions clarifying particular points of
the paper, as well as one referee who pointed out some in-
consistencies in our first version. H.C. was supported in part
by a grant from I.LK.Y., the Foundation of State Scholarships
of Greece, and gratefully acknowledges the hospitality of the
Max Planck Institute for the Physics of Complex Systems.

APPENDIX A: SEQUENCE OF MODE EXCITATIONS
For all g # g; (with i=1,...s), the equations yielding the
Poincaré-Lindstedt series terms Qfll at first order are

N

2 QquQanquan;O Q O)Q(O)'

I,m,n=1

0+ 050 -

(A1)

The r.h.s. of the above equations is different from zero if
Cyimn# 0. In view of definition (6) of Cy,,, nonzero solu-
tions of Eq. (A1) containing no new frequencies (), are pos-
sible for the values of ¢ satisfying elther g=q"
=|xltm=*n|=m, with I,m,ne{q,.qs,....q,}, when 1
=m, =N, or ¢V=|2(N+1)=|*I*=m=n||, when N+2=m,
=2N+1 or 2N+3=m;=3N. Both cases are given by Eq.
(26), for A\=0 and 1, respectively. Thus, the proposition holds
for k=1. Assuming it to be true at order k—1, and using Eq.
(31), one finds for the kth order that solutions introducing no
new frequencies are possible for the modes satisfying either
g=qP=|xl1=m=*n| (with 1=¢gW=N) or g=¢gW=[2(N+1)
—my| (with 1 =¢®™ =N), where

=

mn1+N
m"1=|q/'1iqj2i iqunlu’ Ny = m ’

M, =lan =4, = g,
m, +N
)\"2= )
2(N+1)
n= Ny, = |qzl * q, * * Qt2n3+1|’
my, +N
N, = | —— |, A2
B 2N+ 1) (A2)
with jl»"'7]2n]+1’r17" r2n2+1’t1"' t2n+le{1 S} n

+n,+n3=k—1. Taking the last relation as well as all p0351ble
sign combinations in the sum *=/*m *n into account, the
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permitted modes at kth order are given by equations of the
form
gV =2(=N, N, EN, E QN

+(*q, *q,*

ilz

(A3)

T qizk+1) ’

provided that 1=¢®W=N, where g=0 or 1, and
i1,i, ..y €{1,...,5}. After a possible sign reversal
within | - |, not affecting the absolute value, the expression

T g)(N+1)

= qi2k+l)|

D=]2(£N, N, TN
+(*q;, *q;,*
always resumes the form

g% =

(A4)

where m;=|q; *q;,* -~ *q; [and\ is an integer number.
However, by the second restriction of Eq. (A3), namely, 1
=¢W=N, one necessarily has that A=[(m;+N)/2(N+1)],
which concludes the proof of the proposition.

APPENDIX B: ESTIMATES ON LOCALIZATION
PROFILES

Ilz
trigonometric terms of the form

The products Q(<,,1)Q("2> Q(q'(',% in BEq. (31) give rise to
Q(nn1>Q 732 Qfﬁi) — cos(a @) + @y, + -+ a,w )t
a; € Z, +a| =2k+1

(B1)

|| + Jag] + -+

on the r.h.s. of Eq. (31). For each trigonometric term of form
(B1), and k=1, Eq. (31) introduces a divisor to the solution

for Q(q]f,){), namely,
2 K K
q(k> (E a;w ) = (Q ) — 2 ajwj> (Qq(k)+ E aij-).
J=1 J=1
(B2)

In view of Eq. (22), the smallest divisors are those satisfying

gV=2a. (B3)
j=1
For such divisors, one has
s
, ((q<’<>)3 S ayf?
W, (k) — E a:w;= el + O((mskIN)Y),
oo 24(N+1)°

while, for the sum EJLIa jj3 one has the inequality

N N N N SZ(S+ 1)2
2ap’| = 2la| 2P =2l ——
j=1 J=1 =1 =l

in view of which the estimate
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N 40
s a)|
B~ =10

jzzl a]] 4

holds. On the other hand, using condition (B3) as well as Eq.
(28) one obtains

s s 2 s
S
2k +1)s ~ a2 j~ 5 2 laj.
j=1 j=1 j=1
Combining the last two expressions we find
2 ajj3
j=1

in view of which [combined with Eq. (28)] one finally ar-
rives at an estimate for the size of divisors

2k +1)
2

N s
(I)q(k) - 21 ajwj (l)q(k) + El aj(l)j
J= J=

2} 2ms(2k + 1)
(N+1)

532k + 1){(2k+ 1)2- 1

24(N+1)3

4.4 4
N’]TS(2k+1) - (B4)
12(N+1)*
Returning to Eq. (31), for fixed values of n,, n,, and ns, there
are at most s triplets (¢"),q" ¢")) satisfying
(g",q",q"™)) € D w. Using this fact as well as estimates
(B4) and (28), one obtains for the norms of the various terms
the estimate

RN+ 1D* 7sQk+1) st
st 2k+ DY (N+1) (N+1)3

k-1

x X

11230
ny+ny+ny=k—1

<l il

oyl ~

(2n,+1)(2n, + 1)(2ny + D] QY0

or
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k-1
12s
(k)
~ 2n+1)2n,+1)2n5+ 1
o wl Okt 1) n1§=o (2n + 1)(2ny+ 1)(2n3+ 1)

ny+ny+ny=k—1

x[@lnlleilell. (B5)

Denoting by A® the average size of the oscillations of all the
modes ¢, Eq. (B5) takes the form

k-1

12
A=

e (2n; +1)(2ny + 1)(2n

n12,3=0

ny+ny+ny=k—1

+ DAMAmIA M) (B6)

By induction it now follows that

_ (3s/2)"A5""!
2n+l1

AW (B7)

Indeed, assuming Eq. (B7) to be true for the amplitudes A",
A" and A" in Eq. (B6), it follows that

e (35/2)k 1125424+ "i‘ |
(2k+1)3 P

ny+ny+ny=k-1

B 125AF Kk + 1)

(2k+1)* 2
_ Bs/)M12sA7 2k + 12 (3s/2)kA5H!
+ B +1
(2k+1)* 8 2k+1

which demonstrates the validity of Eq. (32) in the text, with
the constant C having the specific value C=3/2.
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