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Parameter estimation of dynamical systems via a chaotic ant swarm

Haipeng Peng, Lixiang Li,* Yixian Yang, and Fei Liu
Information Security Center, State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876, China;
Key Laboratory of Network and Information Attack and Defence Technology of MOE,
Beijing University of Posts and Telecommunications, Beijing 100876, China;
and National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts
and Telecommunications, Beijing 100876, China
(Received 10 April 2009; published 13 January 2010)

Through the construction of suitable objective function, the parameter estimation of the dynamical system
could be converted to the problem of parameter optimization. Based on the chaotic ant swarm optimization
approach, we investigate the problem of parameter optimization for the dynamical systems in the presence of
noise. We systematically analyze the basic relationships among the complexity of objective function, the length
of time series, and the performance of the searching algorithm. Furthermore, we consider the effect of mea-
surable additive noise on the objective function. Numerical simulations are also provided to show the effec-

tiveness and feasibility of the proposed methods.
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I. INTRODUCTION

The problem of modeling from time series is known as
“system identification” and “reconstruction of dynamical
systems” [1]. Two types of models, that is to say, gray box
model and black box model, are common in the field of
system identification. For the gray box model, although the
peculiarities of what is going on inside the system are not
entirely known, a certain model based on both insight into
the system and experimental data is constructed. However,
there are still a number of unknown free parameters which
can be estimated using system identification. For the black
box model, no prior model is available. Parameter estimation
(identification) problems deal with the reconstruction of un-
known functions or geometric objects appearing as param-
eters in systems of differential equations. In general, if the
basic mathematical model of the dynamical system is known,
we only need to estimate the unknown parameters of the
dynamical system equations. Consequently, the gray box
problem of system identification usually equates to the prob-
lem of parameter estimation of the specified system.

From the aspects of estimation methods, the least-squares
method and its variants are the basic approaches for the pa-
rameter estimation. It was first developed by Gauss, and it
could be used in the linear and nonlinear systems [2]. The
Kalman filter method is one of the widely used estimation
methods [3]. Synchronization based methods are also pro-
posed to identify the parameter [4—6]. Recently, many intel-
ligent optimization algorithms are developed for the param-
eter identification such as tabu search, genetic algorithms [7],
neural network [8], and particle swarm [9]. The parameter
estimation process utilizing heuristic optimization algorithms
is based on the objective function, and here optimization, in
mathematics, refers to choosing the best element from some
set of available alternatives. Through the construction of
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suitable objective function, the problem of parameter estima-
tion of the dynamical system could be converted to that of
parameter optimization. However, there are still few discus-
sions about the influence of objective function on the param-
eter estimation, especially in presence of noise.

In recent years, there is a significant interest in developing
rapidly converging optimization algorithms based on animal
foraging routines. Based on the biological two-bridge experi-
ment of ants, Dorigo and Eberhart developed random models
called ant colony optimization (ACO) algorithms [10]. One
may now find applications of these algorithms in different
areas such as robotics, objects clustering [11], communica-
tion networks [12], and combinatorial optimization [13]. In-
spired by a biological experiment of ant’s chaotic behavior,
we recently gave a mathematical model called chaotic ant
swarm (CAS) optimization algorithm in Ref. [14]. Tt is a
derivative-free method. In CAS, the individuals of the ant
colony exchange information and benefit from their own ex-
perience together with the experiences of other individuals,
while exploring promising areas of the search space. The
model and mechanism of CAS are different from those of
ACO. The CAS algorithm has been applied in different areas
such as fuzzy system identification [15], economic dispatch
[16], computation of multiple global optima [17], data clus-
tering, and parameter identification [18].

In our previous work [18], we studied the parameter iden-
tification problem of chaotic system. But we did not study
the parameter identification problem of other dynamical sys-
tems. Usually the objective function and noise have impor-
tant impact on the estimation performance. However in Ref.
[18], we did not study the effects of objective function and
noise. So in this paper, we first discuss the influence of ob-
jective function on the estimation performance in the process
of parameter estimation. The relationships among the com-
plexity of objective function, the length of time series, and
the performance of the searching algorithm are systemati-
cally analyzed when the dynamical system is in one of the
four states—stability, incipiently unstable, periodicity, and
chaos. Second, we study the effects of noise on the objective
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function. The existence of noise increases the numbers of
local minima for the objective function and adds the diffi-
culty of parameters estimation. Finally, based on the chaotic
ant swarm algorithm, numerical simulations about parameter
estimation of dynamical systems are given to illustrate the
effectiveness and feasibility of the proposed methods.

II. CHAOTIC ANT SWARM ALGORITHM

In recent years, ant colonies, and more generally social
insect societies, have always fascinated human beings. What
particularly strikes the occasional observer as well as the
scientist is the high degree of societal organization that these
insects can achieve in spite of very limited individual capa-
bilities. As a result of this organization, ant colonies can
accomplish complex tasks that in some cases far exceed the
individual capacities of a single ant. Social ants have self-
organization and information transfer (communication) be-
haviors. Ant societies are a particular (though very extended)
class of social organization. The global patterns of behavior
are the result of emergent phenomena not reducible to the
properties of individuals. In the past few years, such emer-
gent behavior was reported in relation with chaotic dynamics
in Leptothorax ant colonies. Global oscillations of colony
activity were reported together with the observation that in-
dividual behavior can be characterized by means of low-
dimensional strange attractors [19]. The study of ant chaotic
behavior and of their self-organizing capacities brings great
interest from computer scientists to develop models of dis-
tributed organization which are useful to solve difficult opti-
mization and distributed control problems. In the following,
we give the detailed chaotic ant swarm algorithm based on
some biological observations and investigations on the cha-
otic and self-organizing behaviors of ants.

A. Chaotic and self-organization behaviors of ants

Chaos in insect behavior was first reported by Cole from
his experimental studies on activity cycles in ants of the
species Leptothorax allardycei [19]. Cole used a solid-state
automatic digitizing camera to perform a careful experimen-
tal study of individual isolated ants and ant colony dynamical
behaviors. The investigations by Cole showed that “the ant
behavior may be chaotic. The attractor of the movement ac-
tivity of single, isolated Leptothorax longispinosus ants has a
small, noninteger dimension characteristic of low-
dimensional chaos. The activity of entire colonies of ants
yields an integer dimension that is consistent with periodicity
in activity.” Cole speculated that, “The existence of chaos in
animal behavior can have several important implications.
Variation in the temporal component of individual behavior
may not be due simply to chance variations in the stochastic
world, but to deterministic processes that depend on initial
conditions.” Inspired by the chaotic and self-organization be-
haviors of ants, we recently gave a mathematical model
called CAS to solve the optimization problems in engineer-

ng.
B. Chaotic ant swarm model

Our model searches for optimum or near optimum in the
search space symbolized as R, the L-dimensional continu-
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ous space of real numbers. We consider a population of n
ants. These ants are located in a search space S and they try
to minimize a function f:S— R. Each point s in S is a valid
solution to the considered problem. In this letter, we only
consider the search space to be a continuous space (S=R’).
The position of an ant i is the algebraic variable symbol s;
=(z;,...,2;), where i=1,2,...,n. Naturally each variable
can be of any finite dimension.

In order to obtain the chaotic search initially, the chaotic
system, z(r+1)=z(1)eP~%], is introduced into our equation,
and the above system can be obtained from z(r+1)
=z(1)e"1'=*0] which is described by Solé er al. in Ref. [20]
(for more details please see the Appendix). Obviously during
its motion, each individual ant is influenced by their current
position, the best position so far by itself and by its neigh-
bors and organization process of the swarm. The adjustment
of the chaotic behavior of an individual ant is achieved by
the introduction of a successive decrement of organization
variable y,(¢) and leads the individual to moving to the new
site that acquires the best fitness eventually. To achieve the
information exchange of individuals and the movements to
the new site taken on the best fitness, we introduce [p; (¢
—1)—z;/(t=1)]. The term p,, is selected based on the fitness
theory which is very widely developed in optimization
theory such as genetic algorithm and tabu search, and so on.
Thus, we obtain the following detailed dynamical optimiza-
tion system of chaotic ant swarm:

yilt) =yt = 1)1,

Zid(t) = Zid(t - 1)e[l_e_a".”(t)]B—',//dzid(t—l)]
+[pig(t=1) = 24t = 1)Je 20+ (1)

where a is a sufficiently large positive constant and can be
selected as a=200, b is a constant and 0=b= %, i, deter-
mines the selection of the search range of the dth element of
variable in search space, ;=0 is termed by us as organiza-
tion factor of ant 7, y;(0)=0.999, and z;,4(¢) is the current state
of the dth dimension of the individual ant i, where d
=1,2,...,L. pj(t—1) is the best position found by ith ant
and its neighbors within #—1 steps, y,(¢) is the current state of
the organization variable, r means the current time step, and
t—1 is the previous step.

v{(#) and r; control the convergence of Eq. (1), and the
larger the r; is, the faster the y;(r) convergences. If the orga-
nization factor r;=0, which means the ant swarm is not or-
ganized, and in this condition, e~} and 2@+’ approxi-
mately equal zero, then Eq. (1) becomes the chaotic model
2id(D)=zi4(t—1)elP~¥azia=D]; if the organization factor r; is
very large, the time of ‘“chaotic” search is small then the
system converges quickly and we cannot achieve the desired
optima (or near optima). If the organization factor r; is very
small, the time of chaotic search is large then the system
converges slowly and the runtime will be longer. Since small
changes are desired as time evolves, the value of r; is chosen
typically as 0<r;=0.5. The format of r; can be designed
according to concrete problems and runtime. In order to de-
note that each ant has different r;, for example, we can set it
as r;=0.1+0.2rand( ), where rand( ) is a uniformly distrib-
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uted random number in the interval [0,1]. After the chaotic
search, y;(r) approximately equals zero and the convergence
of Eq. (1) will be mainly determined by z;;(t)=z;,(t—1)
+exp(b)[pi(t—1)—z,4(t=1)]. In this condition, when 0<<b
<In(2), the state z;,(¢) of Eq. (1) will converge to p,,(t). The
values r; should be suitably selected according to the con-
crete optimization problems.

Via numerous simulations, we find that the above model
of chaotic ant swarm [Eq. (1)] searches for optima in con-
strained positive or negative intervals. That is to say, if ¢,
>0, Eq. (1) can be used to realize the search process in the
intervals in which all z;;=0, and if ,<0, Eq. (1) can be
used to realize the search process in the intervals in which all
2;4=0. When all the optima are located in positive intervals
(or negative intervals), Eq. (1) is effective to solve the nu-
merical optimization problems. However, the elements of the
optima can be located in all the ranges of real-numbered
space. In order to solve the problem of search regions, we
introduce V;(7.5/,) and give the following version of CAS
model which is better than Eq. (1):

yi(t) =yt = 1)+,

zia(t) = {z‘d(t -1+ y 2 | -3y g 0-0)
L L llﬂd

+[piat = 1) = iyt = D]e 2@ —y,—  (2)
Pa

where 0=V,;=1 determines the search region of ant i and
offers the advantage that ants could search diverse regions of
the problem space. If V,-=%, it means the chaotic attractor of
ant i moves a half to the negative orientation compared to the
chaotic attractor of Eq. (1). The values V; should be suitably
selected according to the concrete optimization problems.
We call Eq. (2) the general algorithmic model of chaotic ant
swarm. In this model we can select the initial position of an
individual ant as z;;(0)=7.5/,;(1-V,;)rand( ), where ,;>0.
More details about CAS are given in Ref. [14].

ACO algorithms and CAS algorithm are both inspired by
ant behaviors. But principles of the two algorithms are dif-
ferent. ACO algorithms, based on probability theory, explain
how ants can find the shortest paths between food sources
and their nests using pheromone. However, ACO algorithms
do not consider the chaotic behaviors of single ants. Chaotic
ant swarm algorithm was based on chaotic search strategy
and self-organization of ant colony. The search strategies
based on chaos properties have been found to obtain nice
capabilities of hill climbing and escaping from local optima.

III. DEFINING THE OBJECTIVE FUNCTION

In this section, we will discuss the parameter estimation
process of the dynamical systems via chaotic ant swarm al-
gorithm. Let us consider a continuous dynamical system

X=G(%;0), 3)

where ¥=(x,,...,xy)7 € RV is the state vector of the dynami-
cal system, X is the derivative of the state vector ¥, and ©
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=(6,,...,6;) is the unknown parameter vector of the dy-
namical system.

The parameter identification process of continuous dy-
namical system is shown in the following process. Randomly
generate the initial positions of all the ants in the searching

space, then the initial position of ant i is @°=(6%,, ..., &))",
i=1,...,K, where ® is the estimation of unknown parameter

vector ®. The searching ranges of unknown parameters are
selected by ;, where d denotes the search range of the dth
element of variable in searching space. Based on the measur-
able state vector X’:(xl,...,xN)T, we define the following
objective function:

w
£@) = 2 A, (0) = x5 (O + -+ [n0) x0T, (4)
=0

where 1=0,1,2,...,W. Thus, the problem of parameter esti-
mation is transformed to that of using CAS algorithm to

search for the suitable value of @"=(8),,...,)" such that
the objective function f(é) is globally minimized. For each

iterative step of the searching algorithm, substitute é:’ into
Eq. (3). Run the dynamical Eq. (3), then we attain the corre-
sponding state vector &/ (r)=[x/}(1), ... ,.xI\(1)]". At each itera-
tive step, calculate the corresponding objective function by
Eq. (4). If the values of the objective function of all the ants
meet the desired accuracy or a given maximal number of
iterations has been achieved, then we consider that the end
condition has been fulfilled. Also the parameter identification
process is stopped with the results output.

Now we discuss how to obtain the state vector x(f). The
simulation was performed in MATLAB by using the well-
known fourth-order Runge-Kutta algorithm. Let the dynami-
cal system run freely. After a transient process, select a point
randomly as the initial states at which the time is set as zero.
Let the dynamical system run from this initial states to Wh.
Then we can obtain the standard variable X(¢)
=[x,(2), ..., xp0)]" at time Ok, 1h,2h, ..., Wh, where h is the
step size.

In order to consider the influence of the noise on the es-
timation results in practical applications, we define %
=(7,....,my)" as the measurable state vector of dynamical
system (3) in the presence of additive observational noise,
where 7,=x,—§,, &, is an independent and identically dis-
tributed sequence, Gaussian random values with zero mean
and variance oé Then the objective function is expressed as

w
£@) =2 {Im (1) =5 + -+ [oy(t) - () ). (5)
=0

Through the chaotic ant swarm algorithm, we can derive the
estimation (5; of parameter ® in the presence of the additive
observational noise. In order to study the effectiveness of the
proposed algorithm, we define the following mean-squared
error:

&= ((f1g= 01)7+ +++ (B 6,)7), (6)

where (-) stands for mathematical expectation, and ((é,-)
—-0;), i=1,...,L is the bias in the estimation of 6. As is
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FIG. 1. The graph of the objective function for the time series of
stable system (8) at #=0.5,x7=0.3,2=0.001: (a) W=2; (b) W=20.

well known from the theory of probabilities, the mean-
squared error can be expressed as

A A 2 2
e2=((019— 60>+ -+ (O - GL)2+0'§1+ oy

(7

Thus, we could analyze the estimation results via the mean-
squared error. Similarly we could further research on the
parameter estimation problem of discrete dynamical systems.

IV. OBJECTIVE FUNCTION BEHAVIOR FOR EXAMPLE
MODEL SYSTEMS

In order to study the influence of objective function on the
searching performance of the optimization algorithm, we se-
lect a linear system and a nonlinear system. For simplicity,
both of the dynamical systems are one-dimensional systems
with one unknown parameter. The effects of the measurable
additive noise on the objective function are also considered.
Similarly, we could extend our results to the cases of multi-
dimensional systems with multiparameter.

A. One-dimensional linear system

Consider the one-dimensional linear system
X1 =1— 0x,, (8)

where x is the state variable and 6 is the unknown parameter.

When the parameter and initial state value of dynamical
system (8) are selected as #=0.5, x,=0.3, system (8) is a
stable dynamical system. In Fig. 1, we give the simulation
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FIG. 2. The graphs of the objective function for the time series
of stable system (8) with Gaussian noise of zero mean, 0.01 vari-
ance, and 0.1 amplitude and here #=0.5,x,=0.3,h=0.001: (a) W
=20; (b) W=2000.
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FIG. 3. The graphs of the objective function for the time series
of incipiently unstable system (8) at 6=1.5,x,=0.3,2=0.001: (a)
W=2; (b) W=20.

result about the relation between the objective function and
the unknown parameter.

Seen from Fig. 1, we know that there is only a minimum
in the cost function graphs. Through many simulations, we
find that the cost function of a one-dimensional linear stable
system without noise has one global minimum whatever the
length of time series W is increased by. The complexity of
cost function does not have a relation with the length of
sample series. In this situation it will be easy for the chaotic
ant swarm algorithm to find the minimum. But the longer the
sample time series is, the longer the time of the estimation is.

In the presence of additive observational noise, Fig. 2
shows the simulation results of the relationships among the
objective function, the length time series, and additive obser-
vational noise. From Fig. 2, we can see that when W is small
(for example, W=20), the original time series have been
masked by the noise and the global minimum of the objec-
tive function does not correspond with the real value of the
unknown parameter. Thus, the method based on objective
function could not be used to estimate the parameter. But
when W is large enough (for example, W=2000), the effect
of additive noise on the cost function becomes small enough
and the method of cost function could be used to estimate the
unknown parameter.

When the parameters of dynamical system (8) are selected
as 0=1.5,x,=0.3, system (8) is an incipiently unstable dy-
namical system. In Fig. 3, we give the simulation results
about the relationship between the objective function and the
unknown parameter. We can see that Fig. 3 is similar with
Fig. 1.

Then we go on our study when there is additive observa-
tional Gaussian random noise in the linear incipiently un-
stable system. In Fig. 4, we give the simulation result about
the relationship between the objective function and the un-
known parameter, and we could see from Fig. 4 that the case
of linear incipiently unstable system is similar with that of
the linear stable system. There is only one different point.
For the linear incipiently unstable system, if W= 20, then we
could use the method of objective function to estimate the
parameter. But for the linear stable system, W should be set
larger than 2000.

B. One-dimensional nonlinear system

Consider the following nonlinear system:
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FIG. 4. The graphs of the objective function for the time series
of incipiently unstable system (8) with Gaussian noise of zero
mean, 0.01 variance, and 0.1 amplitude and here 6=1.5,x,=0.3,h
=0.001: (a) W=2; (b) W=20.

Xpp1 =1 — 612, 9)

where x is the state variable and 6 is the unknown parameter.

When the parameters are selected as 0=1.85,x(,=0.3, sys-
tem (9) is a chaotic system. In Fig. 5, we give the simulation
results about the relationship between the objective function
and the unknown parameter.

Seen from Fig. 5, we know that there is only one mini-
mum in the cost function graphs when W is small enough.
However, when the length of time series W becomes bigger
(for example, W=20), the curve of the cost function becomes
very complex and there are many local minima in the curve
of cost function. When we estimate the unknown parameters
of chaotic system, it is evident that the selection of shorter
time series is a benefit to the searching process. It is contrary
to the traditional view. Generally, it is believed that a longer
time series must provide opportunity to get more accurate
estimates. When the sample length of the time series be-
comes longer, the graph of the cost function has many local
minima. The cause is that the sensitive dependence of cha-
otic systems on initial conditions and parameters results in a
very complicated cost function graph [21]. This adds the
difficulty of the optimization. Thus, many classical optimiza-
tion methods, such as Newton method and gradient-based
method, will not be suitable and the modern heuristic meth-
ods used for global optimization will be suitable.

In the presence of additive observational noise, Fig. 6
shows the simulation results about the relationship between
the objective function and the unknown parameter. Seen
from Fig. 6, when W is small (for example, W=5), the origi-
nal time series of the chaotic system have been masked by
the noise, the global minimum of the cost function does not
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FIG. 5. The graphs of the objective function for the time series
of chaotic system (9) at #=1.85,x,=0.3,h=0.001: (a) W=5; (b)
W=20.
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FIG. 6. The graphs of the objective function for the time series
of chaotic system (9) with Gaussian noise of zero mean, 0.01 vari-
ance, and 0.1 amplitude and here 6=1.85,x,=0.3,2=0.001: (a) W
=5, (b) W=10, (c) W=20, and (d) W=100.

correspond with the real value of the unknown parameter.
But when W is a bit larger (for example, W=20), the influ-
ence of additive noise on the global minimum of the cost
function becomes small enough and the global minimum of
the cost function corresponds with the real value of the un-
known parameter. Though there are many local minima in
the graph of the cost function, we still could use the method
of cost function to estimate the unknown parameter of the
chaotic system.

When the parameters of dynamical system (9) are selected
as 6=1.3,x,=0.9997, the system is a one-dimensional peri-
odic dynamical system with four periods. The case of peri-
odic system is similar with that of linear stable system, so we
omit the corresponding analysis.

Summarizing the results so far, we achieve the following
conclusions about the complexity of cost function, the real
value of unknown parameter, and the length of time series:

(i) Seen from all the simulation graphs, as the increment
of time series length, the cost function value of the real pa-
rameter value is departed from those of other parameter val-
ues. This agrees with the traditional views that longer time
series provide more opportunities to get more accurate esti-
mations.

(ii) When we estimate the unknown parameters of the
systems without the influence of noise, the increment of the
time series length does not increase the complexity of cost
function for the one-dimensional stable, incipiently unstable,
and periodic system. But the longer the time series is, the
longer the time of the estimation costs. However, for the
chaotic system, it is different from the other types of dynami-
cal systems. As the increment of the time series length, al-
though the cost function value of the real parameter value is
departed from those of other parameter values, the complex-
ity of cost function is increased. Thus, the selection of suit-
able series length will benefit the estimation of unknown
parameters for the chaotic system.

(iii) In the presence of additive observational noise, when
the length of time series is quite small, the cost function
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FIG. 7. Estimate of parameter 6 in one-dimensional stable linear
system, and here, we plot search values of all the ants in order to
observe nonlinear dynamical searching process of the ant swarm as
a whole.

could not represent the information of the real parameter
value. The selection of suitable series length will benefit the
estimation of unknown parameters for the dynamical system.
For the stable and periodic system, only when the length of
time series is very large (for example, W=2000), the cost
function could represent the information of the real param-
eter value. For the linear incipiently unstable system, the
length of time need not be very large (for example, W=20) to
estimate the parameter. For the chaotic system, the length of
time series need not be very large; the cost function could
represent the information of the real parameter value (for
example, W=20). But the cost function becomes very com-
plicated.

V. PARAMETER ESTIMATION RESULTS FOR EXAMPLE
MODEL SYSTEMS

In this section, numerical simulations are given to study
the parameter estimation. The simulations of the parameter
estimation for dynamical systems with additive noisy time
series are also shown in order to verify the conclusions about
the relationships between the cost function and time series of
dynamical systems in Sec. IV.

A. Parameter estimation results of the noiseless measurable
time series

At the beginning, we consider the stable linear system (8)
where #=0.5. Let us set the values of the chaotic ant swarm
parameters as y(0)=0.999, a=200, b=3, K=20, r;=0.1
+0.3rand( ) and the search range of the CAS algorithm is
[0,1]. W=20 is the parameter in objective function (4). The
result of parameter estimation is shown in Fig. 7. From Fig.
7, we can see that the trajectories of the parameter estimation
converge at the real parameter value via the effect of orga-
nization variable y;(f) and organization factor r; indicating
that the model of chaotic ant swarm is very effective to find
the real values of unknown parameters for dynamical sys-
tems.

For the incipiently unstable linear system and nonlinear
periodic system, there is one minimum in the graph of cost
function, and the results of estimation are similar with those
of the above stable linear system. The corresponding cost
function is simple, so the simulation results of estimation are

PHYSICAL REVIEW E 81, 016207 (2010)

TABLE 1. The estimation results of one-dimensional chaotic
system for different values of W.

W=30 W=40 W=60 W=100 W=120
1 1.8500 1.8295  1.7064  1.8266  1.8019
2 1.8502 1.8235  1.8294  1.8229  1.6856
3 1.8295 1.8257  1.7069  1.7430  1.8505
4 1.8500 1.8463  1.8502 1.5582  1.6160
5 1.8465 1.8502  1.8463  1.7115  1.6168
6 1.8500 1.7944  1.8583  1.8500  1.8500
7 1.8500 1.8500 1.7070  1.8714  1.6619
8 1.8240 1.8261  1.8550  1.7067  1.5827
9 1.8502 1.8463  1.8257  1.7938  1.8240
10 1.8502 1.7940  1.8481  1.7291  1.8225
11 1.8465 1.7658 17963  1.8255  1.7941
12 1.7661 1.8465 17071  1.8470  1.8550
13 1.8257 1.8224  1.8505  1.8188  1.7992
14 1.8465 1.8257  1.8235 1.8223  1.5554
15 1.8465 1.7065  1.8556  1.6258  1.7070
16 1.8500 1.8465  1.8242  1.7640  1.7992
17 1.7661 1.7626  1.8255 1.7071  1.8314
18 1.8465 1.8495  1.8257  1.8224  1.8546
19 1.8465 1.8500  1.8485  1.8263  1.8185
20 1.8295 1.8257  1.7989  1.8134  1.6625
&? 8.1295X10™*  0.0023  0.0043  0.0119  0.0199
Bias —0.0140 -0.0306 -0.0405 -0.0757 —0.1006

very good. Since these simulation figures are similar with
Fig. 7, we do not plan to give concrete figures of these simu-
lations. The results accord with the analysis of Sec. IV.

Then we consider chaotic system (9) where 6=1.85,x°
=0.3. Let us set the values of the chaotic ant swarm param-
eters as y(0)=0.999, a=200, b=§, K=20, r;=0.05
+0.1rand( ), and the search range of the CAS algorithm is
[1.5,2.5]. Let W be different values and run the program of
chaotic ant swarm algorithm, we use the CAS algorithm to
estimate the unknown parameter. From many numerical
simulations, we found that the estimation results of param-
eter € for the chaotic system were all 1.8500, when W was
selected as 2, 5, and 10, respectively. Table I gives the esti-
mation results of the unknown parameter, the corresponding
mean-squared error, and bias when W is selected as 30, 40,
60, 100, and 120. Seen from Table I, the mean-squared error
g? and |bias| increase as W increases. The cause is that the
critical sensitivity of the chaotic system to initial conditions
and parameters results that the cost function becomes very
complicated as the increment of W.

B. Simulation results in the presence of additive noise

Under the influence of additive noise, when W is small,
the cost function could not represent the information of the
real values of unknown parameters for both the systems.
Thus, we could not use the method of cost function to esti-
mate unknown parameters. In this section we do not plan to
give concrete results of these simulations.
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TABLE II. The estimation results of one-dimensional stable lin-
ear system for different values of W in the presence of additive
noise.

PHYSICAL REVIEW E 81, 016207 (2010)

TABLE III. The estimation results of one-dimensional incipi-
ently unstable linear system for different values of W in the pres-
ence of additive noise.

W=40 W=80 W=200 w=2 w=5 w=10 w=20 W=50
1 0.5058 0.5072 0.5031 1 1.3993 1.5018 1.4994 1.5000  1.5000
2 0.5232 0.4879 0.5078 2 1.4355 1.5429 1.5028 1.5000  1.5000
3 0.4799 0.5002 0.4886 3 1.8094  1.5497 1.4990 1.5000  1.5000
4 0.4947 0.4988 0.4959 4 1.7306  1.5042 1.5011 1.5000  1.5000
5 0.5016 0.4958 0.5241 5 1.5389 1.4337 1.5025 1.5000  1.5000
6 0.4918 0.5013 0.4979 6 1.7635 1.5564 1.4965 1.5000  1.5000
7 0.5667 0.5167 0.5060 7 1.3036  1.5173 1.4981 1.5000  1.5000
8 0.4953 0.5012 0.5098 8 1.8278  1.4254 1.5033 1.5000  1.5000
9 0.4954 0.4953 0.4924 9 1.9672  1.4659 1.5027 1.5000  1.5000
10 0.4908 0.5027 0.4994 10 1.3222  1.5046 1.5008 1.5000  1.5000
g’ 5.65x 1074 5.28 X107 1.04x 1074 &’ 0.0630  0.0019  5.1340X10°°  0.0000  0.0000
Bias 0.0045 0.0007 0.0023 Bias 0.1098  0.0003 0.0006 0.0000  0.0000
W=1000 W=2x10° w=2x10* system. When the length of time series is very large, we
1 0.5032 0.5040 0.4993 could estimate the unknown parameters precisely. The simu-
B 0.5053 0.5035 0.4996 lation results are omitted. For the above three types of dy-
3 0.5044 0.4994 0.5005 naI.nica} systems, it is evident that if we v&./ant. to achieve
4 0.4996 0.5034 0.4995 estimation result more precTsely when the noise is larger, we
need the length of time series to be larger.
5 0.5013 0.4994 0.4988 Now we begin to consider an example of chaotic systems.
6 0.5047 0.4965 0.5002 For dynamical system (9) where 6=1.85,x=0.3,2=0.001.
7 0.5040 0.4983 0.5001 Table IV shows the simulation results of the chaotic system
8 0.4984 0.4943 0.4995 for different values of W when the chaotic system is added
9 0.5045 0.5005 0.5009 with the Gaussian random noise with zero mean, 0.01 vari-
10 0.4959 0.4997 0.500 ance, and 0.1 amplitudes. From Table IV, we could see that it
is difficult to achieve the real value of parameter when the
82_ 1791072 8.85 X107 3701077 length of time series is very small such :s 2 and 5. When W
Bias 0.0025 —-0.0001 -0.0002

For the stable linear system, only when the length of time
series is very large can we estimate the unknown parameters
precisely. In the presence of additive Gaussian random noise
with zero mean, 0.01 variance, and 0.1 amplitudes, the esti-
mation results using the chaotic ant swarm algorithm are
given out in Table II. Seen from Table II, the mean-squared
error &2 and bias are small when W is bigger enough, and the
results are identical with the above analysis about the rela-
tionships between the corresponding cost function and mea-
surable series for one-dimensional stable linear system in
Sec. IV.

For the incipiently unstable linear system, the length of
time series need not be very large, and the unknown param-
eter could be precisely estimated by the chaotic ant swarm
algorithm. The estimation results using the chaotic ant
swarm algorithm are given out in Table III. Seen from Table
III, when W is quite small, such as W=2 and W=35, it is
difficult to achieve good estimation results. When W is big-
ger (for example, W=10), we could attain estimation results
more precisely, especially, when W=20, the mean-squared
error &> and bias are all 0.

Estimation results of the nonlinear periodic system in the
presence of noise are similar with those of the stable linear

is added to 10 or 20, the estimation results are better, where
the mean-squared error &2 and bias are small enough. But the
estimation results are worse when W is added to be larger
than 50. The cause is that the sensitive dependence of chaotic
systems on initial conditions and parameters results in a very

TABLE IV. The estimation results of one-dimensional chaotic
system for different values of W in the presence of additive noise.

w=2 W=5 Ww=10 Ww=20 W=50 W=100
1 1.8515 1.8822 1.8525 1.8502  1.7943  1.8399
2 1.7758 1.8673 1.8477 1.8500  1.7071  1.8500
3 1.9294 1.9047 1.8538 1.8500  1.7071 1.7293
4 1.9815 1.8463 1.8533 1.8500  1.8297 1.8137
5 1.9649 1.8367 1.8547 1.8502  1.7070  1.5822
6 1.6587 1.8771 1.8460 1.8500  1.8465 1.8260
7 1.9340 1.8694 1.8458 1.8500  1.7946  1.5693
8 1.8678 1.9057 1.8480 1.8500  1.8348 1.8315
9 1.6590 1.8006 1.8472 1.8500  1.7065 1.8249
10 2.0388 1.9070 1.8514 1.8500  1.8235 1.8235
2 0.0158 0.0014 1.0640%x 107> 8Xx 107 0.0089 0.0169

Bias 0.0161 0.0197 4X10°  4X10~ -0.0749 —0.0810
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TABLE V. When W=30, the estimation results of the chaotic system for different values of additive noise

variance o‘é

PHYSICAL REVIEW E 81, 016207 (2010)

o’é 0.001 0.002 0.004 0.006 0.008 0.01

1 1.7940 1.8257 1.8257 1.7940 1.7658 1.7661
2 1.8465 1.7940 1.8257 1.8257 1.8465 1.8257
3 1.8465 1.8465 1.8465 1.7658 1.7940 1.8257
4 1.8500 1.8500 1.7661 1.8465 1.7940 1.8465
5 1.7661 1.8325 1.8308 1.8463 1.7940 1.8500
6 1.8502 1.8295 1.8308 1.8465 1.8295 1.8465
7 1.8500 1.8295 1.8465 1.8222 1.8500 1.7661
8 1.8465 1.7940 1.8257 1.8240 1.8295 1.8500
9 1.8257 1.8465 1.8308 1.8463 1.8465 1.8465
10 1.8295 1.8257 1.8465 1.8465 1.7661 1.8465
11 1.8295 1.8325 1.8502 1.8240 1.8308 1.8500
12 1.8257 1.8325 1.8502 1.8500 1.7940 1.8325
13 1.8465 1.8465 1.8257 1.8257 1.8257 1.8500
14 1.8257 1.8295 1.8295 1.8465 1.8295 1.8500
15 1.8325 1.8465 1.8257 1.8222 1.8295 1.8465
&2 0.0013 0.0007 0.0007 0.0010 0.0020 0.0013
Bias -0.0232 -0.0192 -0.0196 -0.0212 -0.0350 -0.0168

complicated cost function graph. It is identical with the
above analysis about the relationships between the corre-
sponding cost function and measurable series for chaotic sys-
tem in Sec. IV.

We discuss the effect of noise with different amplitudes.
When W=30, we run the chaotic ant swarm algorithm to
estimate the unknown parameter of the chaotic system. The
estimation results, the mean-squared error &2, and bias are
given out in Tables V and VI for different values of noise

variance. Seen from Tables V and VI, when the variance of
additive noise is changed from 0 to 0.02, the influence of
additive noise on the squared error of the simulation results
is small.

The error bars of the estimation results in Tables I-VI are
shown in Figs. 8 and 9, respectively, where the small “red”
dots are data point (D), the big dots denote the data mean
(M), the bars with “blue” line show range (R), and the bars
with “green” line show standard error (SE) where SE

TABLE VI. When W=30, the estimation results of the chaotic system for different values of additive

noise variance o'fc

o} 0.012 0.014 0.016 0.018 0.02

1 1.8465 1.8465 1.8465 1.8308 1.8257
2 1.8240 1.8295 1.8465 1.8295 1.8500
3 1.8257 1.8257 1.7661 1.8500 1.8222
4 1.8500 1.7661 1.8315 1.7661 1.7944
5 1.8465 1.8325 1.8295 1.8465 1.8315
6 1.8257 1.8295 1.8257 1.7940 1.8295
7 1.8315 1.8325 1.8257 1.8463 1.8240
8 1.8465 1.8315 1.8463 1.8325 1.8500
9 1.8500 1.8465 1.8500 1.8465 1.8465
10 1.8502 1.8395 1.8502 1.7940 1.8257
11 1.8257 1.8295 1.8465 1.8465 1.8295
12 1.8465 1.8465 1.8500 1.8295 1.8502
13 1.8295 1.8465 1.8257 1.8463 1.7661
14 1.7661 1.7661 1.8465 1.8295 1.8500
15 1.8465 1.8465 1.8465 1.8465 1.7661
&2 0.0007 0.0016 0.0006 0.0010 0.0014
Bias -0.0159 -0.0230 -0.0145 -0.0210 -0.0259
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FIG. 8. (Color) The error bars of the estimation results in Tables
I-1V, where the small red dots are data point, the bigger blue and
green dots represent the data mean (M), the bars with blue line
show the range (R), and the bars with green line show the standard
error (SE). (a) Error bars of the results in Table I; (b) error bars of
the results in Table II; (c) error bars of the results in Table III; (d)
error bars of the results in Table IV.

19
G2=
:_3 0001 0002 0004 0006 0008 0.01
© 185 : : : : : .
4
e 2 R LS LI P .
=
HIE: |
[£3]
19
=
2 0012 0014 0.016 0018 002
31.85 : : e
ot ¢ ¢
,8 : ' * [ E .
< SE }
§ 18} 3
el
(b)
175

FIG. 9. (Color) The error bars of the estimation results in Tables
V and VI, where the small red dots are data point, the bigger blue
and green dots represent the data mean (M), the bars with blue line
show the range (R), and the bars with green line show the standard
error (SE). (a) Error bars of the results in Table V; (b) error bars of
the results in Table VI.
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300

FIG. 10. Estimate of parameter ; of Lorenz chaotic system, and
here, we plot search values of all the ants in order to observe non-
linear dynamical searching process of the ant swarm as a whole.

=3 22:?”_/%;. From Figs. 8 and 9, we can see that the

shorter the bar lengths of both SE and R are, the better the
estimation results are.

VI. SIMULATIONS ON LORENZ SYSTEM

In this section, numerical simulations on Lorenz chaotic
system are given to verify the effectiveness and feasibility of
the proposed CAS method. The well-known Lorenz system
is described by

X =01 —x),

)&2:(02—)(73))(1—)@, (10)

X3=x1% — O3x3,

where xy, x,, and x5 are the state variables; 6, 6,, and 6; are
unknown positive constant parameters. The system is in the
chaotic state when 6,=10, 6,=28, 6;=8/3.

In order to simulate, let the parameters of the Lorenz sys-
tem be 0,=10, 6,=28, 6;=8/3. Let us set the values of the
chaotic ant swarm parameters in Eq. (1) as y(0)=0.999, a
=200, b=§, K=20, ,=0.5, ,=0.15, »5=0.75, r;=0.1
+0.2rand( ). W=30 is the parameter in objective function
(4). The searching ranges for parameters 6, 6,, and 6; are
[0,5], [0,50], and [0,10], respectively. The estimated process
is shown as follows:

50

40

200 300

FIG. 11. Estimate of parameter 6, of Lorenz chaotic system, and
here, we plot search values of all the ants in order to observe non-
linear dynamical searching process of the ant swarm as a whole.
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5 : ,
0 100 t 200 300

FIG. 12. Estimate of parameter 65 of Lorenz chaotic system, and
here, we plot search values of all the ants in order to observe non-
linear dynamical searching process of the ant swarm as a whole.

(1) Run Lorenz system (10) from initial states to Wh, and
then obtain the standard states (r)=[x,(f),x,(1),x;(1)]" at
time Oh,1h,2h, ..., Wh.

(2) Randomly generate the initial positions @f
=(6,.65,05)7 of all the ants in the searching space
[0,7.5/¢,],d=1,2,3.

(3) Substitute @f’ into Lorenz system (10), and run system
(10) to obtain the states (f)=[x(£),x5(1),x5()]" at time
Oh,1h,2h, ... ,Wh.

(4) Calculate the objective function f(E)=E:ZO{[x1(t)
=xiy (0 P+ [xo(0) = (0 P+ [x3 (1) x5 (0 1.

(5) Search based on system (1) of CAS.

(6) Let n=n+1 and go to step 3 until the evaluation func-
tion is smaller than the specified precision or the iteration
satisfies a specified maximal iterative step.

The results of parameters estimation are shown in Figs.
10-12. From Figs. 10-12, we can see that the trajectories of
the estimation of the parameters converge at the real values
of parameters and the chaotic ant swarm algorithm can be
used as an effective parameter estimation method.

Table VII gives the simulation results of the Lorenz cha-
otic system for different values of noise variance 02g when
W=20. Each result is the average over ten times in Table
VII. Seen from Table VII, the results of the mean-squared
error &> are small in the whole when the values of noise
variance change from O to 1. It indicated that the estimation
results are ideal. If we want to achieve the estimation results
of higher accuracy, we could improve in the following three
ways:

(1) Run many times the algorithm. For example, each
experiment runs 30 times. The maximum and minimum of
these 30 trials are selected as the new range of the searching.
Then run the program of the algorithm in the new range to

PHYSICAL REVIEW E 81, 016207 (2010)

] 100 200 ¢ 300 400 500
FIG. 13. The chaotic time series of the system x(z+1)
=x(1)el30),

search for the real values of unknown parameters.

(2) For the chaotic ant swarm algorithm, the chaotic
searching time is controlled by the organization variable
vi(n) and organization factor r;. So we could decrease orga-
nization factor r; appropriately and increase the iterative
times of searching to improve the accuracy of searching.

(3) Increase the number of ants in the chaotic ant swarm
algorithm. Because the CAS algorithm is based on the
swarm searching metaheuristic, the increment of scale of the
swarm will lead to higher accuracy.

VII. CONCLUSION

In this paper, we succeeded to use the chaotic ant swarm
method for estimating the unknown parameters of the dy-
namical systems. We systematically analyzed the relation-
ships between the complexity of cost function and the length
of time series when the dynamical system is in one of the
four states—stability, incipiently unstable, periodicity, and
chaos. The effects of the measurable additive noise on the
cost function were also studied. The simulations verified the
effectiveness and feasibility of the proposed algorithm.
Through numerical simulations, we achieved the following
conclusions: for the stable, periodic, and incipiently unstable
systems, longer length of time series will benefit the param-
eter estimation; for the chaotic system without the influence
of noise, shorter length of time series will benefit the param-
eter estimation because that longer series length will make
the cost function complicated; while for the chaotic system
in presence of noise, certain length of time series will make
the CAS algorithm converge well in the process of estima-
tion. The present method often produces biased estimates
when nonlinear dynamics is involved. Since the different
values of time series length W correspond to different esti-

TABLE VII. The average results of mean-squared error &> for different values of noise variance olg

o} 0.00 0.05 0.10
&2 0.0000 0.0143 0.0128
o} 035 0.40 0.45
&2 2.0000 0.2482 0.1085
o} 0.70 0.75 0.80
&2 0.0185 0.0476 0.1618

0.15 0.20 0.25 0.30
0.0708 0.0134 0.0482 0.4829
0.50 0.55 0.60 0.65
1.2483 0.0321 0.2947 0.0769
0.85 0.90 0.95 1.00
0.1787 0.0583 0.0200 0.0318
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mated bias, the selection of suitable series length could re-
duce the bias. There may be some outliers in the data set of
estimation results. The Grubbs test could be used to test for
outliers in a univariate data set. Deleting the outliers in the
data set for the estimation results may be used to reduce the
bias. Moreover, there are some further significant directions
to be investigated such as parameter identification of spa-
tiotemporal chaotic systems and topological structures iden-
tification of complex networks based on optimization meth-
ods.
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APPENDIX

In order to describe the chaotic search of ants, we intro-
duce the chaotic model z(¢+1)=z(¢)e*'=*0]. Let z()=x(1);
we have x(t+1)=x(r)el* D] When u=3, the systemﬂis in
chaotic state, which is shown in Fig. 13, and here the search
center of x(f) is approximately 7.5/2. Let x(r) = z(z), then we
obtain the model z(r+1)=z(r)el3~¥0],
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