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On the basis of the tokamap, characteristic features of magnetic field lines and zeroth-order guiding-center
particle motion in the whole body of a magnetically confined plasma, e.g., a tokamak plasma, are investigated.
It is shown that the tokamap exhibits a poloidal transport that can be considered as a Hamiltonian ratchet. In
a situation with partially chaotic magnetic field lines the locking of the averaged poloidal velocity occurs to a
value that does not depend precisely on the initial conditions. The so-called sum rule predicts the mean velocity
in agreement with the observed magnitude. Possible consequences for the onset of poloidal plasma rotation in
ergodized plasmas are elucidated.
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I. INTRODUCTION

Transport in stochastic plasmas is a basic problem in clas-
sical statistical physics with important implications for
nuclear fusion research �1�. It is widely agreed that anoma-
lous, fluctuation-induced transport is one of the most chal-
lenging issues in tokamak and stellarator physics as well as
plasma astrophysics and related areas. In laboratory plasmas,
the principally phenomena of nonlinear transport are often
overshadowed by the complexity of the device such as tor-
oidal geometry, arrangements and shapes of the confining
magnetic field coils, plasma-wall interaction, and so on. The
underlying fluctuations may have different sources. Time-
dependent magnetic fluctuations may be attributed to magne-
tohydrodynamic activities. Driftlike instabilities could result
in predominantly electrostatic perturbations. Hardly any of
the self-generated fluctuations can be analyzed with the sim-
plest nonlinear theory, i.e., quasilinear theory, because of
large amplitudes, existence of islands, and so on. As a con-
sequence, anomalous transport theory is barely tapped both
in laboratory and in astrophysical plasmas. Advanced purely
numerical simulations lead not only to perceptions but also
to a tremendous collection of data which, in many cases, still
await analytical interpretation.

Recently, magnetic fluctuations have been triggered in to-
kamaks in a controlled manner. The magnetic fluctuations
are produced by additionally installed external magnetic field
coils. Although arising from a deterministic procedure,
Hamiltonian chaos theory implicates stochasticity of the field
line motion. Incomplete stochastization of the plasma edge
may occur �see, e.g., Refs. �2–4� and references therein�.
That manipulation is now common in several tokamaks and
may be even advantageous to avoid some of the most dan-
gerous plasma phenomena. The theory of fluctuation-induced
transport in externally generated deterministic chaotic mag-
netic field systems requires a thorough analysis of the coil
arrangements, the calculation of the radial variation in toroi-
dal Fourier modes of the magnetic fluctuations, and so on.
This can, and has been accomplished. In general the formu-
lations become algebraically complicated. In such a situation
it will be advantageous to first consider only a few Fourier
modes and to investigate the transport scenario independent
of the details of the geometry, boundary conditions, opera-

tional scenarios, and so on. Such a strategy leads to funda-
mental investigations based on elementary models. The ad-
vantages of comprehensible and qualitatively correct results,
however, are being paid in part by the lack of usability for
detailed quantitative analysis. The latter is not in the center
of interest of the simple models being employed here.

Twist maps belong to the simplest approaches for the first
insight into magnetic field line transport. We will use the
tokamap, which has been proposed by Balescu and co-
workers �5� to analyze magnetic field line and zeroth-order
guiding-center particle motion in the whole body of a simple
model for a tokamak plasma �6–8�. The tokamak has been
anticipated already for interpreting several plasma phenom-
ena such as transport barriers, reconnection, edge localized
modes �ELMS�, plasma rotation, and so on �7,8�. Toroidal
rotation �9,10� is beyond the scope of the tokamap which
provides Poincaré plots in the poloidal plane. Radial trans-
port was investigated already �7,8� with results stimulated by
the fact that the radial diffusion coefficient is space depen-
dent. Here we concentrate on the angular �poloidal� trans-
port. We shall analyze directed velocities in angular �poloi-
dal� direction. For that we shall first use the “original”
tokamap �5�. The results will have direct application to field
line motion. Particle motion consists of copassing and coun-
terpassing particles with respect to the magnetic field lines.
For counterpassing particles we use the backward tokamap
which results from the tokamap by reversing the direction of
magnetic-field lines. Note that the backward tokamap is not
identical to the inverse tokamap. Such an asymmetry may be
typical for particle motion in a plasma �remember the differ-
ent drift surfaces for codrifting and counterdrifting particles�.
The difference between any average velocity of comoving
particles to the average velocity of countermoving particles
will be attributed to an effective plasma rotation. The latter is
being influenced by the degree of stochastization, as has
been observed in experiments �9,11–18�.

Recent advances in nonequilibrium statistical mechanics
shed light on the generation of currents in stochastic systems.
The ratchet effect, i.e., the generation of transport with a
preferential direction �19�, in systems with mixed phase
space is now widely discussed �20–26�. Stochastic ratchets
gave rise to an understanding of transport phenomena far
from thermal equilibrium �19�. The generic model of a sto-
chastic ratchet consists of a sawtooth potential with a noisy
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driving. The potential, while being periodic, must be spa-
tially asymmetric, and the noise should result from nonequi-
librium situations. When the noisy driving is replaced by a
purely deterministic one, one applies the notion deterministic
ratchet �21,22,27–31�. Purely Hamiltonian dynamics with
both regular and chaotic phase space structures or with com-
plete chaos may cause Hamiltonian ratchets.

One of the first applications of ratchet currents was dis-
cussed in intracellular transport; meanwhile many more ap-
plications are evident in various areas, from nanotechnology
�32� to plasma physics. In the latter field, the ponderomotive
ratchet in a uniform magnetic field �33� and the impurity
pinch in tokamak plasmas �34,35� were discussed. A ratchet-
type average velocity was demonstrated for test particles
moving radially in a stochastic potential when the magnetic
field is space dependent �34�. This constitutes a possible ex-
planation for impurity behavior in tokamak plasmas �35�.
Impurity control in magnetically confined plasmas is a very
important issue for the development of fusion reactors. The
experimental results show the accumulation of the impurities
in the central region of the plasma, which appears to be a
directed transport �a pinch� rather than a diffusive one. In the
present paper we shall investigate whether the tokamap also
allows for a directed chaotic transport in the poloidal
direction.

The tokamap, as well as its variants �34,36,47,38,39� and
generalizations �40–44�, can be assigned to a Hamiltonian H
�see Appendix A�. The kinetic energy is positive definite, but
has a generalized form compared to the standard one. Check-
ing the tokamap against other �simple� models, e.g., the
kicked rotator and its variants such as the standard map �45�,
the potential energy is significantly different. The amplitude
of the periodic potential is momentum-dependent. That be-
havior is typical for plasma maps modeling toroidal systems.
Thus, we have a type of potential which has not yet investi-
gated in view of directed chaotic transport via a Hamiltonian
ratchet process. Directed chaotic poloidal transport, if it oc-
curs, may have an interesting consequence for the interpre-
tation of poloidal rotation in ergodized plasmas.

The paper is organized as follows. In Sec. II we start with
a brief summary of the tokamap model and its variants. Sec-
tion III presents the results from numerical evaluations of the
tokamap. The findings are interpreted in Sec. IV by the so-
called sum formula. Implications on the plasma rotation are
discussed in Sec. V. The manuscript is concluded by a short
summary and conclusion. Appendix A deals with specific
aspects of the tokamap. Predictions of the sum formula will
be tested also for the bounded tokamap in Appendix B.

II. MODEL

A. Basic definitions and notation

A large class of area-preserving one-degree-of-freedom
�N=1� maps can be cast in the form �47� xk+1=xk+��yk+1�
+ f�xk ,yk+1� and yk+1=yk+g�xk ,yk+1�. The area-preserving
condition means that the Jacobian of the transformation of
variables at “time” k to variables at time k+1 must equal
unity, i.e., J��

�xk+1

�xk

�yk+1

�yk
−

�yk+1

�xk

�xk+1

�yk
�=1. Since N=1, this also

implies that the map is symplectic �48�. In the present case
we get the condition �f

�xk
+ �g

�yk+1
=0. That restriction can be eas-

ily fulfilled when we postulate f�xk ,yk+1�=L��xk�h��yk+1�
and g�xk ,yk+1�=−L���xk�h�yk+1�, where the prime denotes
the derivative with respect to the argument. L is the control
parameter.

The area-preserving condition can be also viewed from
the point of view of canonical transformations. Provided we
have a generating function of the form F�xk ,yk+1�=xkyk+1
+F0�yk+1�+L�F�xk ,yk+1�, which depends on the old coordi-
nates xk and the new momenta yk+1. Then the transformation
equations are yk= �F

�xk
and xk+1= �F

�yk+1
, resulting in

xk+1 = xk +
�F0

�yk+1
+ L

��F

�yk+1
, �1�

yk+1 = yk − L
��F

�xk
. �2�

With �F=��xk�h�yk+1� symplecticity follows.
For twist maps, the angle x should vary monotonously

with flux y,
�xk+1

�yk
�0. That twist condition is a crucial as-

sumption in the proofs of important theorems, e.g., the stan-
dard proof of the Kolmogorov-Arnold-Moser �KAM� theo-
rem �46�.

During the last decades, with respect to nondissipative
systems, two symplectic maps attracted the interest of the
broad physics community. The standard map, also called the
Taylor-Greene-Chrikov map in some of the older literature
�45,48,49�, occurs �sometimes written with �k�xk and pk

�yk� for ��y�=y, ��x�=cos�x�, and h�y�=1, i.e., F0= 1
2 yk+1

2

and �F=cos�xk�, in the form xk+1=xk+yk+1 and yk+1=yk
+L sin�xk�. It has proven to be a very convenient model for
the study of the typical behavior of Hamiltonian systems that
yield a two-dimensional map. Here we have written the first
equation without modulo 2� so that we have an area-
preserving twist map �

�xk+1

�yk
=1�. On the other hand, one of the

simplest area-preserving nontwist maps is obtained �46� for

F0=a�yk+1−
yk+1

p

p+1 � and �F=− b
Lcos�xk�, in the form xk+1=xk

+a�1−yk+1
p � and yk+1=yk−b sin�xk�, where a and b are real

numbers, p�1 is a positive integer �e.g., p=2� and
x� �− 1

2 , 1
2 � mod 1. There are several ways to violate the twist

condition; here
�xk+1

�yk
=0 at a single value of y.

For applications in nuclear fusion research, these two
maps have the disadvantage that they do not apply to toroidal
systems. That is the reason why other maps came into the
focus of plasma physicists.

B. Tokamap and its variants

In magnetic confinement physics, toroidicity plays a key
role. In toroidal configurations one may present x�� as the
poloidal angle coordinate and y�	�r2�
2 as the toroidal
flux. Here, 
�r is the radial coordinate in the torus. More
details are shown in Fig. 1. With the coordinates 
 ,� ,�
�� the torus �tokamak� is said to be described in cylindrical
approximation. The tokamap and its variants can be consid-
ered as iterative symplectic maps with generating functions
of the form
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F��k,	k+1� = �k	k+1 + F0�	k+1� + L�F��k,	k+1� , �3�

where �F��k ,	k+1�=h�	k+1�cos �k. The mapping follows as

	k = 	k+1 + L
��F�	k+1,�k�

��k
, �4�

�k+1 = �k + 2���	k+1� + L
��F�	k+1,�k�

�	k+1
. �5�

��yk+1�� 1
2�

�F0

�yk+1
is called the winding function.

The “original” tokamap, being compatible with the toroi-
dal geometry, has been proposed by Balescu et al. �5� Com-
patibility with toroidal geometry means that the radial coor-
dinate 	 should be positive definite. If 	0�0 at time zero,
then at later “times” k we also should have 	k�0. If 	0=0,
then 	k=0 should also hold. The tokamap follows from

F0 = 2��	k+1 −
3

4
	k+1

2 +
1

3
	k+1

3 −
1

16
	k+1

4 	 , �6�

�F = −
	k+1

1 + 	k+1
cos��k� . �7�

Note that the winding number is

� �
1

q
�




2�
=

1

4
�2 − 	k+1��2 − 2	k+1 + 	k+1

2 � , �8�

The safety factor q was assumed as 1 at the center �magnetic
axis�, i.e., q�0�=1. At the plasma edge 	=1, and q takes four
times the central value, q�1�=4q�0�. The function q�	� is a
monotonously increasing function of 	. Summarizing, the
tokamap is

	k+1 = 	k − L
	k+1

1 + 	k+1
sin��k� , �9�

�k+1 = �k + 2���	k+1� − L
1

�1 + 	k+1�2cos��k� . �10�

Compared to the formulation in Ref. �7� �=2�� and �
�W holds. The original paper �5� uses in addition K=2�L.
In Appendix A, we present the Hamiltonian related to this
map.

For reasons to become evident later we call the map �9�

and �10� the forward tokamap. The forward tokamap is an
implicit map. However, the first equation �9� can be explic-
itly resolved with respect to 	k+1,

	k+1 =
1

2
�
P2�	k,�k� + 4	k − P�	k,�k�� , �11�

where P�	k ,�k�=1−	k+L sin��k�. From here we recognize
that the condition that for 	0=0 also 	k=0 should follow
�invariance of the magnetic axis� will be violated for
L sin��k��−1. As a consequence, in the tokamap global
chaos appears for L�1 �38�. We come back to this point
when discussing the bounded tokamap.

The tokamap describes magnetic field line propagation
and/or zeroth-order guiding-center particle motion in field-
line direction �copassing particles�. The magnetic-field per-
turbations follow from �50–52�

�B�

B0
= L


�T

aH

��F��,	�
�	

, �12�

�B


B0
= − L

a�T


H

��F��,	�
��

, �13�

where �T=a /R0 is the inverse aspect ratio, a being the minor
radius, and R0 the large radius of the torus. B0 is the
magnetic-field strength on the axis, and H=1+�T



acos �. The

physical derivation of the tokamap suggests to introduce for
particles moving in opposite direction to the magnetic field
lines �counterpassing particles� the backward tokamap by
changing �→−� and L→−L,

	k+1 = 	k + L
	k+1

1 + 	k+1
sin��k� , �14�

�k+1 = �k − 2���	k+1� + L
1

�1 + 	k+1�2cos��k� . �15�

The backward tokamap has the same structure as the forward
tokamap; it is not identical with the inverse tokamap.

Summarizing this part one can understand the tokamap as
the paradigm for global magnetic-field propagation in a to-
kamak. However, for quantitative results many more details
have to incorporate into the symplectic twist map. General-
ized maps �40–42� which recover all the details of the
vacuum magnetic field topology of edge stochastization, e.g.,

Z

Φ R

R

Ro

Z

Φ

ρ
03D1 03D1 03C1

ϑ

ϑ

a

ϑ , Ψ

ϑ , Ψ

k+1 k+1

k k

k
φ = const

(b)(a) (c)

FIG. 1. �Color online� Geometry and coordinates relevant for the tokamap. From left to right: cylindrical coordinates R, �, and Z are used
for the torus of a tokamak. Within a poloidal cross section the intrinsic coordinates 
 and � are thenew plane polar coordinates. The mapping
is within a certain poloidal cross section at constant azimuthal angle ��� with 	�
2.
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as occurring during the dynamic ergodic divertor �DED� op-
eration at the tokamak TEXTOR, were developed. It was
also recognized that besides magnetic-field-line motion, also
the Hamiltonian for drift motion can be used as a starting
point for very detailed studies of particle motion in stochastic
tokamaks plasmas. Numerical results for poloidal plasma ro-
tation were obtained �43,44�. The present paper is related to
the latter investigations by exploring the principles of gener-
ating directed poloidal motion in stochastic plasmas.

In what follows we shall study first the poloidal field-line
motion in the tokamaks �9� and �10�. Then we shall have a
short look at the backward tokamap in order to explore the
possibility of plasma �particle� rotation.

III. POLOIDAL RATCHET CURRENT IN THE TOKAMAP

To describe the transport properties of the tokamap, we
use velocity distributions of ensemble of initial positions �in
the following called particles�. The velocity is in the angular
�poloidal� direction and, for each initial position �0, is given
by

v =
�t − �0

t
, �16�

where �=� /2�, and t�k is the time. When we assume that
real particles follow exactly the magnetic-field lines, without
any collisions, �t corresponds to the position of a copassing
�real� particle.

We first consider the forward tokamap �Eqs. �9� and �10��.
The phase portrait of the tokamap has already been fully
described in �5�. Here, we set the stochastic parameter to L
=4.5 /2�. For this parameter value, the map contains a mixed
phase space: large island chains coexist with a stochastic sea
and these are bounded, from below and above, by KAM
surfaces �see Fig. 2�a��.

The different invariant sets of the phase space render dif-
ferent types of motion. Particles with initial positions inside
islands display a regular motion with a well defined period-
icity. In contrast, trajectories of the chaotic sea own a very
complicated dynamics and, due to ergodicity, fill equally the
stochastic region.

This affects the velocity distributions of an ensemble of
particles. Take, for example, a group of particles distributed
inside an island. The average �poloidal� velocity of this en-
semble will be equal to the winding number of the island
chain, �. Figure 2�b� shows examples of such a case, where
we plot the velocity distributions of ensembles inside three
different island chains. For a distribution within the chaotic
sea the behavior is alike. Most particles will also share the
same mean velocity. This, however, only occurs after a long
period of time, as we can see in Fig. 3, where the velocity
distribution is shown for different time scales.

For the calculation of Fig. 3, we follow the method de-
scribed by Schanz et al. �20�. We choose the ensemble of
particles by running one chaotic trajectory that fills the cha-
otic sea; each point of this trajectory, then, is used as a new
initial condition. For each initial condition, we calculate �16�
at a fixed time t. This provides the probability distribution
f�v�.

In order to understand Fig. 3, we now go back to indi-
vidual orbits. Regular islands are impermeable to chaotic tra-
jectories. In spite of this, they still have great influence on
the dynamics of the chaotic region. There is a complex
boundary between the chaotic sea and regular islands, com-
posed by a set of barriers �cantori�. Because of the barriers, a
chaotic trajectory close to an island spends a long time fol-
lowing it, sharing also the same poloidal velocity.

This stickiness is reflected on the velocity distributions of
chaotic trajectories. For t�103 �Fig. 3�a��, f�v� has many

FIG. 2. �Color online� �a� Phase space of the tokamap for L
=4.5 /2�. �b� Distribution of time-averaged velocities for the chains
of islands 3, 5, and 7.
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FIG. 3. �Color online� Distribution of time-averaged velocities
in the chaotic sea at �a� t�103, �b� t�104, �c� t�105 and �d�
t�106. As t→� it evolves to a narrow peak around the asymptotic
velocity, v��0.50�0.02. We have L=4.5 /2�.
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peaks due to groups of particles following different islands.
As time evolves, each particle eventually overcomes the
stickiness and leaves, moving around the chaotic sea, until it
is trapped by another island. Since the system is bounded,
particles in the chaotic sea are destined to wander between
the different island chains of the layer. After an amount of
time tf �for the forward tokamap tf �105�, most particles will
have visited all islands and, thus, the distribution f�v� will
resume to a narrow peak around the velocity v� �Fig. 3�d��.
This velocity is, naturally, independent of initial conditions.

According to the definition proposed in Ref. �20�, a
Hamiltonian ratchet current exists when transport is ballistic,
while spreading is not. There should be a locking of the
average velocity to a specific, nonzero value that does not
depend on initial conditions. As this is the case for the en-
semble of chaotic trajectories, we argue here that the poloidal
motion of particles in the tokamap can be regarded as a
ratchetlike transport. The phenomenon is a direct conse-
quence of the intrinsic asymmetry of the phase space. The
tokamap, thus, can be thought as an application of Hamil-
tonian ratchets.

IV. INTERPRETATION BY THE SUM RULE

To understand why particles of the stochastic sea display
the directed current v�, we now examine the regular sets of
the tokamap’s phase space. The following calculations are
based on the sum rule which has been derived in Ref. �20�.
In systems with a mixed phase space the sum rule requires
chaotic transport to compensate for the directed transport oc-
curring in regular phase space regions. The mean chaotic
velocity is generally defined as the phase space integral ex-
tending over the whole chaotic sea. It can be reformulated
such that the chaotic mean velocity follows in terms of regu-
lar trajectories only. According to �19,20�, transport is an
additive quantity of disjoint invariant sets, which leads to the
following expression for the velocity of the chaotic sea

v� =

Tlayer − �
i
Ai�i

Alayer − �
i
Ai

. �17�

Here, Ai is the area of island chain i, �i is its winding num-
ber, and Alayer is the area of the layer. Tlayer is the total
transport of the layer bounded from below and above by two
KAM tori given by

Tlayer = 

0

1

d�

	u���

	l���

T��	�d	 = �T�u − �T�l. �18�

To evaluate �17�, we compute the areas and winding num-
bers of the main island chains shown in Fig. 2�a�. The values
are displayed in Table I.

The area of the layer is Alayer=0.714�0.01.
After finding the upper and lower bounding KAM tori, we

calculate, by interpolation, 	u��� and 	l���, with �= �0,1�
�uniformly spaced�. The kinetic energy of the tokamap is
given by Eq. �6� �see also Appendix A�. From where we
obtain �T�	u�� and �T�	l��, which inserted in Eq. �18� yields:
Tlayer=0.347�0.005.

Using this result in Eq. �17�, we finally arrive at:

v� = 0.49 � 0.01, �19�

which is in good agreement with the value found in Sec. III,
where v�=0.50�0.02.

The average poloidal velocity v� is, therefore, described
in terms of regular sets of the phase space. The contribution
of each island chain is proportional to its area. The major
contribution, however, comes from the total transport, given
by the KAM tori.

V. PLASMA ROTATION

The presence of a directed poloidal velocity has interest-
ing physical implications. In what follows, we calculate the
velocity distribution of counterpassing particles as well and
discuss the consequences of the results.

The phase space of the backward tokamap is depicted in
Fig. 4�a� for L=4.5 /2�. There are some clear observable
changes as compared to the forward tokamap. The first is
rather obvious: Transport now goes in the opposite direction.
The other-less evident is that the areas of regular islands, and
also of the entire bounded layer, are now slightly larger
�Table II�.

The area of the layer is now Alayer=0.80�0.01. Using
this result in Eqs. �17� and �18�, we finally arrive at

v� = − 0.47 � 0.01, �20�

which agrees well with the numerical simulation, where v�

�−0.474�0.003.
Particles that follow magnetic-field lines can be divided in

two groups: the copassing and the counterpassing ones. The
latter group is described by the backward tokamap, while
copassing particles follow the forward tokamap. Summing
the averaged chaotic velocities of both, we find that a non-
zero difference between their values exists. This variation
corresponds to a poloidal rotation and is due to magnetic
perturbations.

VI. SUMMARY AND CONCLUSIONS

In this paper we have investigated poloidal transport in
the tokamap. The latter is a simple model for the zeroth-

TABLE I. Areas and winding numbers corresponding to the
phase portrait of the tokamap shown in Fig. 2�a�.

Island chain Area Winding number

1 0.012�0.001 2/7

2 0.002�0.001 3/10

3 0.050�0.002 1/3

4 0.003�0.001 2/5

5 0.063�0.002 1/2

6 0.001�0.001 3/5

7 0.013�0.001 2/3

8 0.001�0.001 5/7

9 0.010�0.002 3/4
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order guiding-center particle motion in a magnetically con-
fined plasma under the influence of external magnetic pertur-
bations.

First, we showed that the poloidal motion in the �forward�
tokamap evolves as a ballistic transport with a narrow veloc-
ity distribution. According to the definition proposed in �20�
this behavior can be regarded as a Hamiltonian ratchet and
follows from the asymmetry of the regular sets of the phase
space. We obtained the directed current numerically and
compared it with theoretical predictions based on the so-
called sum rule, finding an excellent agreement between
both. Next, we performed similar simulations for the back-
ward tokamap. The absolute value of the ratchet current,
with the same control parameter value, is different from the
forward tokamap. This is due to changes in the phase space
structure, namely, the increase in the area of regular sets for
the backward map.

The presence of a directed current and its connection to
phase space structures have major physical implications.

Typically, magnetic fusion plasmas show a mixed phase
space. By considering, as a simple approximation, that par-
ticles move along magnetic field lines �copassing and coun-
terpassing�, we demonstrated that the appearance of a net
poloidal plasma rotation due to a asymmetrical phase space
is possible. Finally, we note that, in order to obtain accurate
quantitative conclusions, a more complete treatment should
be performed with, for instance, more sophisticated Poincaré
plots already available for various tokamaks. We stress, how-
ever, that the qualitative behavior must remain, since the
disparities in drift sections for copassing and counterpassing
particles are well known.

The differences in the Poincare sections for the group of
particle are generic. For example, the disparities in drift sec-
tions for copassing and counterpassing particles are well
known. In this paper, the asymmetry is taken into account by
the forward and backward tokamap, respectively. The ap-
pearance of a net poloidal plasma rotation due to the phase
space is demonstrated. This allegories the frequently ob-
served onset of poloidal plasma rotation velocity. Since the
sum rule can be easily applied to more sophisticated Poin-
care plots being available to various tokamaks, the proce-
dures outlined here potentially are useful for even quantita-

TABLE III. Area and winding number for the bounded tokamap
as shown in Fig. 5.

Island chain Area Winding number

1 0.0142�0.001 1/1

2 0.0221�0.002 1/2

3 0.0076�0.001 3/7

4 0.0126�0.001 2/5

5 0.0005�0.001 3/8

6 0.0154�0.001 1/3

FIG. 5. �a� Phase space of the bounded tokamap for L=8 /2�.
�b� Distribution of time-averaged velocities at time t�4�106 for
the bounded tokamap.

FIG. 4. �a� Phase space of the backward tokamap for L
=4.5 /2�. �b� Distribution of time-averaged velocities at time t
�4�106. As t→� it evolves to a narrow peak around the
asymptotic velocity, v��−0.474�0.003.

TABLE II. Areas and winding numbers corresponding to the
phase portrait of the backward tokamap shown in Fig. 4�a�.

Island chain Area Winding number

1 0.015�0.001 −2 /7

2 0.004�0.001 −3 /10

3 0.056�0.001 −1 /3

4 0.006�0.001 −2 /5

5 0.064�0.002 −1 /2

6 0.002�0.001 −3 /5

7 0.016�0.002 −2 /3

8 0.001�0.002 −5 /7

9 0.012�0.001 −3 /4
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tively correct predictions of rotation velocities in tokamaks
with ergodized edges.

The work was performed under the auspices of the DFG
Project No. SP 229/1-1. Discussions with Sadrilla Abdullaev
and Andreas Wingen are gratefully acknowledged. A.B.S. is
especially grateful to I. L. Caldas

APPENDIX A: FURTHER REMARKS ON THE TOKAMAP

It should be emphasized that the tokamap has not been
rigorously derived from a continuous Hamiltonian system. It
was supposed �53� that the tokamap corresponds to the
Hamiltonian

H = H0�	� + �H1�	,�;��

=
 d	

q�	�
− 2�Lc

	

1 + 	
cos��� �

k=−�

�

��� − 2�k� .

�A1�

From here we define the “kinetic” energy of the tokamap as
given by Eq. �6�.

A derivation of the tokamap from Hamiltonian �A1� en-
counters a difficulty related with the presence of delta func-
tions �see �36� and references therein�. A regularization pro-
cedure has been proposed in Ref. �36�. Because of the
Poisson summation formula

�
n=−�

�

cos�n�� = 2� �
k=−�

�

��� − 2�k� , �A2�

we may consider

H = H0�	� + �H1�	,�;��

=
 d	

q�	�
− Lc

	

1 + 	
cos��� �

s=−M

M

cos�s�� , �A3�

containing the sum of a finite number M of trigonometric
functions. It is easy to see that Hamiltonian �A1� follows
from the regularized Hamiltonian �A3� in the limit M→�.
Applying the construction of canonical mappings developed
in Refs. �33,53� to Hamiltonian �A3�, and performing the
limit M→�, one can derive the symmetric tokamap.

Performing a “trivial” one-step integration in � over a
distance 2� relates the canonical equations based on Eq.
�A1� to the tokamap with the identification

2�Lc � L . �A4�

APPENDIX B: DISTRIBUTIONS IN THE BOUNDED
TOKAMAP

It can be rather difficult to localize the exact KAM tori
that limit the chaotic layer. To overcome this uncertainty, we
now consider the bounded tokamap. With the bounded toka-
map, the plasma boundary cannot be crossed.

To ensure 	k�0 as well as 	k�1 we use �6,37�

F0 = F0�tokamap, �F = − 	k+1�1 − 	k+1�cos��k� , �B1�

to obtain the so-called bounded tokamap �6,37�

	k = 	k+1 + L	k+1�1 − 	k+1�sin��k� , �B2�

�k+1 = �k + 2���	k+1� − L�1 − 2	k+1�cos��k� . �B3�

Introducing D=L sin �k, the first Eq. �B2� of the bounded
tokamap will be evaluated according to

	k+1 =�	k
2

1 + D + 
�1 + D�2 − 4D	k

for D � 0

1 − �1 − 	k�
2

1 + �D� + 
�1 + �D��2 − 4�D��1 − 	k�
for D � 0.� �B4�

Now, the two axes 	=0 and 	=1 are globally invariant.
The bounded tokamap is an explicit map.

The phase portrait of the map is different from the origi-
nal one. Parameter L still controls the degree of stochastiza-
tion. For low values, the stochastic layer is divided by a
KAM barrier. At higher values, this barrier ceases to exist.
Nonetheless, the phase space remains separated for a long
transient time. Once this time is over, particles are able to
cross the phase space and visit all island chains. Figure 5�a�
shows the phase space of the bounded tokamap for L
=8 /2�.

The transient time also affects the velocity distribution of
particles on the stochastic sea. While the phase space re-
mains divided, there are different peaks on the probability

distribution. These peaks merge and gather around v� after
the transient period is over. Figure 5�b� shows the velocity
distribution at t�4�106.

By using the procedure described in Sec. III, we calculate
the velocity distribution of an ensemble of particles in the
chaotic sea. Through the phase space we find the values
presented in Table III.

The boundaries are now well defined, 	l���=0 and
	u���=1, thus the evaluation of Eq. �6� is straightforward.
Inserting the results in Eq. �17� we finally arrive at

v� = 0.512 � 0.005. �B5�

That agrees well with the numerical simulation result v�

�0.518�0.01.
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