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Identifying hidden common causes from bivariate time series: A method using recurrence plots
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We propose a method for inferring the existence of hidden common causes from observations of bivariate
time series. We detect related time series by excessive simultaneous recurrences in the corresponding recur-
rence plots. We also use a noncoverage property of a recurrence plot by the other to deny the existence of a
directional coupling. We apply the proposed method to real wind data.
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I. INTRODUCTION

Since the existence of common causes sometimes leads to
wrong conclusions about relations among elements [1,2],
distinguishing the influence of hidden common causes from
that of directional couplings is an important but unsolved
notorious problem. Identifying directional couplings from
observed time series is a ubiquitous problem in complex net-
works and one often encounters the problem of hidden com-
mon causes due to unobserved variables. Until now, many
methods were proposed for identifying coupling directions
from observed time series [3—11]. There are at least 6 major
types of methods: methods using mutual prediction [3,4],
methods using state space [5], methods using phase model-
ing [6], methods quantifying information [7-9], methods us-
ing partial directed coherence [10], and methods using con-
ditional probabilities of recurrence [11]. However, there is no
method so far that can identify the existence of hidden com-
mon causes forcing two elements given observations of the
forced elements only.

In this paper, we propose a method to identify the exis-
tence of hidden common causes using recurrence plots and
delay coordinates. When recurrence plots are obtained by
appropriate delay coordinates and thresholds, the recurrence
plot of the driving force can cover that of the forced system.
The advantage of the proposed method is that one can deny
directional couplings.

The rest of the paper is organized in the following way. In
Sec. II, we introduce background knowledge of recurrence
plots and delay coordinates. In Sec. III, we develop the pro-
posed method. In Sec. IV, we present examples. In Sec. V,
we conclude this paper.

II. BACKGROUND KNOWLEDGE

First, we introduce background knowledge necessary for
understanding the proposed method.

A. Recurrence plots

Recurrence plots [12,13] are two-dimensional plots
visualizing time series. Suppose that a time series
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x(i)(i=1,2,...,n) is given. Using a threshold €,, we can de-
fine a recurrence plot R; ;as

e |1 i) —x() < e, 0
“7 10 otherwise.

When R} ;=1, a point is plotted at (i, ), otherwise nothing is
plotted. The recurrence plot can also be expressed using the
Heaviside function ® as R} ;=O[e,—[x(i)-x(j)[|].

In a recurrence plot of Gaussian noise, points spread uni-
formly and randomly. In a recurrence plot of periodic orbits,
points show a periodic pattern, typically long diagonal lines
equally spaced. In a recurrence plot of deterministic system
such as a logistic map, short diagonal segments appear. Di-
agonal lines in recurrence plots are typical characteristics of
deterministic systems since in a deterministic system, once
two points become neighbors, they keep staying close to
each other for a while along the time.

One can understand that recurrence plots fundamentally
contain almost all information of time series except for the
spatial scale since the rough shape of time series can be
reproduced from recurrence plots [14,15]. Therefore, from
recurrence plots, one can obtain various dynamical invariants
such as correlation entropy [16,17] and correlation dimen-
sion [16,17]. Moreover, if two time series yield the same
recurrence plot, then the corresponding dynamics are equiva-
lent [18].

An extension of recurrence plots to multivariate data is
joint recurrence plots [12,19]. Suppose that we have already
calculated recurrence plots R;; and R; ; for time series x and
y. Then their joint recurrence plot J;7 can be defined as an
intersection between sets of points plotted for the two recur-
rence plots. Joint recurrence plots are used for identifying
synchronization between two time series, for example [19].

B. Delay coordinates

When obtaining a recurrence plot, we use delay coordi-
nates [20,21] and reconstruct phase space. Let K be a
k-dimensional manifold. Let f: K— K be a map representing
a dynamical system x(z+1)=fx(¢)]. Denote by h: K—R its
observation function s(¢)=h[x(z)]. Delay coordinates D with
dimension d can be defined as

D[x(t)]={s(t),s(t=17), ... ,s[t—(d-1)7]}. (2)

When d=2k+1, then D(x) and x are one-to-one under mild
technical conditions.
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FIG. 1. Elementary relations between two time series x and

Stark [22] extended the above theorem for reconstruction
of forced systems. Let L be a /[-dimensional manifold. Let
f:K— K be a map of driving force x(¢+1)=f{x(¢)]. Then, we
consider a forced system g:L X K— L, for which we have
y(t+1)=g[y(r),x(¢)]. In addition, denote an observation
function by h:L—R. We have observations s(¢)=h[y(r)].
Then, delay coordinates are defined as

D[y(®)]={s(t),s(t=7), ... ,s[t=(d-1)7]}. (3)

When d=2(k+[)+1, then D(y) and (x,y) become one-to-
one under mild technical conditions. Sauer [23] used this
reconstruction of forced systems to identify driving forces
from observations of multiple forced systems.

III. PROPOSED METHOD

To establish algorithm for identifying hidden common
causes, we first construct a test for investigating whether two
time series are related to each other or not. Then, we deny
directional couplings. We use recurrence plots obtained by
delay coordinates whose dimension is sufficiently large.

A. Identifying related time series

We classify the relation of two time series into the follow-
ing 4 cases (Fig. 1): (1) two systems x and y are independent;
(2) x (or y) drives y (or x) unidirectionally; (3) x and y are
mutually coupled; (4) x and y are driven by a common driv-
ing force z.

Let us consider case (1). In this case, delay coordinates
D(x) and D(y) are reconstructions of x and y, respectively.
Since x and y are independent, D(x) and D(y) are indepen-
dent. Therefore, the corresponding recurrence plots are also
independent.

In case (2a), D(x) corresponds to x and D(y) corresponds
to (x,y). Therefore, D(x) and D(y) are not independent. The
corresponding recurrence plots are not independent and show
excessive simultaneous recurrences. We also call a unidirec-
tional coupling from x to y as case (2a) and a unidirectional
coupling from y to x as case (2b).

In case (3), delay coordinates D(x) and D(y) are both
reconstructions of (x,y). Therefore, D(x) and D(y) are not
independent. The corresponding recurrence plots show ex-
cessive simultaneous recurrences.

In case (4), delay coordinates D(x) and D(y) correspond
to (x,z) and (y,z), respectively. Therefore, D(x) and D(y),
and hence their corresponding recurrence plots, are not inde-
pendent. The corresponding recurrence plots show excessive
simultaneous recurrences. Therefore, by using the above ar-
guments, we can distinguish case (1) from the others.

Let p be the recurrence rate of time series x, namely, the
probability that a point is plotted when we choose (i, ;) ran-
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domly. Similarly, let g be the recurrence rate of time series y.
Let u be the joint recurrence rate of x and y, namely, the
recurrence rate of joint recurrence plot for x and y. The sig-
nificance of excessive simultaneous recurrences can be quan-
tified by testing whether a point in the recurrence plot of x is
independent of a point of in the recurrence plot of y, namely,

u=pq. (4)

Let mzé(n—l)n. This m corresponds to the number of
independent components in a recurrence plot. When points in
recurrence plots of x and y are independent, the joint recur-
rence plot has the recurrence rate of pg and the number of
simultaneous recurrences follows the binomial distribution
of size m and probability pg. Since m is usually large, the
binomial distribution can be approximated by the normal dis-
tribution of mean mpq and variance mpg(1-pq). Let » be
the number of simultaneous recurrences. By using the ap-
proximation by the normal distribution,

7~ —mpq
Z = /=,
\mpq(1 - pq)

follows the normal distribution of mean 0 and variance 1.
To suppress spatial correlation in a recurrence plot, we
subsample data sets by d7. For the test of relations, we used
p=g=0.05, namely, we adjusted thresholds for both recur-
rence plots so that their recurrence rates become p=¢=0.05.
Moreover, we chose the 1% point (z=2.326) for judging the
significance. We call this test as an independence test.

(5)

B. Denying directional couplings

By using recurrence plots obtained by delay coordinates,
we can also deny the existence of directional couplings. Sup-
pose that there is a directional coupling from x to y. In this
case, D(y) corresponds to (x,y). In short, we write
D(y)™(x,y). In case that there is no directional coupling
from y to x [case (2a)], D(x) corresponds to x [D(x)>(x)]. In
case that there is also a directional coupling from y to x [case
(3)], D(x) corresponds to (x,y) [D(x)x(x,y)]. In either case,
if states of two corresponding times are neighbors in D(y), so
they are in D(x) as well: if there is no directional coupling
from y to x, if two times are in neighbors in D(y)>(x,y), so
they are in D(x)x; If there is a directional coupling from y
to x, then neighbors in D(x)>(x,y) mean neighbors in
D(y)(x,y) and vice versa. Therefore, if we choose the
thresholds for recurrence plots appropriately, the recurrence
plot obtained by D(x) can cover that of D(y). By letting X
and Y be points plotted in a recurrence plot of D(x) and D(y),
respectively, it holds that XDY. Namely, we can choose
thresholds so that XDY holds if and only if neighbors in
D(y) mean neighbors in D(x). This can be regarded as a
rephrase of the continuity for the mapping from D(y) to
D(x).

An important point, however, is that when we use this
relation for analysis, we have to use the contraposition,
which is, if we cannot choose thresholds such that the recur-
rence plot obtained by D(x) can cover that of D(y), then x
does not drive y. Therefore, we can use this inclusive relation
for denying directional couplings.
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Let use consider the converse, namely, whether or not we
can say “if we can choose thresholds so that XD, then x
drives y.” To investigate this problem, we need to divide it
into cases.

First, consider case (2). Considering case (2a) is enough
since the similar argument holds for case (2b). Since x drives
y in case (2a), based on the above argument, we can say that
neighbors in D(y) are also neighbors in D(x). Here D(x)x
and D(y)X(x,y). If there is generalized synchronization,
then we have a function a such that y=a(x) [24], namely, the
driver decides the behavior of the driven system completely.
In this case, since D(y) corresponds to [x,a(x)], neighbors in
D(x) are also neighbors in D(y). If there is not generalized
synchronization, then we do not have a function @ such that
y=a(x). Then, there are some degrees of freedom left in
space y. Therefore, neighbors in D(x) are not necessarily
neighbors in D(y).

Second, consider case (3). In this case, both D(x) and
D(y) correspond to (x,y), i.e., D(x)<(x, y)><D(y). Therefore,
times are in neighbors in D(x) if and only if they are neigh-
bors in D(y).

Third, consider case (4). In this case, D(x) corresponds to
(x,z) and D(y) corresponds to (y,z), i.e., D(x)>(x,z) and
D(y)™(y,z). If neither x nor y are generalized synchronized
with z, then there are some degrees of freedom in spaces x
and y. In this case, therefore, neighbors in D(x) do not mean
neighbors in D(y) and vice versa. If x is generalized synchro-
nized with z, and y is not generalized synchronized with z,
there is a function b such that x=b(z). Then D(x) corre-
sponds to [b(z),z] and D(y) corresponds to (y,z). Since D(x)
only depends on z, neighbors in D(y) mean neighbors in
D(x). The similar logic holds when x is not generalized syn-
chronized with z, and y is generalized synchronized with z. If
x and y are generalized synchronized with z, there are func-
tions b and ¢ such that x=b(z) and y=c(z). Then since D(x)
and D(y) correspond to [b(z),z] and [c(z),z] respectively,
times are in neighbors in D(x) if and only if they are in
neighbors in D(y).

We summarize the above relations. If neighbors in D(x)
and those in D(y) are equivalent, then the case should be
case (2) with generalized synchronization y=a(x), case (3),
or case (4) with generalized synchronization x=b(z) and y
=c¢(z). If neighbors in D(y) mean neighbors in D(x) but the
opposite is not true, then the case should be case (2) without
generalized synchronization or case (4) with generalized syn-
chronization x=5b(z) or y=c(z). If neighbors in D(y) do not
mean neighbors in D(x) and vice versa, then the case should
be case (4) without generalized synchronization. In the above
relations, the condition that neighbors in D(y) mean neigh-
bors in D(x) can be rephrased as the condition that there is a
set of thresholds for recurrence plots such that XD Y holds.

When actually testing the inclusive relation, we may fix
the threshold of x and gradually decrease that of y, and stop
at the point where the inclusive relation holds. If the number
of points plotted for D(y) is not significantly large in terms
of Eq. (5), then we consider that the directional coupling
from x to y is not likely to exist.

Alternatively, we can compare the recurrence plot of x
obtained using a fixed €, with that of y obtained using the
best threshold. We can find the best threshold of y by finding
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FIG. 2. (Color online) Algorithm for identifying coupling types.
Directional couplings are shown in single arrows and generalized
synchronization is shown in double arrows. Elements which may
not exist are shown in gray.

the minimum significant recurrence rate g of y, which satis-
fies Eq. (5) with »=mgq:

L __mg=mpg
" mpq(1 - pq)

where p is the recurrence rate for the recurrence plot of x and
z,-is the 1007 percentile point of the normal distribution from
the above. Throughout the paper, we set r=0.01. Therefore,
in this paper, each test for denying directional coupling has
the significance level of 0.01. We also choose p=0.5 since if
p is small, then ¢ become too small so that the recurrence
plot of y contains only few points. By solving Eq. (6) in
terms of ¢, we can obtain

(6)

2
z,mp

q= (7

m*(1 = p)* + z2mp*’

We call this test as a test for a directional coupling.

C. Summary of algorithm

We summarize the algorithm for identification of coupling
types in Fig. 2. At the beginning, we test whether two time
series are related or not. If there is no relation, then they are
likely to be independent [class (i)]. If there is likely to be
some relations, then we test directional couplings. First, we
test a directional coupling from one time series to the other.
Second, we test the opposite directional coupling. If direc-
tional couplings for both directions are denied, the influence
of the common third element is likely to exist [class (v)]. If
only one directional coupling is denied, then we have either
the opposite directional coupling or influence of the common
third element [class (iii) or class (iv)]. If both directional
couplings are not denied, then we cannot conclude anything
about couplings and all 4 possibilities remain [class (ii)]. In
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FIG. 3. (Color online) Effects of (a) (b) embedding dimension, (c) coupling strength, (d) noise level, (e) length of time series, (f)
recurrence rates during the independence test, and (g) recurrence rate during denying directional couplings. For (a), we used clean data. For
(b), we added 10% observational noise. For each graph, the black dotted line corresponds to case (1), the blue dashed line corresponds to
case (2a), the green dash-dotted line corresponds to case (3), and the red solid line corresponds to case (4). For (f) and (g), we used the

5-dimensional embedding space.

class (iii) and class (iv), the main couplings are direct cou-
plings between A and B. As far as we tested, the influence of
the common third C may appear when generalized synchro-
nization exists between two systems. The similar argument
applies to class (ii).

We also need to remark a point here. Since what we can
do is to deny the existence of directional coupling, the com-
mon third element might coexist in cases (2a), (2b), and (3)
of class (ii), case (2a) of class (iii), and case (2b) of class
(iv), which are shown in gray in Fig. 2. We have another
point to remark. Directional couplings detected by the pro-
posed method may be indirect ones going through other el-
ements. Therefore, when interpreting the results, we must
take into account this point.

IV. EXAMPLES
A. Example 1: Elementary relations

First, we tested examples of elementary relations. The
model first tested was where there are two independent ele-
ments [case (1)],

X1 =3.81x,(1-x,), (8)

Vi1 =3.82y,(1 = y,). 9)

The second tested was the model where two elements were
coupled unidirectionally [case (2)],

X1 =3.81x,(1 - x,), (10)

Vi1 =(1—€)3.82y,(1 —y,) + €3.81x,(1 — x,). (11)

The third tested model was the model where two maps were
coupled bidirectionally [case (3)],

X1 =(1-€3.81x,(1-x,) + €3.82y,(1 —y,), (12)

V1= (1 —-€)3.82y,(1 —y,) + €3.81x,(1 —x,). (13)

The fourth tested model was the model where two maps have
the influence from the common third element [case (4)],

21 =3.82(1 - z,), (14)

X1 =(1-¢€3.81x,(1 -x,) + €3.8z,(1 - z), (15)

y;+]=(1—6)3.82y,(1—y;)+63.8Z1(1—Z;). (16)

In each model, we generated 100 time series of the length
10 000 using different initial conditions. We set e=0.1 if not
mentioned.

We first investigated the effects of embedding dimension
[Figs. 3(a) and 3(b)]. The proposed method is effective when
the embedding dimension is sufficiently large. In addition,
the larger embedding space is, the more immune to observa-
tional noise [Fig. 3(b)]. Therefore, in the rest of the paper, we
set d=20 if not mentioned. How to choose the embedding
dimension optimally is a topic of future research.

The results depend on the coupling strength of systems
[Fig. 3(c)]. If the coupling strength is too weak, the proposed
method cannot detect the couplings. If the coupling strength
is too strong, then elements of systems get synchronized and
the relation will be classified as class (ii).

The results got worse when the level of observational
noise increased [Fig. 3(d)]. The proposed method seems to
give meaningful results when the noise level is 16% or less.
In case of dynamical noise, the proposed method is not sup-
ported by the embedding theorem.

We also investigated the influence of length of time series
[Fig. 3(e)]. If the length of time series is nearly or over 8000,
the methods worked correctly.
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FIG. 4. (Color online) Inferred network from coupled Rossler
systems. We assumed that generalized synchronization does not
exist.

In addition, we investigate the effects of recurrence rates
for the independence test [see Fig. 3(f)]. If the recurrence
rates p and g are between 0.02 and 0.2, then classification
was appropriate for all models.

Moreover, we looked into the effects of the recurrence
rate p for denying directional coupling [see Fig. 3(g)]. When
the recurrence rate is 0.5, the tested time series were cor-
rectly classified the best. As we discussed previously, if p is
too small, then ¢ becomes also too small and the recurrence
plot for the “supposed” driven system only contain few
points. Therefore, choosing p=0.5 seems the best choice for
denying directional coupling.

Since each test has the significance level of 1% and there
are 3 tests for each data, we expect about 3% for the false
classification. For this viewpoint, our test is reasonable since
the correct ratio for classification was above 0.97 when the
recurrence rates p and g were between 0.02 and 0.2 in Fig.
3(f).

In case (1), we also tested the case where the parameters
of two systems were the same,

X1 =3.81x,(1 -x,), (17)

Ver1 = 3.81y,(1=y). (18)

Then, we confirmed that the relation was correctly classified.

B. Example 2: Coupled Rossler systems

We also tested an example of five coupled Rossler sys-
tems,

¥ == 1.05y, -2y,

¥, = 1.05x, +0.15y,,

721 =0.2+z,(x; = 10), (19)
X, =—1.03y, — 7, + €(x; — x,),

v, =1.03x, +0.15y,,

2, =02+ 2,(x, - 10), (20)
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FIG. 5. (Color online) Comparisons of recurrence plots of (a) x;
(blue X) and x, (red +), (b) x,( red +), and x3 (green O), and (c) x;
(blue X) and x, (black V). Parts of recurrence plots are shown to
emphasize the details. Recurrence plots of x; and x, and those of x,
and x3 overlapped significantly (p-value <0.001), respectively,
while the overlaps between recurrence plots of x; and x, are not
significant (p-value >0.05).

X3=—1.01y;—z3+ €(x| — x3),

3= 1.01x3 + 0.15y3,

723=0.2 4 z3(x3 = 10), (21)
X4=—0.99y, — 74 + €(x5— x4),

4= 0.99x, +0.15y,,

24 =0.2 + z4(x4 — 10), (22)
X5=—0.97ys — 75 + €(x; — x5),

y5=0.97x5+0.15y5,

ZS = 02 + ZS(XS - 10) . (23)

Here, three subsystems were coupled as case (4) and two
other subsystems were coupled as case (3). We set €=0.05.
We generated a time series of length 10 000, sampled x; ev-
ery 1 unit time.

The inferred network is shown in Fig. 4. During the in-
ference, we compared recurrence plots as shown in Figs. 5
and 6.

C. Example 3: Actual winds

Finally, we applied the proposed method to data sets of
winds observed in Hokkaido, the northern island in Japan.
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FIG. 6. Tests for directional couplings in coupled Rossler systems. (a) x; — x,, (b) x,—x;, (¢) x,— x3, and (d) x4 — x5. Recurrence plots
for candidates of driving forces are shown in gray dots and those for candidates of forced systems are shown in black circles. Parts of

recurrence plots are shown to emphasize the details.

We used the measurements in July and August 2003. The
wind speed and the wind direction were observed every 10
min in Sapporo (43°04'N,141°20'E) and Hakodate
(41°49'N,140°45'E). The data sets contains 8928 points.
By taking the projections, we converted the data sets into
those of east and north winds. The data sets were shown in
Fig. 7(a). The correlation coefficients between the east and
the north winds were —0.79 and —0.32 in Sapporo and Ha-
kodate, respectively. The correlation coefficients between
Sapporo and Hakodate were 0.50 and 0.07 in the east and

north winds, respectively. For this data set, we used the em-
bedding dimension between 11 and 20 and chose the most
frequently observed class as a selected class. Between the
east and the north winds of Sapporo, the inferred relation is
class (ii) [Fig. 7(b)], and therefore, it is likely that the bi-
directional couplings exist or these winds are synchronized.
Between the east and the north winds of Hakodate, the in-
ferred relation is class (iii). Therefore, the unidirectional cou-
pling from the east wind to the north wind may exist. This
result is reasonable since the east and north winds at the
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FIG. 7. (a) Observed wind data. The east and north winds in
Sapporo are shown in gray and black, respectively. (b) The recur-
rence plots of east wind in Sapporo (gray dots) cover those of north
wind in Sapporo (black circles). Part of recurrence plots is shown
here to emphasize the details.

same points can be strongly coupled. Between the winds of
Sapporo and Hakodate, the inferred relation is class (v), and
thus the existence of hidden common causes was inferred.
Candidates of hidden common causes are clouds, high and
low pressures, and the sun. We can take into account delays
by comparing R;; and R}, ;.. This is a topic of future re-
search.

PHYSICAL REVIEW E 81, 016203 (2010)

V. CONCLUSIONS

In sum, we have proposed a method that identifies related
time series and denies the existence of directional couplings
by using recurrence plots obtained by delay coordinates.
Thus, the proposed method can imply the existence of hid-
den common causes. We believe that the proposed method
helps to give more accurate insights into topological struc-
tures of complex networks based on observed time series.
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