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We study the spatiotemporal dynamics of the Hamiltonian four-wave interaction in its counterpropagating

configuration. The numerical simulations reveal that, under rather general conditions, the four-wave system
exhibits a relaxation process toward a stationary state. Considering the Hamiltonian system associated to the
stationary state, we provide a global geometrical view of all the stationary solutions of the system. The analysis
reveals that the stationary state converges exponentially toward a pinched torus of the Hamiltonian system in
the limit of an infinite nonlinear medium. The singular torus thus plays the role of an attractor for the
spatiotemporal wave system. The topological properties of the singular torus confer a robust character to the
stationary solution when the boundary conditions or the length of the nonlinear medium are modified. Further-
more, an adiabatic approach of the boundary conditions reveals that singular tori also play a major role for the
description of the spatiotemporal dynamics of the wave system.
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I. INTRODUCTION

Resonant four-wave interaction is ubiquitous in nonlinear
science [1] and is found to play a key role in such diverse
fields as plasma physics [2], acoustics [3], hydrodynamics
[4], and nonlinear optics [5]. More recently, four-wave mix-
ing processes have stimulated particular interest in the study
of atomic Bose-Einstein condensates [6], as well as spinor
Bose-Einstein condensates, i.e., condensates of atoms with
different spins [7]. In this framework, a remarkable example
of the importance of four-wave interactions is the coherent
matter wave amplification obtained through four-wave inter-
actions involving a pair of light waves and a pair of matter
waves [8].

In the context of nonlinear optics, the four-wave interac-
tion has been investigated in various configurations [5]. In
particular the dynamics of the polarization of optical beams
has been studied in the counterpropagative configuration of
the four-wave interaction, in which two beams composed of
two polarization states are injected at opposite ends of a non-
linear medium, such as, e.g., an optical fiber [9]. Different
studies have shown the richness of this kind of system which
can exhibit polarization bistability [10], temporal instabilities
[11,12], and solitons [13,14]. More recently, a new effect
concerning the polarization dynamics has been studied both
numerically and experimentally [15].

The dynamics of the four-wave interaction is governed by
a system of four partial differential equations (PDE) that ex-
hibits a Hamiltonian structure with infinitely many degrees
of freedom. The complexity of the dynamics is in large part
due to the existence of resonant terms coupling the four
equations. The originality of this system relies on the bound-
ary conditions which are imposed to the fields at both ends of
the nonlinear medium. Under rather general conditions, one
may observe a relaxation process of the PDE system toward
a stationary state. It is this asymptotic dynamics which re-
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veals the geometry of the problem and makes the link with
finite-dimensional dynamical systems, i.e., with ordinary dif-
ferential equations (ODE). Our aim in this work is to exploit
recently developed mathematical techniques of Hamiltonian
ODE’s systems to analyze the dynamics of the spatiotempo-
ral (PDE) four-wave interaction.

Hamiltonian integrable ODE systems have a long and
fruitful history extending from Liouville in the mid 19th cen-
tury to Arnold at the end of the 20th century [16]. An inte-
grable Hamiltonian system with N degrees of freedom has
a set of N functions {F,---,Fy} defined on the
2N-dimensional phase space of the system which are inde-
pendent and in involution, i.e., the Poisson bracket of any
two functions F; and F; vanishes. We also introduce the
energy-momentum map J which sends the points of the ini-
tial phase space to a subset of RV corresponding to the pos-
sible values of the functions F, ..., Fy. Using the Liouville-
Arnold theorem under suitable conditions, it can be shown
that the preimage of a regular value of F (a regular value is
a value such that the differentials of F; are linearly indepen-
dent) is an N-dimensional torus [16]. This also means that F
defines a torus bundle with base space the image of F and
with generic fiber a torus. However, all points of the image
of F are not regular, i.e., they are critical points of F. In this
case, the preimage of these points is a critical fiber which can
be of different types: a point (for an equilibrium), a circle
(for a periodic orbit) or a singular torus. A singular torus is
by definition a critical fiber of the torus bundle with singu-
larities as, for instance, a pinched torus. A pinched torus is a
singular torus where one of the generating circles shrinks to
a point. We refer the reader to Refs. [17-19] for a detailed
discussion of singular tori. In this paper, we will show that
the Hamiltonian system associated to the four-wave interac-
tion exhibits zero, one or two pinched tori depending on the
powers of the two counterpropagating waves. The pinched
torus is the unique singular torus encountered in this system.

The importance of singular tori in the dynamics of Hamil-
tonian systems has been the subject of a growing interest in
recent years [17,18]. Singular tori play a major role in the
notion of Hamiltonian monodromy introduced by Duister-
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maat in 1980 [21] to answer the important question regarding
the extension of local action-angle variables to the whole
phase space. Duistermaat showed that a Hamiltonian system
with a pinched torus has a non trivial monodromy which is a
topological obstruction to the existence of global action-
angle variables. Different examples of physical systems with
non trivial monodromy have been discovered after this work,
both in classical and quantum systems with two or three
degrees of freedom [20,22-25].

In a recent letter [26], we have pointed out that singular
tori may play a central role in the spatiotemporal dynamics
of nonlinear wave systems. Indeed, the PDE system exhibits
a relaxation process toward a stationary state which lies in
the neighborhood of the singular torus associated to the cor-
responding ODE system. The present paper is devoted to
giving a deeper insight into the role of singular tori in the
spatiotemporal four-wave interaction. Exploiting the math-
ematical techniques developed for Hamiltonian integrable
systems [17,18], we determine the position and the nature of
singular tori, which are shown to depend crucially on the
powers of the two counterpropagating waves. The numerical
simulations show that the relaxation process occurs when
single or doubly pinched tori exist. The properties of the
corresponding stationary state can be deduced from the to-
pology of the singular torus. The singular torus thus plays the
role of an attractor for the four-wave system, which is an
infinite dimensional Hamiltonian system.

The peculiar topological properties of the system having a
pinched torus confer a robust character to the stationary so-
lution when the boundary conditions or the length of the
nonlinear medium are modified. We develop an adiabatic
treatment of the boundary conditions by adapting the adia-
batic theory formulated in classical and quantum mechanics
[16] to the spatiotemporal wave system considered here. This
reveals that singular tori play a major role not only for the
determination of the stationary solutions, but also for the
description of the spatiotemporal dynamics. The adiabatic
approach consists in slowly modifying the boundary condi-
tions, i.e., the intensity of the two fields at both ends of the
fiber, from O to some final stationary value. The position of
the singular pinched tori changes following the variations of
the boundary conditions. We show that, in the adiabatic limit,
the system follows an instantaneous stationary state that lies
on the corresponding instantaneous singular torus. In this
way, we calculate the temporal evolution of the position of
the singular torus in phase space, which allows us to deduce
the whole spatiotemporal dynamics of the four-wave system.

The paper is organized as follows. In Sec. II, we recall the
equations governing the counterpropagating four-wave inter-
action, in which we make use of the formalism of the Stokes
vectors to simplify the description of the dynamics. The
phase space of the stationary states is the product of two
spheres, S X S2. We formulate some conjectures on the spa-
tiotemporal dynamics, which will be shown to be supported
by the numerical simulations of the PDE system. Section III
is devoted to a geometrical description of the stationary
states. Using singular reduction theory, we determine the na-
ture of the critical fibers of the stationary Hamiltonian sys-
tem. We show that the existence of singular pinched tori
crucially depends on the powers of the counterpropagating
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waves. In Sec. IV we present the adiabatic treatment of the
boundary conditions, as well as the numerical simulations of
the PDE system, which confirm the adiabatic theory and the
key role of singular tori in the spatiotemporal dynamics of
the four-wave interaction. Some conclusions and discussions
are presented in Sec. V.

II. COUNTERPROPAGATING FOUR WAVE INTERACTION
A. Model equations

We consider the one dimensional counterpropagating con-
figuration of the four- wave interaction. For concreteness, we
consider the example of an optical fiber system that has been
widely studied experimentally [10-12]. The PDEs governing
the evolution of the slowly varying envelopes of the forward
signal wave and backward pump wave in the circular polar-
ization basis read [9,13-15]

du 9
o Z o i[(uf* + 2o + 20 + 20 u + 2a5"0],

at 9z

v 9 .

E e D (ol + 20uf + 20l + 205 + 2a5u],

at Iz

g o

EE[(af + 21a] + 2Jul? + 2|07 + 2u0"T],

at 9z

v ov .

@w il (|0 + 2> + 2|ul* + 2Jv[)o + 2u'vir]. (1)
at  dz

The fields u and v (i and v) denote the amplitudes of the left
and right circular polarization components of the forward
(backward) wave. For convenience, we normalized the prob-
lem with respect to the characteristic nonlinear interaction
time 7y=1/(I'e}) and length Ay=v 7, where '=27/3, y be-
ing the nonlinear Kerr coefficient of the optical fiber. v
=c/n denotes the velocity of the optical fields, ¢ being the
speed of light in vacuum and » the refractive index. e(2) is the
power of the backward pump wave injected at z=L. The
variables can be recovered in real units through the substitu-
tions t—17y; z—zAy and  (u,v)— (u,v)ey [(@,0)
— (i,0)eg). The last term of the right-hand side is a resonant
term coupling the circular polarization components of the
waves. These terms play a key role in the polarization dy-
namics described below.

This system is governed by Hamiltonian field equations
that can be derived from the following Hamiltonian func-
tional H = [hdz. The Hamiltonian density h=h.;,+h, +h,; has
a nonresonant nonlinear contribution 7))==2(|uv|*+|uil®
+|ut P+ @]+ [oo P+ @] ) + 3 (ul*+[o|*+[o]*+]@*), a reso-
nant nonlinear contribution /,,=—2u"u#vd"+c.c., and a linear
contribution hy=—3u*d.u— 50" v+5u"d,i+50"d D+c.c., C.Cc.
denoting the complex conjugate. The field variables
(u,v,it,0) are in C>X C2, which is a real eight-dimensional
manifold.

The formalism of Stokes vectors is equivalent to the pre-
ceding representation up to a global phase factor for the two
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FIG. 1. Phase space M=5%XS2,

waves, whose advantage is to reduce the real dimension to 6.
The Stokes vectors S=(S,.S,.S,) and J=(J,.,J,,/,) are de-
fined by

S =i~ uv”)

Jy=al* - [o?

J.= ' + "

S, =i(u"v — uv®)
Sy=lu?=ol*
S.=u"v+uv”

Within the normalized units, the radius of the backward
pump sphere is J2=|J|>=|iz|>+|5]>= 1, while the radius of the
signal sphere S2=|S|>=|u|>+[v|? corresponds to the ratio of
the signal and pump powers. For fixed boundary conditions,
note that J(z) and S(Z) are conserved during the propagation of
the waves. In this representation, the phase space is the prod-
uct of two spheres, M=52x85? as illustrated in Fig. 1. The
polarization of each wave is now represented by a point on a
sphere. For instance, circular polarization states correspond
to the poles of the sphere, whereas linear polarization states
correspond to the equator of the sphere [9]. Algebraic ma-
nipulations lead to the following spatiotemporal equations
satisfied by S and J:

oS 9S . 2 oz -

—+— =S X (IS)+2S X (J)),

Jt 0z

al S - - 3 :

— == =T X (J)) +2J X (JS), (2)
at  Jdz

where 7 denotes the diagonal matrix diag(-1,0,-1).

B. Conjectures on the dynamics

We propose in this section different conjectures describ-
ing the asymptotic dynamics of the system in the limit r—
+coc. These conjectures are supported by the numerical inte-
gration of the PDE system [Eq. (2)], a feature that will be
discussed in detail in Sec. IV. The PDE system [Eq. (2)] is
solved numerically with boundary conditions imposed at
both ends of the nonlinear medium of length L. The forward
field is given at z=0, S (z=0,t):§f while the backward field
is given at z=L, j(z=L,t)=jf. However, when an optical
field enters the nonlinear medium, its amplitude does not
reach instantaneously the corresponding stationary value.
One should thus consider a boundary condition that varies
progressively from O to its stationary value. More precisely,
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the two waves are subjected to the following boundary con-
ditions S(0,7) =f1(t)§f and J(L,1) =f2(t).7f where f| and f, are
two smooth monotonic functions that evolve from O to 1 in a
finite but large normalized time 7, f1,(0)=0 and f;,(7)=1
(see Sec. IV for a concrete example of f;,). Note that the
numerical simulations reveal that a sufficient condition to
avoid the emergence of instabilities is that the derivative of
the function f is continuous, i.e., the function f is cl.

The two conjectures on the dynamics can be stated as
follows:

Conjecture 1. The PDE system [Eq. (2)] relaxes to a sta-
tionary solution for each choice of the boundary conditions
imposed at both ends of the medium of length L.

Conjecture 2. The stationary solution lies in a singular
pinched torus in the limit where the length of the medium
goes to infinity (L— +).

Let us underline that the relaxation process toward the
stationary state does not take place when the resonant terms
are removed in Egs. (1). This conclusion is consistent with
our theory, since in the absence of resonant terms, the system
does not exhibit singular tori. We shall see in Sec. IV that
these conjectures are supported by the numerical simulations
of the PDE system [Eq. (2)]. In the next section we shall
describe the geometry of the stationary states. This analysis
will allow us to determine the existence, the position and the
nature of the singular tori.

III. GEOMETRICAL ANALYSIS OF STATIONARY STATES

We analyze in this section the geometrical structure of the
stationary solutions of the PDE system [Eq. (2)]. These so-
lutions satisfy the following system of equations,

s - .. .
o =8x (JS) +28 % (J)),
Z

_';_f=jx (T7) + 27 X (TS5) 3)
Z

obtained from the preceding system [Eq. (2)] by dropping
the time derivatives. This system can be viewed as a Hamil-
tonian system on 52X S? where the coordinate z plays the
role of time. The Hamiltonian H associated to this system
can be written as

1
H=2(8J,+5J) = (S, +3).

The two-degree of freedom system with Hamiltonian H is
Liouville integrable [16] since it Poisson-commutes with K
=S,+J,. The integrability of this system is due to its axial
symmetry with respect to rotations around the z axis [25].
Let us briefly note that the boundary conditions consid-
ered here, namely S fixed at z=0 and J fixed at z=L, are
quite nontrivial from the general perspective of Hamiltonian
systems. Indeed, in the traditional temporal language of
Hamiltonian (mechanical) systems, the above boundary con-
ditions mean that the state of the system is partially fixed at
two different ’times:” one variable is fixed at z=0, while the
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other variable is fixed at a later time z=L. It is the specificity
of these boundary conditions inherent to the counterpropa-
gating configuration of the wave system that makes the re-
laxation dynamics possible. In particular, the relaxation pro-
cess considered in this work is not expected to occur in the
copropagating configuration of the four-wave interaction.

A. Bifurcation diagram

We introduce the energy-momentum map F defined as
F:(S,J) e 82 X §*— (H,K) e R%.

The object of interest for our study is the image of the
energy-momentum map JF which is usually called bifurcation
diagram. The analysis of its inverse ' and of its critical
points will give us a global geometrical view of the different
stationary states [17]. A regular value is a point (H=h, K
=k) such that the 1-forms dH or dK are linearly independent
at all points of F~!(h,k). Saying that the 1-forms are linearly
dependent is equivalent to say that the rank of the Jacobian
matrix of H and K is equal to 2. The Liouville-Arnold theo-
rem states under an hypothesis of compactness and connect-
edness [16] that F'(h,k) is diffeomorphic to a 2-torus. At a
critical point where dH and dK are linearly dependent,
FY(h,k) is a critical fiber, which can be of different types,
such as, e.g., a point (for a fixed point), a circle (for a peri-
odic orbit) or a singular torus (a pinched torus). Expressing
the 1-forms dH and dK in the basis (dS,dJ) and taking into
account the constraints |S|2=52 and |J|>=J2, one deduces that
a point of the bifurcation diagram is critical if there exist
(a,B,7y) € R3\{0} such that

dH = adK + BdS + vdJ.

This condition can be written as

p
Jx(l - BY) =0
‘Iy(l - B’)/) =0
S(1-By)=0

4

5,(1- B9 =0 @
J.=—al(l +2v)

\SZ=— al/(1+27y).

This system has two different types of solutions:

(i) 1—=By=0: The corresponding solutions are associated
to points of the boundary of the image of the energy-
momentum map. The preimages of such points are circles.

(ii) 1—By+#0: There exist four critical points correspond-
ing to k= +Jy+ S, and h=—(J3+S52)/2. Two of these points
belong to the boundary of the diagram and the corresponding
fibers are reduced to simple points. The other two either
belong to the boundary or to the interior of the diagram
depending on the values of the powers of the waves. When
the two powers are equal (Jy=Sy=1), the two points coin-
cide, and the corresponding singular torus is doubly pinched.

The different types of bifurcation diagram that can be
obtained are represented in Fig. 3. In Fig. 3(a) and 3(b), there
exist two interior critical points which are degenerate in (a)
and distinct in (b). We shall now determine the topology of
the different critical fibers.
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B. Reduced phase space and singular tori

We present in this section a complete analysis to deter-
mine the geometry of critical fibers. We use different tools
based on recent mathematical techniques developed for
Hamiltonian integrable systems [17,18]. Since these tech-
niques are relatively new in the physics literature and, in
particular in nonlinear optics, we detail below the different
steps of the method and we explain qualitatively the different
concepts introduced.

Most examples of integrable Hamiltonians with pinched
tori are constructed from the momentum K=(pj+qi-p;
—q3)/2 where (py,q;) and (p,,q,) are canonically conju-
gated coordinates. Hamiltonian systems with this momentum
K are called 1:—1 resonant system since K is the sum of two
harmonic oscillators of frequencies +1 and —1. The spherical
pendulum which has one pinched torus is an example of a
locally 1:-1 resonant system [17].

The main tool used in this section is the reduced phase
space. The idea of this approach is to reduce the dimension-
ality of the problem by using the flow ¢y of K [17,18]. To
construct this space, one has to determine all the functions
which Poisson-commute with K, i.e., in practice a basis of
this algebra of functions. This can be done straightforwardly
if K is a polynomial and if no constraint is imposed to the
system [18]. This is the case for a 1:—1 resonant system. In
our case, the difficulty resides on the peculiar geometry of
the phase space, which is a direct product of two spheres
S% X S2. The construction of the reduced phase space has to
be adapted to the constraints due to this geometry. We use for
that the results of [25], which deals with a similar math-
ematical problem, the quantum and classical dynamics of
two coupled angular momenta. More precisely, it can be
shown that all the polynomial functions which Poisson-
commute with K are polynomials in the following four vari-
ables II; [25]:

[ly=K=S8,+J,
I, =8,-J
1 3 ) y (5)
H2=J' S
M;=8J,-SJ..
These functions fulfill the following relation:
2 g o | » 1 2
15 + H2—4(H0_H1) - 50—4(H0+H1)
1
X[J(%_ Z(HO—HOZ] =0, 6)

with the constraint —S,—J,=<I1,=S,+J,. Using {Il,} as new
coordinates, the Hamiltonian H can be written as follows:

3 1
H=2I1,- an + ZH%. (7)

The reduced phase space Mg, is defined geometrically by
My =K' (k)/S", )

i.e., it is the quotient of the initial phase space by the action
of the Hamiltonian flow generated by K. In other words,
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FIG. 2. (Color online) Projection in the space (I1;,11,,I13=0) of
the reduced phase space (solid line in blue) and of the surface H
=h (dashed line in red) for (a) identical powers (Jo=Sy,=1) and for
(b) different powers (So=J,/2=1/2).

Mg, can be thought of as follows: we associate to each
periodic orbit defined by the flow ¢g and a point of the
initial phase space, a point of the reduced phase space. An
algebraic construction of this phase space is given using the
invariant polynomials (K,I1,,I1,,I15). For a given value of
K, the reduced phase space is defined in the space R3
=(I1,,11,,115) by the relation (6), i.e., it corresponds to the
surface of the semialgebraic variety defined by Eq. (6) in R*
[17,18]. Here, due to the reflexion symmetry I15+« —II; with
respect to the plane I13=0, one can represent the semialge-
braic variety Mg_, by its projection on the plane (I1;=0).
This is illustrated in Fig. 2 for equal [case (a)] and different
powers [case (b)]. It should be noted that the process used
here to construct the reduced phase space is a singular reduc-
tion because one or two points (depending on the powers of
the waves) do not lift to a circle S! in the initial phase space
but to a point [17]. To illustrate this remark, we consider the
action of ¢y which corresponds to a simultaneous rotation
around the z axis on the two spheres of the phase space. The
north and south poles are invariant by this action. It is then
straightforward to see that a point of the phase space associ-
ated to two poles (there are four singular points of this kind)
does not lift to a circle but to a point since it remains fixed
under the action of ¢. Such points are associated to nons-
mooth points of the reduced phase space. One sees in Fig. 2
that there are one or two nonsmooth points depending on the
values of the powers.

We now analyze the different kinds of critical fibers of the
bifurcation diagram. For that purpose, we determine the in-
tersection of the surface h=H(K=k,II,,II,,I1;) and of the
reduced phase space. Two examples are displayed in Fig. 2
in the plane I1;=0. Figure 2 displays the lines of equation
h=H(K=k,I1,,I1,,115=0) in the plane (I1,,Il,). In our ex-
ample, the intersection between the two surfaces can be of
different types: empty, a point and a circle. An empty inter-
section corresponds to a point belonging to a forbidden part
of the bifurcation diagram, i.e., to a value of (h,k) that is not
in the image of F. If the intersection is a smooth point of
M g then this point lifts to a circle, whereas it lifts to a point
if the point is nonsmooth. If the intersection is a circle of
smooth points then since each point of the circle lifts to a
circle, we get a regular torus. If one or two points of the
circle are nonsmooth points of My, then one obtains a
single or a doubly pinched torus since these points lift to a
point in the initial phase space. From a practical point of
view, these singular values can be determined by a visual
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FIG. 3. (Color online) Bifurcation diagram with the critical fi-
bers (single and doubly pinched tori, circle, point) associated to
critical points for (a) identical powers and for (b) different powers.

inspection of Fig. 2 by varying / and k. The different kinds
of tori are summarized for identical and different powers of
the waves in Fig. 3.

C. Boundary conditions and stationary states
1. Methodology

Having shown how to determine the nature and the posi-
tion of singular tori, we pursue in this section our analysis of
the stationary states. Assuming that the values of the bound-
ary conditions are fixed, our aim consists in finding all the
stationary solutions of the PDE system [Eq. (2)] compatible
with such boundary conditions. To simplify the calculations,
we introduce the following canonically conjugate coordi-
nates (I, ¢°) and (1P, ¢P)

Jo=\Jg—I"* cos ¢
Jy=r
J,=\Js = % sin ¢

S, =S5 — I cos ¢*
Sy=r ;
S, =S —I?sin ¢*

whose corresponding phase space is a product of two cylin-
ders [13]. Note that these polar coordinates are only defined
if |I°| < S, and |I?| <J,, and they are singular at the north and
south poles. The Hamiltonian H of the stationary Egs. (3)
can then be written as
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H=c(P,K)cos(a) - d(I,K), 9)

where the functions ¢ and d are defined by

o(P.K) =205 - (K- 1"]"[S5 - 112, (10a)
1o 2
d(I’,K) = E[IS +(K-P)~], (10b)
and
a=¢ - ¢’ (11)
K is the constant of the motion, which is given e.g., by
K=P(L)+I’(L). (12)

In these coordinates, the boundary conditions are expressed
by

P(L)=1,

F0)=1,

#(L) =],

¢'(0) = &y. (13)

One sees that the value of K and of ay=a(0) are not deter-
mined explicitly by the conditions (13) since the boundary
conditions are specified at different points of the nonlinear
medium. The idea is therefore to invert the problem and to
interpret K and «a as parameters. This means that for given
boundary conditions [j et I{ and for a given length of the
medium L, we determine numerically all possible values of
K and «, in such a way that the functions f and g

I'(2) = f(z.1y, K, ap) s (14a)

a(z) = g(z.1). K, a) , (14b)

correspond to solutions of the Hamiltonian equations. The
boundary conditions for the stationary solution I°(z) can be
expressed as

P(L) = f(L.I,[F(L) + I ], ). (15)

If there exists at least one couple (K, «y) compatible with the
boundary conditions, i.e., satisfying the relation (15), then
for a given value of ¢, ¢?(0) is determined by

¢ (0) = ¢y — ay. (16)

The angles ¢} and ¢*(L) are then computed by solving the
Hamiltonian equations.
Using Eq. (12), the relation (15) can be written as

B - K= fLILP(L) + ], ap). (17)

The condition (15) is therefore equivalent to the determina-
tion of zeros of the function

G(K,ap) = (LI, (L) + I} o) — (Il - K) =0.  (18)

We solve numerically Eq. (18) by determining the zeros of G
in the plane (K,q,). Note that the possible values of the
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0.3 0
K

FIG. 4. (Color online) (a) Values of the function G(K, «) for
the boundary conditions Iy=0.5 and I{=-0.71 and for a medium
length of L=1. (b) Sign of the function G(K, ;). The blue (dark
gray) and red (light gray) regions correspond respectively to the
negative and positive values of G. The green dots are associated to
couples (K, aq) computed from spatiotemporal numerical simula-
tions for ¢/ varying from 0 to 27 by step of 0.1 (So=Jy=1).

parameters K and ¢ are limited by the constraints

K e [max(l; — So, 15— Jy), min(l; + So, 1+ Jp)],

ay € [0,27]. (19a)

Since H is given by
H(z) = H(z=0) = c(Ip,K)cos(ag) — d(Ip,K),  (20)

each couple (K, a) determines a point (K, H) of the bifurca-
tion diagram. The set of couples (K, ;) that are solutions of
Eq. (18) will be denoted {(K, ay)},,;- The question is then to
know if V¢f e[0,27], there exists at least a couple
(K’ Clo) € {(K’ aO)}sol'

2. Numerical results

Figures 4 and 5 depict two examples of solutions for two
different lengths of the nonlinear medium. In Fig. 4, the
function G has a line of zero values in the plane (K, ay)
leading to an infinite number of solutions satisfying the

FIG. 5. (Color online) (a) Function G(K, &) for the boundary
conditions /;=0.5 and If{=-0.71 and for a medium length of L=4.
(b) Zoom of the small part in violet of (a). (c) Sign of the function
G(K, ap) for the values of (b). The blue (dark gray) and red (light
gray) regions correspond respectively to the negative and positive
values (Sy=Jy=1).
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boundary conditions on the action coordinates. The set
{(K, ap)},,; has a shape that resembles an ellipse around the
point of coordinates (K=0, a=2/3) [see Fig. 4(b)]. This
point corresponds to the doubly pinched torus of the bifur-
cation diagram since the powers of the two waves are equal.
If the angle ¢} is fixed then there exists a unique possible
stationary solution associated to a point of {(K, a)}-

For a larger length L, the structure of the function G be-
comes more complicated, as illustrated in Fig. 5. In particu-
lar, we observe new zeros of the function G, which corre-
spond to new possible stationary solutions of the
spatiotemporal dynamics. In a neighborhood of the point
(K=0, a=2m/3), we observe the same ellipselike curve
which can be obtained by continuity from the preceding el-
lipse by varying the length L.

This numerical study allows us to propose the following
conjecture: there exists in the plane (K, «) a closed curve C
around the point (K=0, a=2w/3) such that for fixed
boundary conditions on I, If}, and ¢, each point of C corre-
sponds to a unique value of ¢;. We can define a continuous
and bijective map from C to S'. When the length L increases,
the curve C gets closer to the point (K=0, a=2/3), re-
gardless of the boundary conditions. This means that the dy-
namics lies in a torus very close to the singular torus. It is
only in the limit of an infinite length L, that the stationary
solution reaches the singular pinched torus. This conclusion
is confirmed by the numerical simulations of the PDE system
[Eq. (2)], a feature that will be discussed in the next section.

IV. DYNAMICS OF SPATIOTEMPORAL EQUATIONS

In this Section we present numerical simulations of the
PDE system [Eq. (2)]. As discussed above in Sec. II, due to
the counterpropagating nature of the interaction, boundary
conditions are imposed at both ends of the nonlinear me-
dium. Different time-dependent boundary conditions can be
considered, depending on the choice of the functions f; and
f>. In particular, we introduce here the adiabatic regime in
which the boundary conditions are changed slowly from O at
time =0 toward their asymptotic stationary values.

We shall see that in the adiabatic regime, the spatiotem-
poral dynamics follows adiabatically the stationary state as-
sociated to the singular torus. This feature is consistent with
the results of the previous Section, namely that in the limit of
a short length L, there exists a unique stationary solution
compatible with the boundary conditions and that such solu-
tion lies in the vicinity of the singular torus. Furthermore, the
numerical simulations of the PDE system [Eq. (2)] reveal
that the stationary state converges exponentially toward the
singular torus as the length L of the medium increases.

A. Principles of the adiabatically varying boundary conditions

The idea of the adiabatic approach discussed here is two-
fold. (i) It allows us to consider boundary conditions that are
realistic from an experimental point of view. As explained in
Sec. II, when a wave is injected in a medium, its amplitude
varies progressively from O to its stationary value. In the
adiabatic approach, such a variation of the boundary condi-
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f(t)

t=¢t

FIG. 6. (Color online) Plot of the function f in blue (dark gray)
as a function of 7 that has been used in the numerical simulations.

tion is supposed to be slow. (ii) The adiabatically varying
boundary conditions also avoid the emergence of spatiotem-
poral instabilities or singularities in the field amplitudes, a
dynamical feature that we have observed in the numerical
simulations when the boundary conditions exhibit abrupt
variations.

The space-time variation of the boundary conditions is
given as follows. First of all, we assume that at time =0 the
field in the nonlinear medium is zero,

S(z,t=0)=0, Vzel[0,L]
J(z,t=0)=0, Vzel[0,L].

Next, let us denote by (§4)? and (#))?>=1 the respective val-
ues of the asymptotic powers of the signal and pump waves
(note that due to the adopted normalization Jj=1). At these
powers we associate the final boundary conditions §f
=(SJ;,S/;,S§) and jf= (J{:,J{; ,JJ;). The time-dependent bound-
ary conditions may thus be written as

S(z=0,7 =f(DS;
Jz=L,n)=f(D],,

where f=f,=f, is a smooth monotonic function with values
in the interval [0, 1]. The parameter defined by 7= with
€< is the temporal parameter associated to the adiabatic
character of the method. Figure 6 represents the following
example of function f,

(21)

(22)

sin2(1t> = sin2<7—77'> for 7€ [0,1]
1 for 7>1

(23)

This function has been used in the numerical simulations in
this section. 7=1/¢ is the time needed for the field to reach
its final value at the incoming boundary. Here we assumed
that the time variation of the two waves is the same, but their
amplitudes and powers can be different. The generalization
to different functions f|# f,, where the two fields are in-
jected at different times, will be discussed in Sec. IV C. We
underline that with this adiabatic treatment of the boundary
conditions we have not observed the emergence of instabili-
ties, even for very long lengths L of the nonlinear medium
(see Fig. 7).

The numerical simulations of the PDE system [Eq. (2)]
reveal that, as a general rule, the spatiotemporal dynamics
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FIG. 7. (Color online) Signal and pump stationary states in the
adiabatic approach. The lengths are L=20 (a) and L=50 (b). The
boundary conditions are Iy=0.5, ¢y=m/4, I}=-0.71 and ¢ =
The blue (dark gray) and red (light gray) curves represent respec-
tively the signal and the pump.

follows adiabatically the stationary state associated to the
boundary conditions S(0,7) and J(L,7). In order to explain
this observation, we adapt the adiabatic theory developed in
classical and quantum mechanics [16] to the spatiotemporal
wave system considered here. To avoid cumbersome nota-
tions, the following vector will be used to denote both the
forward and backward waves:

S=(S.J). (24)

The nonlinear propagation Eqs. (2) can be written in the
general form

&S a8

ot % = Py(8.5), (25)

where P,(§,8) are polynomials of order 2 in § and §*. The
change of variables
=f(nS (26)

leads to a nonautonomous evolution equation whose advan-
tage relies on the fact that the boundary conditions no longer
depend on ¢,

(@) o5 (b)

3 K 2
0 -0.08|
3 2
T I o4
-0.5)

‘l -0.15|

1 1
-0.2)

L E] 0 1 0.02 0 002 004
K K

FIG. 8. (Color online) (a) Evolution of the positions of singular
tori obtained by the theory in red (light gray) and corresponding
evolution of the constants of motion obtained by solving numeri-
cally the PDE system [Eq. (2)] in blue (dark gray). The line (1)
corresponds to the evolution of the double pinched torus while lines
(2) and (3) are associated to critical fibers belonging to the bound-
ary of the bifurcation diagram. The black arrow indicates the direc-
tion of the evolution. (b) Zoom of the green panel in (a): the space-
time dynamics of the PDE system [Eq. (2)] follows adiabatically
the singular pinched torus. The boundary conditions are I3=0.5,
do=m/4, I'=—-0.71, and ¢/=m. The length of the medium is
L=20.
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as IS
&f(T)5+f(T){8— * —} =[f(DPPy(S8.8Y). (27)
JaTr  odz -
We are looking for solutions of Eq. (27) in the interval
t [0, 7] in the limit £ — 0. As in a standard adiabatic theory,
we consider a polynomial expansion in the small parameter
e. We write the solution as a sum of terms

Sz, 1) =89z +eSV(z,7) + 28¥(z,7)
+ -+ 58Pz, 1) + O(5). (28)

We obtain the equations for S® by inserting Eq. (28) into
Eq. (27) and by identifying the terms with the same order in
¢. For instance, we have for the order 0,

S(O)
&’ +f(T) —|f(T)|2ﬁ(§(°),§(°>*), (29)
and for the order 1,
a aS® a8
el (T)S“” f(r)[ = [ =PRSS,
z 2

(30)

where P3(S®,S") is a polynomial of order 2, each term
being the product of a term of the form S and a term of the
form S,

From Eq. (29), we can conclude that the term of order 0,
S9(z,7), is an instantaneous stationary solution correspond-
ing to a given value of 7. For € small enough, the spatiotem-
poral dynamics will then follow continuously the stationary
state associated to the boundary conditions at time 7.

B. Adiabatic evolution of the system and exponential
convergence to the singular torus

Let us now recall an important result established in the
previous Sec. III C, namely, that for small lengths of the
nonlinear medium (L—0) there exists a unique stationary
solution compatible with the boundary conditions, and that
such a stationary solution is close to the singular torus. Note
that, according to the normalization adopted in this work, the
length L is normalized to A, so that a small length L also
means a small power of the beams. Now one should consider
that, at the beginning of the interaction (i.e., when the beams
enter the medium), the powers of the beams are small since
their values increase from zero. This implies that the two
waves follow the stationary solution associated to the singu-
lar torus at the beginning of the interaction, since this solu-
tion is the unique available stationary solution. As the beams
progressively enter the medium, their powers increase and
new stationary solutions compatible with the boundary con-
ditions emerge (see Sec. III C). However, because the bound-
ary conditions are slowly varying, the system adiabatically
follows the initial stationary solution, i.e., the stationary so-
lution associated to the singular torus. In this way, the system
remains close to the solution in the neighborhood of the sin-
gular torus during its whole evolution.

This conclusion is confirmed by the numerical simula-
tions of the PDE system [Eq. (1)], as illustrated in Fig. 8. For
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Distance

s

FIG. 9. (Color online) Evolution of the distance in the phase-
space diagram p=VH?+K? between the singular torus and the regu-
lar torus on which lies the stationary state for a given length L: the
stationary state converges exponentially toward the singular torus.

every time 7, we determine the position [K/(7), H/(7)] of the
singular tori in the bifurcation diagram. We then compute
from spatiotemporal dynamics, the point [K,(7),H,,(7)], de-
fined by the following relations at time 7

L
sp(T) f K(T)dz, (318.)

L
H,,(7) = % f H(7dz. (31b)
0

We see in Fig. 8 that, as expected, the curve defined by
[K,,(7),H,,(7)] follows continuously the curve defined by

/()7') Hf ( T)] thus confirming that the spatiotemporal PDE
dynamlcs follows adiabatically the position of the singular
pinched torus.

As discussed above, for a finite length L of the nonlinear
medium, the relaxation process does not occur exactly on the
singular torus, but in the neighborhood of it [26]. Actually,
the numerical simulations reveal that the stationary state con-
verges exponentially toward the pinched torus in the limit of
an infinite length, L — +o°. This result is illustrated in Fig. 9,
that reports the distance to the singular torus as a function of
the length of the nonlinear medium L. This figure has been
obtained by performing numerical simulations of the PDE
system [Eq. (2)] for different values of L. Once the stationary
state was reached, we calculated the euclidian distance p
between the singular torus and the regular torus associated to
the stationary solution. Such a distance has been calculated
in the phase-space diagram, p= VH*+K2. Figure 9 shows that
the convergence toward the singular torus exhibits an expo-
nential law, a feature which is confirmed over more than ten
orders of magnitude. We conjecture that the origin of the
exponential behavior lies on the logarithmic divergence of
one of the periods of the torus as the distance between this
torus and the pinched torus tends to zero.

C. Nonsimultaneous injection of initial impulsions

Up to now, we have considered the case where the waves
are simultaneously injected into the medium. However, from
the experimental point of view, it could be more realistic to
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FIG. 10. (Color online) Functions f; in blue (dark gray) and f,
in red (light gray) as a function of 7 which are used in the study of
the nonsimultaneous injection of the waves. The pump correspond-
ing to f; is injected before the signal wave corresponding to f5.

consider a nonsimultaneous injection of the pump and the
signal waves. In this Section we analyze this problem by
considering the case where the pump wave is injected before
the signal wave. The corresponding boundary conditions
read

Jz=L)=f, (D],
S(z=0,0) = fo(DS;

where f(7) and f,(7) are displayed in Fig. 10.

As opposed to the case analyzed above in which the two
waves are injected simultaneously, here the ratio of the pow-
ers SS/ J(z) is not constant during the time evolution. This leads
to a different spatiotemporal dynamics of the system. This
aspect is shown in Fig. 11. We underline that the bifurcation
diagram and thus the temporal evolutions of singular tori
depend on the ratio S,/J,. During the injection of the signal,
for small values of S, the bifurcation diagram does not ex-
hibit pinched tori. We observe in the simulations of the PDE
system [Eq. (2)] that the spatiotemporal dynamics relaxes
toward an oscillatory stationary state, as illustrated in Fig.
11(b). For larger values of S, pinched singular tori emerge in
the bifurcation diagram, as can be verified in Fig. 11(a) for
H<-0.5. The spatiotemporal dynamics then jumps into the
stationary state associated to the pinched torus. This is dis-
played in Fig. 11(a), which shows that, whenever the PDE
dynamics has a pinched torus, it then follows adiabatically
its temporal evolution, as confirmed by the superposition of
the red and blue lines. We also report in Fig. 11(c) the cor-
responding stationary state obtained by the numerical simu-
lations, which is the stationary state associated to the pinched
torus located near H=-1, K=0 in the bifurcation diagram
[Fig. 11(a)].

In this Section we have thus shown that in the framework
of the adiabatic approach, singular tori play a major role not
only for the determination of the asymptotic stationary state,
but also for the spatiotemporal dynamics of the four-wave
system.

(32)

V. CONCLUSION AND PERSPECTIVES

In summary, we have discussed the role of singular tori in
the spatiotemporal dynamics of the four-wave interaction in
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FIG. 11. (Color online) (a) Evolution of the positions of singular
tori in red (light gray) and of the point of coordinates (K,,Hy,) in
blue (dark gray). The lines (1) et (2) correspond to the evolution of
the pinched tori. The black arrow indicates the time evolution. The
time interval between the two dashed lines corresponds to the in-
jection of the signal wave. (b) Stationary state associated to the
region in the pink square (upper square) on (a). (c) Stationary state
associated to the region in the green square (lower square) on (a).
The (final) boundary conditions are Iy=0.5, ¢y=/4, I} =-0.71 et
¢ =r. The length of the nonlinear medium is L=5.

its counterpropagating configuration. An adiabatic approach
reveals that for slowly varying boundary conditions, the spa-
tiotemporal dynamics follows adiabatically the stationary
state corresponding to the singular torus of the associated
bifurcation diagram. In this sense, singular tori appear as
attractors for the spatiotemporal dynamics of the four-wave

PHYSICAL REVIEW E 81, 016202 (2010)

interaction. Furthermore, as discussed in Ref. [26], singular
tori also play a major role in the resonant three-wave inter-
action or in the dynamics of wave propagation in periodic
media, which find applications in optics, hydrodynamics,
plasmas, or condensed matter physics. Our preliminary work
shows that the adiabatic theory developed here for the four-
wave interaction may be easily extended to the spatiotempo-
ral dynamics of the three-wave interaction or to nonlinear
wave dynamics in periodic systems.

As discussed in detail in Refs. [27,28], besides its funda-
mental interest, the attraction process discussed here may be
exploited to achieve complete polarization of unpolarized
light [15]. Indeed, in contrast to standard polarizers that un-
avoidably waste 50% of unpolarized light, here the repolar-
ization process may take place, in principle, with 100% effi-
ciency, i.e., without any loss of energy[27,28].

Another open question is the extension of these results to
PDE systems whose associated stationary Hamiltonian is not
integrable. In this case, the Hamiltonian dynamics of the
stationary states belongs to a mixed regime of regular and
chaotic trajectories, which is known to be described by the
Kolmogorov-Arnold-Moser (KAM) theorem. For sufficiently
small nonintegrable perturbations, rational tori are destroyed
but irrational tori are preserved or transformed into cantori.
The singular tori become stable and unstable manifolds of
hyperbolic orbits, with generically transverse intersections.
For larger nonintegrable perturbations, an increasing portion
of the phase space is invaded by chaotic trajectories [29].
Considering that Hamiltonian monodromy is a topological
property related to the presence of singular pinched tori [17],
this concept can still be defined for Hamiltonian systems
sufficiently close to integrable ones [31,30]. Accordingly, we
may expect that the phenomenon of relaxation discussed in
this paper should persist in the presence of small non-
integrable perturbations. Work is in progress to study this
problem.
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