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Evolutionary game theory has been successfully used to investigate the dynamics of systems, in which many
entities have competitive interactions. From a physics point of view, it is interesting to study conditions under
which a coordination or cooperation of interacting entities will occur, be it spins, particles, bacteria, animals,
or humans. Here, we analyze the case, where the entities are heterogeneous, particularly the case of two
populations with conflicting interactions and two possible states. For such systems, explicit mathematical
formulas will be determined for the stationary solutions and the associated eigenvalues, which determine their
stability. In this way, four different types of system dynamics can be classified and the various kinds of phase
transitions between them will be discussed. While these results are interesting from a physics point of view,
they are also relevant for social, economic, and biological systems, as they allow one to understand conditions
for �1� the breakdown of cooperation, �2� the coexistence of different behaviors �“subcultures”�, �3� the
evolution of commonly shared behaviors �“norms”�, and �4� the occurrence of polarization or conflict. We
point out that norms have a similar function in social systems that forces have in physics.
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I. INTRODUCTION

Game theory is a theory of interactions, which goes back
to von Neumann �2�, one of the superminds of quantum me-
chanics. It is based on mathematical analyses �3–6� and
methods from statistical physics and the theory of complex
systems �7–11�, while applications range from biology �3,6�
over sociology �12–16� to economics �2,16–18�. Physicists
have been particularly interested in evolutionary game theory
�3–5,13,19�, which focuses on the dynamics resulting from
the interactions among a large number of entities. These
could, for example, be spins, particles, bacteria, animals, or
human beings. For such systems, one can calculate the sta-
tistical distribution of states in which the entities can be.
These states reflect, for example, the location in space
�20,21� and/or whether a spin is oriented “up” or “down”
�22,23�, while in nonphysical systems, the states represent
decisions, behaviors, or strategies. In such a way, one can
study problems ranging from the spontaneous magnetization
in spin glasses �22,23� up to the emergence of behavioral
conventions �7,24,25�. Further application areas are nucle-
ation processes �26,27�, the theory of evolution �3,28–30�,
predator-prey systems �31,32�, and the stability of ecosys-
tems �32–35�. Physicists have also been interested in the ef-
fects of spatial interactions �36–38� or network interactions
�39–46� of mobility �20,21,47–51� or perturbations
�21,51–54�.

Recently, particular attention has been paid to the emer-
gence of cooperation in dilemma situations �6,55�, which are
reflected by a number of different games characterized by
different types of interactions �4�: in the stag hunt game
�SH�, cooperation is risky, in the snowdrift game �SD�, free-

riding �“defection”� is tempting, while both problems occur
in the prisoner’s dilemma �PD� �38�. Details will be dis-
cussed in Sec. IV B. Most of the related studies have as-
sumed homogeneous populations so far �where every entity
has the same kind of interactions�. Here, we will study the
heterogeneous case with multiple interacting populations.
Compared to previous contributions for multiple populations
�4,24,56–58�, we will focus on populations with conflicting
interests and different power. Furthermore, we will classify
the possible dynamical outcomes and discuss the phase tran-
sitions when model parameters cross certain critical thresh-
olds �“tipping points”�.

Our paper is structured as follows. Section II introduces
the game-dynamical replicator equations for multiple inter-
acting populations. Afterwards, Sec. II A specifies the payoff
matrices representing conflicting interactions. While doing
so, we will take into account the �potentially different� power
of populations. Then, Sec. III derives the stationary solutions
of the evolutionary equations and the associated eigenvalues,
which determine the instability properties of the stationary
solutions. This is the basis of our classification. Section IV
collects and discusses the main results regarding the dynam-
ics of the system and possible phase transitions when model
parameters are changing. It also offers an interpretation of
the formal theory. Finally, Sec. V presents a summary and
outlook.

II. GAME-DYNAMICAL REPLICATOR EQUATIONS
FOR INTERACTING POPULATIONS

In the following, we will formulate game-dynamical
equations for multipopulation interactions �4,24,56–58�. For
this, we will distinguish different �sub-populations a ,b ,c
� �1, . . . ,A� and various states �behaviors, strategies� i , j ,k
� �1, . . . , I�. If an entity of population a characterized by*dhelbing@ethz.ch
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state i interacts with an entity of population b characterized
by state j, the outcome �“success”� of the interaction is quan-
tified by the “payoff” Aij

ab. Now, let fa�0 with �afa=1 be
the fraction of entities belonging to population a and pi

a�t�
�0 with �ipi

a�t�=1 the proportion of entities in population a
characterized by state i at time t. We will assume that entities
take over �copy, imitate� states that are more successful in
their population in accordance with the proportional imita-
tion rule �24,59�. Moreover, when the interaction frequency
with entities of population b characterized by state j is fbpj

b

�i.e., proportional to the relative size or “power” fb of that
population and the relative frequency pj

b of state j in it�, we
find the following set of coupled game-dynamical equations
�24�,

dpi
a�t�

dt
= pi

a�t��Ei
a�t� − Aa�t�� . �1�

Herein, the “expected success,”

Ei
a�t� = �

b=1

A

�
j=1

I

Aij
abfbpj

b�t� , �2�

of entities belonging to population a characterized by state i
is obtained by summing up the payoffs Aij

ab over all possible
states j of interaction partners and populations b, weighting
the payoffs with the respective occurrence frequencies
fbpj

b�t�. �Note that �b� j fbpj
b�t�=1.� The quantity

Aa�t� = �
k=1

I

pk
a�t�Ek

a�t� �3�

is the average success in population a and

�A	 = �
a=1

A

faAa�t� �4�

the average success in all populations. The above game-
dynamical equations assume that population sizes �and the
population an entity belongs to� do not change.

Comparing the above game-dynamical equations to the
usual replicator equation for the one-population case, we
have additional terms involving payoffs Aij

ab from interac-
tions with different populations b�a. They lead to a mutual
coupling of the replicator �Eq. �1��. Asymmetrical games
with different payoff matrices of the interacting entities or
games between entities with different sets of states �strategy
sets� are examples for the need to distinguish between differ-
ent populations. Within the framework of game-dynamical
equations, they can be treated as bimatrix games �3–5�.
These, however, do not consider interactions among entities
belonging to the same population �“self-interactions”�, which
are reflected by the payoff matrices Aij

aa. The above multi-
population replicator equations include interactions both
within the same population and between different popula-
tions. The significantly different dynamics and outcomes
when interactions between two populations are neglected or
when self-interactions are neglected become obvious when
Figs. 1 and 2 are compared to Fig. 3.

For reasons of simplicity and analytical tractability, we

will now focus on the case of two populations �A=2� with
two states each �I=2�. This allows one to reduce the number
of variables by means of the normalization conditions f1=1
− f2, p2

1�t�=1− p1
1�t�, and p1

2�t�=1− p2
2�t�. Furthermore, we

find

−0.5 0 0.5

−0.5

0

0.5

B

C

MSH MHG

MPD MSD

FIG. 1. �Color online� Illustration of the outcomes of symmetri-
cal 2�2 games as a function of the payoff-dependent parameters
ba=B and ca=C if f =0.8 �i.e., 80% of individuals belong to popu-
lation 1� and if the entities interact within their own population, but
different populations do not have any interactions between each
other �Ba=0=Ca� �4,23�. p= p1

1 is the fraction of entities of popula-
tion 1 in state 1 and q= p2

2 the fraction of entities of population 2 in
state 2. The vector fields show �dp /dt ,dq /dt�, i.e., the direction and
size of the expected change of the distribution �p ,q� of states with
time t. Sample trajectories illustrate some representative flow lines
�p�t� ,q�t�� as time t passes. The flow lines move away from un-
stable stationary points �empty circles�. Saddle points �crosses� are
attractive in one direction, but repulsive in another. Stable station-
ary points �black circles� attract the flow lines from all directions.
Each color �gray shade� represents one basin of attraction. It sub-
sumes all initial conditions �p�0� ,q�0�� leading to the same station-
ary point �yellow= �1,1�, green= �1,0�, blue= �0,1�, red= �0,0�,
and turquoise= �p0 , p0� with p0= 
B
 / �
B
+ 
C
��. Solid red lines in-
dicate the thresholds at which continuous �second-order� phase tran-
sitions take place, i.e., at which the system behavior changes quali-
tatively �characterized by the appearance or disappearance of
stationary points�, while the stable stationary points change con-
tinuously when the parameters are varied. Dashed lines indicate an
abrupt change of a stable stationary point, i.e., a discontinuous
�first-order� phase transition. For multi-population prisoner’s dilem-
mas �MPD�, we have B�0 and C�0, and the final outcome is
�p ,q�= �0,0�. For multi-population snowdrift games �MSD�, we
have B�0 and C�0, and the stable stationary solution corresponds
to a coexistence of a fraction p0= 
B
 / �
B
+ 
C
� of entities in one
state and a fraction 1− p0 of entities in the other. For multi-
population harmony games �MHG�, we have B�0 and C�0, and
the eventually resulting outcome is �1,1�. Finally, for multi-
population stag hunt games �MSH�, we have B�0 and C�0, and
there is a bistable situation, i.e., it depends on the initial fraction of
entities in a state, whether everybody ends up in this state or in the
other one �23�.
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E1
1�t� − A1�t� = E1

1�t� − p1
1�t�E1

1�t� − �1 − p1
1�t��E2

1�t�

= �1 − p1
1�t���E1

1�t� − E2
1�t�� . �5�

When evaluating the expected success Ei
a�t�, we will write

the payoff matrices Aij
ab for population a=1 as

�Aij
11� = �r1 s1

t1 p1
� and �Aij

12� = �R1 S1

T1 P1
� . �6�

A. Specification of conflicting interactions

To reflect conflicting interactions, the payoffs in popula-
tion a=2 are assumed to be inverted �“mirrored”�, i.e., state
2 plays the role in population 2 that state 1 plays in popula-
tion 1,

�Aij
21� = �P2 T2

S2 R2
� and �Aij

22� = �p2 t2

s2 r2
� . �7�

With the abbreviations p�t�= p1
1�t� and q�t�= p2

2�t�, this leads
to

E1
1�t� = r1fp�t� + s1f�1 − p�t�� + R1�1 − f��1 − q�t��

+ S1�1 − f�q�t� �8�

and

E2
1�t� = t1fp�t� + p1f�1 − p�t�� + T1�1 − f��1 − q�t��

+ P�1 − f�q�t� . �9�

The parameter f = f1 represents the �relative� power of popu-
lation 1 and �1− f�= f2 the power of population 2. Inserting
Eqs. �8� and �9� into Eqs. �5� and �1�, the game-dynamical
equation for population 1 becomes

dp�t�
dt

= p�t��1 − p�t��
saturation factors

F�p�t�,q�t��
growth factor

,

�10�

with F�p ,q�=E1
1−E2

1. Explicitly, we have

F�p,q� = b1f + �c1 − b1�fp + C1�1 − f� + �B1 − C1��1 − f�q ,

�11�

where

b1 = s1 − p1, c1 = r1 − t1, B1 = S1 − P1, C1 = R1 − T1.

�12�

The supplementary equation for population 2 reads

dq�t�
dt

= q�t��1 − q�t��
saturation factors

G�p�t�,q�t��
growth factor

,

�13�

with

G�p,q� = b2�1 − f� + �c2 − b2��1 − f�q + C2f + �B2 − C2�fp .

�14�

It is obtained by exchanging p and q, f and 1− f , and indices
1 and 2. The first factors may be interpreted as saturation
factors, as they limit the proportions p and q to the admis-
sible range from 0 to 1. The factors F�p ,q� and G�p ,q� can
be interpreted as growth factors if greater than zero �or as
decay factors if smaller than zero�. Note that the above two-
population game-dynamical equations are general enough to
capture all possible 2�2 games and even situations when
entities of different populations play different kinds of games
�“asymmetrical” case�.

B. Special cases

If there are no interactions between entities of different
populations, we have Ba=0=Ca. In that case, both popula-
tions separately behave as expected in the one-population
case �see Fig. 1 and movie 1 �1��. Instead, if there are inter-
actions between both populations, but no self-interactions,
we have ba=0=ca. In that situation, we end up with conven-
tional bimatrix games �see Fig. 2 and movie 2 �1��. In the
following, we will assume that everyone has interactions
with entities of all populations with a frequency that is pro-
portional to the relative population sizes. For simplicity, we
will furthermore focus on the case where the payoffs depend
only on the state, but not the population of the interaction
partner. Then, we have pa= Pa= P, ra=Ra=R, sa=Sa=S, and
ta=Ta=T, i.e.,

ba = Ba = B = S − P �15�

and
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FIG. 2. �Color online� Illustration of the outcomes as a function
of the payoff-dependent parameters Ba=B and Ca=C if f =0.8 �i.e.,
80% of the entities belong to population 1� and if the entities do not
interact within their own population �ba=0=ca�, while entities be-
longing to different populations have interactions with each other
�4�. Small arrows illustrate again the vector field �dp /dt ,dq /dt� as a
function of p= p1

1 and q= p2
2. Black circles represent stable fix

points, empty circles stand for unstable fix points, and crosses rep-
resent saddle points. The basins of attraction of different stable fix
points are represented in different gray shades �colors� �yellow
= �1,1�, green= �1,0�, blue= �0,1�, and red= �0,0��. Solid red lines
indicate the thresholds at which continuous phase transitions take
place, dashed lines indicate discontinuous phase transitions. For
MPDs, we have B�0 and C�0, for MSDs, we have B�0 and
C�0, for MHGs, we have B�0 and C�0, and for MSH, we have
B�0 and C�0.
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ca = Ca = C = R − T �16�

�see Fig. 3 and movie 3 �1��. If the interaction rate between
different populations is � times the interaction rate within the
own population, we have the more general relationship Ba
=�ba=�B and Ca=�ca=�C �where the parameter ��0 al-
lows us to tune the interaction frequency between two
populations—until now, we have assumed �=1�. In that case,
we obtain

F�p,q� = F��p,q� = B�f�1 − p� + ��1 − f�q�
�0

+ C�fp + ��1 − f��1 − q��
�0 �17�

and

G�p,q� = G��p,q� = B��1 − f��1 − q� + �fp�
�0

+ C��1 − f�q + �f�1 − p�� .

�0 �18�

Note that one can restrict the analysis of the two-population
game-dynamical equations to f �0.5 as the transformations
f ↔ �1− f� and p↔q leave the two-population replicator
equations unchanged.
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(1

−
f)

/f

↓ C = −B f/(1−f)

C = −B →

FIG. 3. �Color online� Illustration of the parameter-dependent types of outcomes as a function of the payoff-dependent parameters Ba

=ba=B and Ca=ca=C if f =0.8 �i.e., 80% of the entities belong to population 1� and if the entities have interactions with other entities,
independently of the population they belong to. This corresponds to the multipopulation case with interactions and self-interactions. Small
arrows illustrate the vector field �dp /dt ,dq /dt� as a function of p and q. Empty circles stand for unstable fix points �repelling neighboring
trajectories�, black circles represent stable fix points �attracting neighboring trajectories�, and crosses represent saddle points �i.e., they are
attractive in one direction and repulsive in the other�. The basins of attraction of different stable fix points are represented in different shades
of gray �colors� �red= �0,0�, green= �1,0�, blue= �0,1�, yellow= �1,1�, salmon= �u ,0�, and mustard= �v ,1�, where 0�u ,v�1�. Solid red
lines indicate the thresholds at which continuous phase transitions take place and dashed lines indicate discontinuous phase transitions. For
MPDs, we have B�0 and C�0, for MSDs, we have B�0 and C�0, for MHGs, we have B�0 and C�0, and for MSH, we have B
�0 and C�0.
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III. STATIONARY SOLUTIONS, EIGENVALUES,
AND POSSIBLE SYSTEM DYNAMICS

In the two-dimensional space defined by the variables p
and q, the qualitative properties of the vector field �which
determines the temporal changes dp /dt and dq /dt� can be
completely derived from the stationary solutions and their
stability properties, which are given by their eigenvalues.
These can be calculated analytically, i.e., there are exact
mathematical formulas for them.

A. Basic definitions

For an interdisciplinary readership, we will shortly define
some relevant terminologies here, while specialists may di-
rectly continue with Sec. III B. A stationary solution �pl ,ql�
is defined as a point with dp /dt=0 and dq /dt=0, which
implies

pl�1 − pl�F�pl,ql� = 0 and ql�1 − ql�G�pl,ql� = 0.

�19�

Besides calculating the stationary solutions, one may per-
form a so-called “linear stability analysis,” which allows one
to find out how a solution

�p�t�,q�t�� = �pl + �pl�t�,ql + �ql�t�� �20�

in the vicinity of a stationary solution �pl ,ql� evolves in time.
If the distance

dl�t� = 
�pl�t�2 + �ql�t�2 �21�

goes to zero, which may be imagined as an attraction toward
the stationary solution, one speaks of a stable stationary
point or an asymptotically stable fix point or an evolutionary
equilibrium �13� �which is a so-called Nash equilibrium�. Its
basin of attraction is defined by the set of all initial condi-
tions �p�0� ,q�0��, for which the trajectories �p�t� ,q�t�� start-
ing in these points end up in the fix point under consideration
as time t goes to infinity. �In Figs. 1–5 and movies 1–3 �1�,
they are represented by different background colors.�

If the distance dl�t� grows rather than shrinks with time t,
one speaks of an unstable fix point. This may be imagined
like a repulsion from the stationary solution. If the growth or
shrinkage of the distance dl is a matter of the specific choice
of the initial conditions p�0�= pl+�pl�0� and q�0�=ql
+�ql�t�, the stationary point is called a saddle point. A saddle
point is attractive in one direction, but repulsive in another
one. In Figs. 1–5 and movies 1–3 �1�, the stationary points
and their respective stability properties �marked by circles
and crosses� have been determined analytically. They fit per-
fectly to the numerically calculated vector fields, which rep-
resent �dp /dt ,dq /dt�, i.e., the size and direction of changes
in the distribution �p ,q� of states with time.

B. Calculation of the stationary solutions and their eigenvalues

We will now identify the stationary solutions �pl ,ql� sat-
isfying dp /dt=0 and dq /dt=0 and their respective eigenval-
ues �l and 	l. Using the notation p�t�= pl+�pl�t� and q�t�

=ql+�ql�t�, the eigenvalues follow from the linearized equa-
tions

d

dt
��pl�t�

�ql�t�
� = �M11 M12

M21 M22
���pl�t�

�ql�t�
� , �22�

with

M11 = �1 − 2pl�F�pl,ql� + pl�1 − pl��c1 − b1�f ,

M12 = pl�1 − pl��B1 − C1��1 − f� ,
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|C|/|B| = (1−f)/f → ← |C|/|B| = f/(1−f)

FIG. 4. �Color online� Illustration of the parameter-dependent
types of outcomes in the multipopulation stag-hunt game if 
C
 / 
B

and/or f are varied and interaction between populations as well as
self-interactions is considered. The representation and gray shades
�colors� are the same as in Fig. 3. Solid red lines indicate the thresh-
olds at which continuous phase transitions take place and dashed
lines indicate discontinuous phase transitions.
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FIG. 5. �Color online� Illustration of the parameter-dependent
types of outcomes in the multipopulation snowdrift game if 
C
 / 
B

and/or f are varied and interaction between populations as well as
self-interactions are considered. The representation and gray shades
�colors� are the same as in Fig. 3.
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M21 = ql�1 − ql��B2 − C2�f ,

M22 = �1 − 2ql�G�pl,ql� + ql�1 − ql��c2 − b2��1 − f� .

�23�

As the eigenvalue analysis of linear systems of differential
equations is a standard procedure �13�, we will not explain it
here in detail. We just note that the eigenvalues �l and 	l of
a stationary point �pl ,ql� are given by the two solutions of
the so-called characteristic polynomial

�M11 − �l��M22 − 	l� − M12M21 = 0. �24�

For the four stationary points �pl ,ql�, with l� �1,2 ,3 ,4� dis-
cussed below, we have pl ,ql� �0,1�, which implies
M12M21=0. Therefore, the first associated eigenvalue is just

�l = M11 = �1 − 2pl�F�pl,ql� �25�

and the second associated eigenvalue is

	l = M22 = �1 − 2ql�G�pl,ql� . �26�

The following paragraph is again written for an interdiscipli-
nary readership, while specialists may skip it. If both eigen-
values are negative, the corresponding stationary point
�pl ,ql� is a stable fix point, i.e., “trajectories” �p�t� ,q�t�� in
the neighborhood �flow lines� are attracted to it in the course
of time t. If �l and 	l are both positive, the stationary solu-
tion will be an unstable fix point and close-by trajectories
will be repelled from it. If one eigenvalue is negative and the
other one is positive, close-by trajectories are attracted in one
direction, while they are repelled in another direction. This
corresponds to a saddle point. If both eigenvalues are posi-
tive, close-by trajectories are repelled from the stationary
solution. That situation is called an unstable fix point.

Let us now turn to the discussion of the stationary solu-
tions of Eqs. �10� and �13� with the specifications �11� and
�14�:

�i� For the stationary solution �p1 ,q1�= �0,0�, we have the
associated eigenvalues �1=b1f +C1�1− f� and 	1=b2�1− f�
+C2f .

�ii� The point �p2 ,q2�= �1,1� is also a stationary solution
and has the eigenvalues �2=−�c1f +B1�1− f�� and 	2
=−�c2�1− f�+B2f�.

�iii� The stationary solutions �p3 ,q3�= �1,0� and �p4 ,q4�
= �0,1� exist as well. They have the eigenvalues �3=−�c1f
+C1�1− f��, 	3=b2�1− f�+B2f and �4=b1f +B1�1− f�, 	4
=−�c2�1− f�+C2f�.

�iv� If 0
 pk
1 and 0
qk
1 with

p5 =
b1f + C1�1 − f�

�b1 − c1�f
, �27�

p6 =
b1f + B1�1 − f�

�b1 − c1�f
, �28�

q7 =
b2�1 − f� + B2f

�b2 − c2��1 − f�
, �29�

q8 =
b2�1 − f� + C2f

�b2 − c2��1 − f�
, �30�

we additionally have stationary points �p5 ,q5�= �p5 ,0� with
F�p5 ,0�=0, �p6 ,q6�= �p6 ,1� with F�p6 ,1�=0, �p7 ,q7�
= �1,q7� with G�1,q7�=0, and/or �p8 ,q8�= �0,q8� with
G�0,q8�=0. These have the associated eigenvalues

�5 = p5�1 − p5��c1 − b1�f , 	5 = G�p5,0� , �31�

�6 = p6�1 − p6��c1 − b1�f , 	6 = − G�p6,1� , �32�

�7 = − F�1,q7�, 	7 = q7�1 − q7��c2 − b2��1 − f� , �33�

�8 = F�0,q8�, 	8 = q8�1 − q8��c2 − b2��1 − f� . �34�

�v� Inner stationary points �p9 ,q9� with 0� p9�1, 0
�q9�1 can only exist, if F�p9 ,q9�=0=G�p9 ,q9� can be sat-
isfied.

C. Special case of homogeneous parameters

Let us now focus on the case of homogeneous parameters
given by ba=Ba=B and ca=Ca=C. In this case, the condition
F�p9 ,q9�=0=G�p9 ,q9� for an inner point can only be ful-
filled for B+C=0. If B=−C, one finds a line

q�p� =
1/2 + f�p − 1�

1 − f
�35�

of fix points, which are stable for B�0 but unstable for B
�0. Otherwise, fix points are only possible on the bound-
aries with either p or q� �0,1�.

Evaluating the conditions 0
 pl
1 and 0
ql
1 reveals
the following:

�i� The stationary point �p5 ,0� only exists for C�0�B
and f � 
C
 / �B+ 
C
� or for B�0�C and f �C / �
B
+C�.

�ii� �p6 ,1� is a stationary point for C�0�B and f
�B / �B+ 
C
� or for B�0�C and f � 
B
 / �
B
+C�.

�iii� The stationary point �1,q7� only exists for C�0�B
and f 
 
C
 / �B+ 
C
� or for B�0�C and f 
C / �
B
+C�.

�iv� �0,q8� is a stationary point for C�0�B and f

B / �B+ 
C
� or for B�0�C and f 
 
B
 / �
B
+C�.

�v� If both B and C are positive or negative at the same
time, stationary points �pl ,ql�, with l� �5, . . . ,8�, do not ex-
ist.

IV. OVERVIEW OF MAIN RESULTS

For the special case with ba=Ba=B and ca=Ca=C, our
results depend on the type of game, the sizes 
B
 and 
C
 of
the payoff-dependent model parameters, and the power f of
population 1 �e.g., its relative strength�. They can be summa-
rized as follows. For all values of the model parameters B, C,
and f , all four corner points �0,0�, �1,0�, �0,1�, and �1,1� are
stationary solutions. However, if B�0 and C�0, the only
asymptotically stable fix point is �1,1�, while for B�0 and
C�0, the only stable fix point is �0,0�. In both cases, �1,0�
and �0,1� are saddle points and stationary points �pl ,ql�, with
l� �5, . . . ,8� do not exist, as either the value of pl or of ql
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lies outside the range �0,1�, thereby violating the normaliza-
tion conditions.

If B�0 and C�0, we have an equilibrium selection
problem �23� and find:

�i� �0,1� and �1,0� are always asymptotically stable fix
points.

�ii� �0,0� is a stable fix point for 
C
 / 
B
�min�f / �1
− f� , �1− f� / f�.

�iii� �1,1� is a stable fix point for 
C
 / 
B
�max�f / �1
− f� , �1− f� / f�.

If B�0 and C�0, we have:
�i� �1,0� and �0,1� are always unstable fix points.
�ii� �0,0� is a stable fix point for 
C
 / 
B
�max�f / �1

− f� , �1− f� / f�.
�iii� �1,1� is a stable fix point for 
C
 / 
B
�min�f / �1

− f� , �1− f� / f�.
Moreover, if B and C have different signs, stationary

points �pl ,ql�, with l� �5, . . . ,8�, may occur:
�i� �p5 ,0� is a fix point for 
C
 / �
B
+ 
C
�
 f , i.e., 
C
 / 
B



 f / �1− f�.
�ii� �p6 ,1� is a fix point for 
B
 / �
B
+ 
C
�
 f , i.e.,


C
 / 
B
� �1− f� / f .
�iii� �1,q7� is a fix point for 
C
 / �B+ 
C
�� f , i.e., 
C
 / 
B


� f / �1− f�.
�iv� �0,q8� is a fix point for 
B
 / �
B
+ 
C
�� f , i.e.,


C
 / 
B

 �1− f� / f .

A. Phase transitions between different types of system
dynamics

It is natural that a change in the parameters B, C, and f
causes changes in the system dynamics. Normally, small pa-
rameter changes will imply smooth changes in the locations
of fix points, their eigenvalues, the vector fields, and basins
of attraction. However, when certain “critical” thresholds are
crossed, new stable fix points may show up or disappear in
remote places of the parameter space, which defines a dis-
continuous (first-order) phase transition. If the locations of
the stable fix points change continuously with a variation of
the model parameters, while the related “dislocation speed”
changes discontinuously when crossing certain thresholds,
we will talk of a second-order phase transition. In Figs. 1–5,
continuous transitions are indicated by solid lines, while dis-
continuous transitions are represented by dashed lines.

Analyzing the eigenvalues of the fix points �0,0�, �1,0�,
�0,1�, and �1,1�, it is obvious that our model of two popula-
tions with conflicting interactions shows phase transitions,
when B or C changes from positive to negative values or
vice versa. The stationary point �0,0� is stable for B�0 and
C�0, �1,0� and �0,1� are stable for B�0 and C�0, and
�1,1� is stable for B�0 and C�0. This implies completely
different types of system dynamics and the transitions be-
tween these cases are discontinuous �corresponding to first-
order phase transitions�. For B�0 and C�0, the stable fix
point differs from the corner points �0,0�, �1,0�, �0,1�, and
�1,1�, but its location changes continuously as B or C crosses
the zero line �corresponding to a second-order transition�.

It is striking that conflicting interactions between two
populations lead to further transitions as f or 
C
 / 
B
 cross

certain critical values. Namely, as 
C
 is increased from 0 to
high values, apart from �0,0�, �0,1�, �1,0�, and �1,1�, we find
the following stationary points �given that B and C have
different signs�:

�i� �p5 ,0� and �0,q8� if f �1 /2 and 
C
 / 
B

 �1− f� / f or if
f 
1 /2 and 
C
 / 
B

 f / �1− f�.

�ii� �p5 ,0� and �p6 ,1� if f �1 /2 and �1− f� / f � 
C
 / 
B

� f / �1− f� or �1,q7� and �0,q8� if f 
1 /2 and f / �1− f�
� 
C
 / 
B
� �1− f� / f .

�iii� �p6 ,1� and �1,q7� if f �1 /2 and 
C
 / 
B
� f / �1− f� or
if f 
1 /2 and 
C
 / 
B
� �1− f� / f .

For B�0�C, these fix points are unstable or saddle
points, while they are stable or saddle points for C�0�B.
When the equality sign in the above inequalities applies, fix
points �pl ,ql�, with l� �5,6 ,7 ,8�, may become identical
with �0,0�, �0,1�, �1,0�, or �1,1�.

Obviously, there are further transitions to a qualitatively
different system behavior at the points 
C
 / 
B
= �1− f� / f and

C
 / 
B
= f / �1− f� �see Figs. 3–5�. These are continuous, if
B�0 and C�0, but discontinuous for B�0 and C�0.
Moreover, there is another transition, when 
C
 crosses the
value of 
B
, as the stability properties of pairs of fix points
are then interchanged �see Figs. 3–5 and movie 3 �1��. If B
�0 and C�0, this transition is of second order, as the stable
fix points remain unchanged as the model parameters are
varied �see Fig. 4�. However, for B�0 and C�0, the tran-
sition is discontinuous �i.e., of first order� because the stable
fix point turns into an unstable one and vice versa �see Fig.
5�. That can be followed from the fact that the dynamic
system behavior and final outcome for the case 
B
� 
C
 can
be derived from the results for 
B
� 
C
. This is done by
applying the transformations B↔−C, p↔ �1− p�, and
q↔ �1−q�, which do not change the game-dynamical equa-
tions

dp

dt
= p�1 − p��Bf�1 − p� + Cfp + C�1 − f��1 − q� + B�1 − f�q�

�36�

and

dq

dt
= q�1 − q��B�1 − f��1 − q� + C�1 − f�q

+ Cf�1 − p� + Bfp� . �37�

B. Classification and interpretation of different types of
system dynamics

We have seen that the stability of the stationary points and
the system dynamics change when B or C crosses the zero
line. Therefore, it makes sense to distinguish four “archetypi-
cal” types of games. Note, however, that the two types with
BC�0 can be subdivided into six subclasses each given by

�i� f / �1− f�� 
C
 / 
B
�1,
�ii� 1� 
C
 / 
B
� �1− f� / f ,
�iii� 
C
 / 
B
�min�f / �1− f� , �1− f� / f�,
�iv� 
C
 / 
B
�max�f / �1− f� , �1− f� / f�,
�v� �1− f� / f � 
C
 / 
B
�1,
�vi� 1� 
C
 / 
B
� f / �1− f� �see Figs. 4 and 5�.
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That is, the system behavior for conflicting interactions
�see Fig. 3� is clearly richer than for the one-population case
�4,23� or for two-population cases without interactions �see
Fig. 1� or without self-interactions �see Fig. 2�. If BC�0, the
system dynamics additionally depends on the values of f and

C
 / 
B
. It may furthermore depend on the initial condition, if
B�0 and C�0 �see Figs. 3 and 4�.

While our previous analysis has been formal and abstract,
we will now discuss our results in the context of social sys-
tems for the sake of illustration. Then, the entities are indi-
viduals and the states represent behaviors. Without loss of
generality, we assume R� P �determining the numbering and
meaning of behaviors� and f �1 /2 �determining the number-
ing of populations such that the power of population 1 is the
same or greater than the one of population 2�. Moreover, we
will use the following terminology: If two interacting indi-
viduals show the same behavior, we will talk about “coordi-
nated behavior.” The term “preferred behavior” is used for
the preferred coordinated behavior, i.e., the behavior which
gives the higher payoff, when the interaction partner shows
the same behavior. This payoff is represented by R, while the
nonpreferred coordinated behavior results in the payoff P.
Furthermore, if a focal individual chooses its preferred be-
havior and the interaction partner chooses a different behav-
ior, the first one receives the payoff S and the second one the
payoff T. In the so-called prisoner’s dilemma, R usually
stands for “reward,” T for “temptation,” P for “punishment,”
and S for “sucker’s payoff.” The payoff-dependent parameter
C=R−T may be interpreted as gain of coordinating on one’s
own preferred behavior �if greater than zero, otherwise as
loss�. Moreover, B=S− P may be interpreted as gain when
giving up coordinated but nonpreferred behavior.

The conflict of interest between two populations is re-
flected by the fact that “cooperative behavior” is a matter of
perspective. A behavior that appears cooperative to a focal
individual is cooperative from the viewpoint of its interac-
tion partner only if belonging to the same population, other-
wise it is noncooperative from the interaction partner’s view-
point. In the model studied in this paper, population 1 prefers
behavior 1, population 2 behavior 2. Moreover, behavior 1
corresponds to the cooperative behavior from the viewpoint
of population 1, but to the nonpreferred behavior of the in-
teraction partner, i.e., it is noncooperative from the point of
view of population 2. Moreover, if two interacting individu-
als display the same behavior, their behavior is coordinated.
Finally, we speak of a “behavioral norm” or of “normative
behavior” if all individuals �or the great majority� show the
same �coordinated� behavior �61–64�, independently of their
behavioral preferences and the �sub-�population they belong
to. It should be stressed that this requires the individuals
belonging to one of the populations to act against their own
preferences. See Ref. �60� for the related social science lit-
erature.

Within the context of the above definition, the four types
of system dynamics distinguished above are related to four
types of games discussed in the following:

�1� For T�R� P�S, we have a multipopulation prison-
er’s dilemma �MPD�, which corresponds to the case B�0
and C�0. According to the results in Sec. IV, this is char-
acterized by a breakdown of cooperation. Accordingly, indi-

viduals in both populations will end up with their nonpre-
ferred behavior. This is even true when the nonnegative
parameter � in the generalized replicator Eqs. �17� and �18�
is different from 1.

�2� In contrast, for R�T�S� P, we have a multipopula-
tion harmony game �MHG� with B�0 and C�0. In this
case, all individuals end up with their preferred behaviors,
but the behavior of both populations is not coordinated. Con-
sidering this coexistence of different behaviors, one could
say that each population forms its own “subculture.”

�3� For R�T� P�S, which implies B�0 and C�0, we
are confronted with a multipopulation stag-hunt game
�MSH�. For most initial conditions, the system ends up in the
stationary states �1,0� or �0,1�. In the first case, both popula-
tions coordinate themselves on the behavior preferred by
population 1, while in the second case, they coordinate them-
selves on the behavior preferred by population 2. In both
cases, all individuals end up with the same behavior. In other
words, they establish a commonly shared behavior �a “social
norm”�. However, there are also conditions under which dif-
ferent behaviors coexist, namely, if �1,1� or �0,0� is a stable
stationary point �see yellow and red basins of attraction in
Fig. 4 and in the MSH section of Fig. 3�. Under such condi-
tions, norms are not self-enforcing, as a commonly shared
behavior may not establish. This relevant case can occur only
if both populations have interactions and self-interactions. It
should also be noted that norms have a similar function in
social systems that forces have in physics. They guide human
interactions in subtle ways, creating a self-organization of
social order �see Refs. �50,60� for a more detailed discussion
of these issues�.

�4� If T�R�S� P, corresponding to B�0 and C�0, we
face a multipopulation snowdrift game �MSD�. In this case, it
can happen that individuals in one of the populations �the
stronger one� do not coordinate among each other. While
some of their individuals show a cooperative behavior, the
others are noncooperative. We consider this fragmentation
phenomenon as a simple description of social polarization or
conflict.

Note that, in the multipopulation snowdrift game with B
�0 and C�0, the stationary point �p5 ,0� exists for f
� 
C
 / �
B
+ 
C
� and the point �p6 ,1� for f � 
B
 / �
B
+ 
C
�. If
f �1 /2 and �1− f� / f � 
C
 / 
B
� f / �1− f�, �p5 ,0� is a stable
fix point for 
B
� 
C
, while �p6 ,1� is a stable fix point for

B
� 
C
, which implies a discontinuous transition at the
“critical” point 
B
= 
C
, when 
C
 is continuously changed
from values smaller than 
B
 to values greater than 
B
 or vice
versa. This transition, where all individuals in the weaker
population suddenly turn from cooperative behavior from the
perspective of the stronger population to their own preferred
behavior, may be considered to reflect a “revolution.” In the
history of mankind, such revolutionary transitions have oc-
curred many times �65�.

It turns out to be insightful to determine the average frac-
tion of cooperative individuals in both populations from the
perspective of the stronger population 1. When �p5 ,0� is the
stable stationary point, it can be determined as the fraction of
cooperative individuals in population 1 times the relative
size f of population 1, plus the fraction 1−q5=1 of nonco-
operative individuals in population 2 �who are cooperative
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from the point of view of population 1�, weighted by its
relative size �1− f�,

p5f + �1 − q5��1 − f� =
Bf + C�1 − f�

�B − C�f
f + 1�1 − f� =

B

B − C

=

B



B
 + 
C

. �38�

Similarly, if �p6 ,1� is the stable stationary point, the fraction
of cooperative individuals from the point of view of the
stronger population 1 is given by

p6f + �1 − q6��1 − f� =
B

�B − C�f
f + 0�1 − f� =

B

B − C

=

B



B
 + 
C

, �39�

as for q6=1, everybody in population 2 behaves noncoopera-
tively from the perspective of population 1. Surprisingly, the
average fraction of cooperative individuals in both popula-
tions from the point of view of the stronger population cor-
responds exactly to the fraction p0= 
B
 / �
B
+ 
C
� of coop-
erative individuals expected in the one-population snowdrift
game �23�. However, this comes with an enormous deviation
of the fraction q of cooperative individuals in the weaker
population 2 from the expected value p0 �as we either have
q=0 or q=1� and also with some degree of deviation of p
from p0 in the stronger population 1. That is, although the
stronger population in the multipopulation snowdrift game
causes an opposition of the weaker population and a polar-
ization of society �66�, the resulting distribution of behaviors
in both populations finally reaches a result, which fits the
expectation of the stronger population 1 �namely, of having a
fraction p0 of cooperative individuals from the point of view
of population 1�. One could therefore say that the stronger
population controls the behavior of the weaker population.

V. SUMMARY AND OUTLOOK

In this paper, we have used multipopulation replicator
equations to describe populations with conflicting interac-
tions and different power. It turns out that the system’s be-
havior is much richer than in the one-population case or in
the two-population case without self-interactions. Neverthe-
less, it is useful to distinguish four different types of games,
characterized by a qualitatively different system dynamics:
the harmony game, the prisoner’s dilemma, the stag-hunt
game, and the snowdrift game. When applied to social sys-
tems, the latter three describe social dilemma situations.
However, in the presence of multiple populations, we may

not only have the dilemma that people may choose not to
cooperate. Their behaviors in different populations may also
be uncoordinated. Accordingly, the establishment of coopera-
tion is only one challenge in social systems, while the estab-
lishment of commonly shared behaviors �“social norms”� is
another one. Note that the evolution of social norms is highly
relevant for the evolution of language and culture �14,15,67�.
According to our model, it is expected to occur for multi-
population stag hunt interactions. Interestingly, compared to
the multipopulation games without self-interactions, we have
found several new subclasses depending on the power f of
populations and the quotient 
C
 / 
B
 of the payoff-dependent
parameters B and C. The same is true for multipopulation
snowdrift games.

Considering the simplicity of the model, the possible sys-
tem behaviors are surprisingly rich. Besides the occurrence
of phase transitions when B and C change their sign, we find
additional transitions when BC�0 and the quotient 
C
 / 
B

crosses the values of 1, f / �1− f�, or �1− f� / f . We expect an
even larger variety of system behaviors if the model param-
eters are not chosen in a homogeneous way. For example,
one could investigate cases in which both populations play
different games. Our model can also be extended to study
cases of migration and group selection. This will be demon-
strated in forthcoming publications. It will also be interesting
to compare the behavior of test persons in game-theoretical
laboratory experiments �68,69� to predictions of our model
for interacting individuals with conflicting interests. Depend-
ing on the specification of the interaction payoffs, it should
be possible to find the following types of system behaviors:
�1� the breakdown of cooperation, �2� the coexistence of dif-
ferent behaviors �the establishment of “subcultures”�, �3� the
evolution of commonly shared behaviors �“norms”�, and �4�
the occurrence of social polarization. In the latter case, one
should also be able to find a “revolutionary transition” as

B
 / 
C
 crosses the value of 1. While there is empirical evi-
dence that all these phenomena occur in real social systems,
it will be interesting to test whether the above theory has also
predictive power.

ACKNOWLEDGMENTS

The authors would like to thank for partial support by the
ETH Competence Center “Coping with Crises in Complex
Socio-Economic Systems” �CCSS� through ETH Research
Grant No. CH1-01 08-2. They are grateful to Thomas Chade-
faux, Ryan Murphy, Carlos Roca, Stefan Bechtold, Sergi Lo-
zano, Heiko Rauhut, Wenjian Yu, and other colleagues for
valuable comments. D.H. thanks Thomas Voss for his in-
sightful seminar on social norms.

�1� The supplementary movies are accessible at http://
www.soms.ethz.ch/research/twopopulationgames

�2� J. von Neumann and O. Morgenstern, Theory of Games and
Economic Behavior �Princeton University Press, Princeton,

1944�.
�3� J. Hofbauer and K. Sigmund, Evolutionary Games and Popu-

lation Dynamics �Cambridge University Press, Cambridge, En-
gland, 1998�.

EVOLUTIONARY DYNAMICS OF POPULATIONS WITH … PHYSICAL REVIEW E 81, 016112 �2010�

016112-9



�4� J. W. Weibull, Evolutionary Game Theory �MIT Press, Cam-
bridge, MA, 1996�.

�5� R. Cressman, Evolutionary Dynamics and Extensive Form
Games �MIT Press, Cambridge, MA, 2003�.

�6� M. Nowak, Evolutionary Dynamics. Exploring the Equations
of Life �Belknap Press, Cambride, MA, 2006�.

�7� D. Helbing, Physica A 181, 29 �1992�; 196, 546 �1993�.
�8� D. Challet, M. Marsili, and R. Zecchina, Phys. Rev. Lett. 84,

1824 �2000�.
�9� C. P. Roca, J. A. Cuesta, and A. Sánchez, Phys. Rev. Lett. 97,

158701 �2006�.
�10� J. C. Claussen and A. Traulsen, Phys. Rev. Lett. 100, 058104

�2008�.
�11� A. Traulsen, J. C. Claussen, and C. Hauert, Phys. Rev. Lett.

95, 238701 �2005�.
�12� R. Axelrod, The Evolution of Cooperation �Basic Books, New

York, 1984�.
�13� H. Gintis, Game Theory Evolving �Princeton University Press,

Princeton, NJ, 2000�.
�14� B. Skyrms, The Stag Hunt and the Evolution of Social Struc-

ture �Cambridge University Press, Cambridge, England, 2003�.
�15� R. Boyd and P. J. Richerson, The Origin and Evolution of

Cultures �Oxford University Press, Oxford, 2005�.
�16� H. Gintis, The Bounds of Reason. Game Theory and the Uni-

fication of the Behavioral Sciences �Princeton University
Press, Princeton, 2009�.

�17� K. Binmore, Playing for Real �Oxford University Press, Ox-
ford, 2007�.

�18� Foundations of Human Sociality: Economic Experiments and
Ethnographic Evidence from Fifteen Small-Scale Societies, ed-
ited by J. Henrich, R. Boyd, S. Bowles, C. Camerer, E. Fehr,
and H. Gintis �Oxford University Press, Oxford, 2004�.

�19� A. Traulsen, C. Hauert, H. De Silva, M. A. Nowak, and K.
Sigmund, Proc. Natl. Acad. Sci. U.S.A. 106, 709 �2009�.

�20� D. Helbing and T. Vicsek, New J. Phys. 1, 13 �1999�.
�21� D. Helbing and T. Platkowski, Europhys. Lett. 60, 227 �2002�.
�22� V. M. de Oliveira and J. F. Fontanari, Phys. Rev. Lett. 85,

4984 �2000�.
�23� D. Helbing and S. Lozano �unpublished�.
�24� D. Helbing, in Economic Evolution and Demographic Change,

edited by G. Haag, U. Mueller, and K. G. Troitzsch �Springer,
Berlin, 1992�, pp. 330–348; D. Helbing, Theory Decis. 40,
149 �1996�.

�25� H. P. Young, Econometrica 61, 57 �1993�.
�26� F. Schweitzer, L. Schimansky-Geier, W. Ebeling, and H. Ul-

bricht, Physica A 150, 261 �1988�.
�27� F. Schweitzer and L. Schimansky-Geier, Physica A 206, 359

�1994�.
�28� M. Eigen and P. Schuster, The Hypercycle �Springer, Berlin,

1979�.
�29� R. A. Fisher, The Genetical Theory of Natural Selection �Ox-

ford University Press, Oxford, 1930�.
�30� W. Ebeling, A. Engel, and R. Feistel, Physik der Evolution-

sprozesse �Akademie Verlag, Berlin, 1990� �Physics of Evolu-
tionary Processes, in German�.

�31� J. Hofbauer, Nonlinear Anal. Theory, Methods Appl. 5, 1003
�1981�.

�32� N. S. Goel, S. C. Maitra, and E. W. Montroll, Rev. Mod. Phys.
43, 231 �1971�.

�33� R. M. May, Stability and Complexity in Model Ecosystems

�Princeton University Press, Princeton, NJ, 2001�.
�34� V. M. de Oliveira and J. F. Fontanari, Phys. Rev. Lett. 89,

148101 �2002�.
�35� J. Y. Wakano, M. A. Nowak, and C. Hauert, Proc. Natl. Acad.

Sci. U.S.A. 106, 7910 �2009�.
�36� M. A. Nowak and R. M. May, Nature �London� 359, 826

�1992�.
�37� G. Szabó and C. Hauert, Phys. Rev. Lett. 89, 118101 �2002�.
�38� C. P. Roca, J. A. Cuesta, and A. Sánchez, Phys. Life Rev. 6,

208 �2009�.
�39� G. Szabó and G. Fath, Phys. Rep. 446, 97 �2007�.
�40� G. Abramson and M. Kuperman, Phys. Rev. E 63, 030901�R�

�2001�.
�41� J. M. Pacheco, A. Traulsen, and M. A. Nowak, Phys. Rev. Lett.

97, 258103 �2006�.
�42� L.-X. Zhong, Europhys. Lett. 76, 724 �2006�.
�43� F. C. Santos, J. M. Pacheco, and T. Leanerts, Proc. Natl. Acad.

Sci. U.S.A. 103, 3490 �2006�.
�44� H. Ohtsuki, M. A. Nowak, and J. M. Pacheco, Phys. Rev. Lett.

98, 108106 �2007�.
�45� S. Lozano, A. Arenas, and A. Sanchez, PLoS ONE 3, e1892

�2008�.
�46� A. Szolnoki, M. Perc, and Z. Danku, Europhys. Lett. 84,

50007 �2008�.
�47� T. Reichenbach, M. Mobilia, and E. Frey, Nature �London�

448, 1046 �2007�.
�48� D. Helbing and T. Platkowski, International Journal of Chaos

Theory and Applications 5, 47 �2000�.
�49� D. Helbing and W. Yu, Adv. Complex Syst. 11, 641 �2008�.
�50� D. Helbing, Eur. Phys. J. B 67, 345 �2009�.
�51� D. Helbing and W. Yu, Proc. Natl. Acad. Sci. U.S.A. 106,

3680 �2009�.
�52� M. Perc, Europhys. Lett. 75, 841 �2006�.
�53� W. Yu and D. Helbing, e-print arXiv:0903.0987.
�54� C. P. Roca, J. A. Cuesta, and A. Sánchez, Europhys. Lett. 87,

48005 �2009�.
�55� M. A. Nowak, Science 314, 1560 �2006�.
�56� P. Schuster, K. Sigmund, J. Hofbauer, R. Gottlieb, and P. Merz,

Biol. Cybern. 40, 17 �1981�.
�57� K. Argasinski, Math. Biosci. 202, 88 �2006�.
�58� T. Kanazawa, IEICE Trans. Fundamentals E89-A, 2717

�2006�.
�59� K. H. Schlag, J. Econ. Theory 78, 130 �1998�.
�60� D. Helbing and A. Johansson �unpublished�.
�61� J. M. Epstein, Comput. Econ. 18, 9 �2001�.
�62� P. R. Ehrlich, S. A. Levin, PLoS Biol. 3, e194 �2005�.
�63� F. A. C. C. Chalub, F. C. Santos, and J. M. Pacheco, J. Theor.

Biol. 241, 233 �2006�.
�64� T. Fent, P. Groeber, and F. Schweitzer, Adv. Complex Syst.

10, 271 �2007�.
�65� W. Weidlich and H. Huebner, J. Econ. Behav. Organ. 67, 1

�2008�.
�66� Here, we understand “polarization” in the sense that a popula-

tion fragments into parts with different behaviors.
�67� C. Castellano, S. Fortunato, and V. Loreto, Rev. Mod. Phys.

81, 591 �2009�.
�68� D. Helbing, M. Schönhof, and D. Kern, New J. Phys. 4, 33

�2002�.
�69� D. Helbing, M. Schönhof, H.-U. Stark, and J. A. Holyst, Adv.

Complex Syst. 8, 87 �2005�.

DIRK HELBING AND ANDERS JOHANSSON PHYSICAL REVIEW E 81, 016112 �2010�

016112-10


