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The analysis of many natural time series and especially those related to ice core records often suffers from
uneven sampling intervals. For fractional Brownian motion, we show that standard estimates of the volatility
can be strongly biased due to uneven sampling. Taking these limitations into account, we study high-resolution
records of temperature proxies obtained from Antarctic ice cores. We find that the volatility properties reveal
a strong nonlinear component in the temperature time series for time scales of 5–200 kyr extending earlier
results. These findings suggest in particular that temperature increments over these time scales appear in
clusters of big and small increments—a big �positive or negative� change is most likely followed by a big
�positive or negative� change and a small change is most likely followed by a small change.
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I. INTRODUCTION

Techniques based on linear and nonlinear time series
analyses are powerful tools to gain insight into the dynamics
and properties of many natural systems �1–3�. While the
mathematical foundations of many of these methods are well
established for evenly sampled time series, this is generally
not the case if the time interval between subsequent data
points varies �4,5�. Notable exceptions include the well-
known Lomb-Scargle periodogram �6,7� and related spectral
estimates �8�. This is, however, only a very small subset of
methods. Instead, a typical approach to unevenly sampled
time series is, first, to use a more or less arbitrary interpola-
tion scheme to generate an evenly sampled series from the
recorded time series and then apply methods established for
constant sampling frequencies. The effect and bias induced
by such interpolation schemes on the used method are rarely
addressed—see Refs. �9–12� for exceptions—often leaving
substantial doubts on the obtained results and interpretations.

A particularly striking example of unevenly sampled time
series are those derived from ice cores. Chemical concentra-
tions and isotope ratios of the ice as well as greenhouse gas
concentrations in the trapped air bubbles are measured as
functions of depth �13–20�. Obviously, depth corresponds to
time, yet the relation is highly nonlinear and contains signifi-
cant trends due to the ice flow: most of the past is covered by
the bottom part of an ice core. For instance, some of the
oldest available ice cores—the Vostok core �13� and the Eu-
ropean Project for Ice Coring in Antarctica �EPICA� dome C
core �15,19�, both from Antarctica—extend over more than
3000 m in depth and cover the last 422 and 802 kyr, respec-
tively. Yet, the upper 1500 m correspond only to roughly 100
and 150 kyr, respectively. Consequently, the ice core records
which are evenly sampled with respect to depth correspond
to unevenly sampled time series.

In this paper, we study the effect of such a transformation
on fractional Brownian motion �FBM�—a paradigmatic ex-
ample of processes with long-range correlations which are
typically thought to be relevant in the context of many natu-
ral systems including but not limited to climate dynamics
�21–28�. We focus in particular on correlations in the vola-
tility which have been used recently to distinguish between
linear and nonlinear processes in the climate system �29–34�
and play an important role in finance, as well �35�. To be
specific, we simulate different types of FBM with annual
resolution and apply the same measurement intervals as ob-
tained for the Vostok ice core �13�. Then, we apply a straight-
forward resampling technique to obtain evenly sampled time
series again, resembling the typical approach to unevenly
sampled time series. The properties of these time series are
compared to those of the directly measured FBM process.
We find that the Vostok sampling intervals induce significant
biases in the estimates of the volatility correlations for reso-
lutions of less than 500 yr. For example, the exponent de-
scribing the linear two-point correlations in the volatility as
measured by detrended fluctuation analysis �DFA� is signifi-
cantly underestimated. We then introduce a simple method
that allows one to reliably estimate the volatility properties
of FBM despite uneven sampling.

Finally, to test claims that climate variations are nonlinear
for time scales of 1–100 kyr �31� we reanalyze the volatility
properties of the hydrogen isotope ratios ��Dice� record from
the Vostok core �13� and compare them to those of the re-
cently published �Dice record from the EPICA dome C
�EDC� core �19�, which extends much further back in time.
We find nontrivial behavior in both cases indicating that a
strong nonlinear component exists for time scales of 5–200
kyr. Our findings confirm in particular that temperature in-
crements over these time scales appear in clusters of big and
small increments—a big �positive or negative� change is
most likely followed by a big �positive or negative� change
and a small change is most likely followed by a small
change.*davidsen@phas.ucalgary.ca
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The outline of the paper is as follows. In Sec. II, we
introduce fractional Brownian motion and review its volatil-
ity properties. We also discuss how the uneven sampling
based on the Vostok record, and the resampling, is imple-
mented. In Sec. III, we briefly review detrended fluctuation
analysis. The results for unevenly sampled fractional Brown-
ian motion are given in Sec. IV and a method that corrects
for the biases induced by the uneven sampling is discussed in
Sec. V. In Secs. VI and VII, we present the results for the
Vostok ice core and the EPICA dome C ice core, respec-
tively. We close with a brief discussion in Sec. VIII.

II. FRACTIONAL BROWNIAN MOTION

Normalized fractional Brownian motion is a continuous-
time real-valued Gaussian process BH�t� on �0,T�, with T
�R�0, starting at zero with mean zero and �linear� two-point
correlation function

�BH�t�BH�s�� = 1
2 �t2H + s2H − �t − s�2H� , �1�

where 0�H�1 is the Hurst exponent and �¯ � represents
the ensemble average �36�. For H=1 /2, normal Brownian
motion is recovered. Note that FBM is H self-similar with
stationary increments. Since FBM is uniquely defined by the
probability density function of its increments—a Gaussian
�normal� distribution—and its two-point correlation function
for a given value of the exponent H, all higher-order q-point
correlation functions are fully determined by Eq. �1�. Thus,
FBM is indeed a linear stochastic process �2,5�. In contrast,
a nonlinear stochastic process has nontrivial higher-order
q-point correlation functions, i.e., knowledge of the distribu-
tion of the increments and of the two-point correlation func-
tion is not sufficient to specify the process.

The particular focus of this paper is on the volatility series
of FBM, which is defined as

ui
2 = �BH�ti+1� − BH�ti��2, �2�

where �ti	 is the set of discrete equidistant sampling times.
Hence, the volatility characterizes the absolute size or mag-
nitude of changes from one time step to the next, but it
neglects any information about the sign of the changes. The
properties of the volatility series have been used recently to
distinguish between linear and nonlinear processes �29�. For
FBM an analytical relation between the two-point correlation
functions of BH�t� given in Eq. �1� and that of ui

2 was derived
in Ref. �33�. In particular, it was shown that the volatility
series also has a two-point correlation function which can be
characterized by a single exponent �V�H�. Its value is as-
ymptotically given by �V�H�=0.5 for 0�H�0.75 and
�V�H�=2H−1 for 0.75�H�1 �37�. However, the influence
of nonequidistant sampling on estimating this exponent has
not been investigated despite its direct relevance for the
analysis of ice core records as studied, for example, in Ref.
�31�.

Here, we use the sampling intervals from the Vostok ice
core �13� as shown in Fig. 1 to address this issue. It is im-
portant to note that typically each data point obtained from
an ice core corresponds to an average value over a certain

time interval, the so-called bag average. This is due to the
measurement process which involves analyzing chemical or
greenhouse gas concentrations or isotope ratios in a volume
of ice that has accumulated over a certain time interval.
Thus, in a first step we convert each discrete realization of
FBM BH�ti� with 1� i�422 766 and �ti	= �1,2 , . . . ,
422 766	 into a series of unequally sampled bag averages
BH

V�tj�, where the set �tj	 and the intervals for the averaging
are given by Fig. 1 �in years�. This mimics the measurement
process for the Vostok ice core and will be denoted the Vos-
tok filter in the following. In a second step, this filtered series
is used to generate an evenly sampled series of resolution R,
BH

V,R�tk�, resembling the typical approach to unevenly
sampled time series. Taking into account the nature of the
bag averages, we use a simple resampling technique where
we specify a given resolution R and perform a weighted
average over each bag or bin of length R based on the re-
corded values. The weights are assigned according to the
time interval covered by a given measurement value within a
specific bin. Note that recorded values can contribute to
more than one bin. The advantage of this resampling method
is that it does not make any assumptions about the underly-
ing process and it is purely based on the measured data.

III. DETRENDED FLUCTUATION ANALYSIS

In order to study the effect of the Vostok filter on the
power-law correlations of the volatility series, we estimate
the exponent �V�H� using DFA �38,39�. This is exactly the
same method applied in Refs. �31,32� to study the volatility
correlations in isotope records obtained from different ice
cores including the Vostok ice core.

To define DFA, let us consider a time series �yi�1�i�N with
zero mean �yi�i=0. For a fixed n�N, the series is divided
into Nn= �N /n� sections of size n. In each section the local
trend is calculated by a least-squares fit. For DFAd, this
trend is considered to be a polynomial of order d. Subtracting
this local trend yields the detrended series,

Yn�i� = yi − yfit,n�i� . �3�

FIG. 1. �Color online� Time intervals �ti= ti+1− ti between sub-
sequent data points as a function of time ti for the Vostok ice core.
The data set contains 3311 points and covers 422 kyr.
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The fluctuation function can then be calculated by

F�n� = 
 1

nNn
�
i=1

nNn

Yn
2�i��1/2

. �4�

If the series �yi�1�i�N is long-range correlated, the fluctuation
function increases by a power law

F�n� � n�. �5�

If yi=BH�ti�, �=H. In the case of the volatility series,
yi=� j=0

i uj
2 and �=�V.

IV. RESULTS FOR FRACTIONAL BROWNIAN MOTION

Figure 2 shows the results of DFA for a single realization
B0.8�ti� with annual resolution. Indeed, �=H is recovered—
the small deviations in F�n� for large n are due to poor sta-
tistics. The fluctuation functions of B0.8

V,R�tk� with R=100,
200, and 400 yr, respectively, are basically identical to those
of B0.8�ti�. The deviations for small n are expected since they
are intrinsic to the DFA method �39�. However, for R
�50 yr pronounced nontrivial deviations in F�n� are present
for n�1000 yr. This agrees with a rough estimate based on

FIG. 2. �Color online� Rescaled DFA1 for a single realization of
FBM with H=0.8 �dashed line� and the derived B0.8

V,R�tk� for differ-
ent resolutions R �solid lines�: R=25, 50, 100, 200, 400 yr,
from top to bottom. The expected asymptotic behavior is a flat
curve as highlighted by the dotted line.

FIG. 3. �Color online� Rescaled DFA1 for the volatility series of
a single realization of FBM with H=0.8 �dashed line� and of the
derived B0.8

V,R�tk� for different resolutions R �solid lines�: R
=25, 50, 100, 200, 400 yr, from top to bottom. The expected
asymptotic behavior is a flat curve as highlighted by the dotted line
which corresponds to �V=2H−1=0.6. The curves for B0.8

V,R�tk� are
shifted vertically for clarity.

FIG. 4. �Color online� Local exponents �V of the FBM volatility series with H=0.3, 0.5, 0.8, and 0.95 for different resolutions R. One-	
error bars are given. The lines with symbols correspond to the case of the Vostok filter �BH

R,V�tk��, while the lines without symbols correspond
to the directly and evenly sampled case �BH

R�tk��. There are clear differences between the two cases for resolutions finer than 500 yr. Note the
different scales for the two rows.
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Fig. 1, which suggests nontrivial deviations for n�700 yr.
Thus, Fig. 2 indicates that the estimate of H using DFA is not
significantly influenced by the uneven sampling associated
with the Vostok filter if either the resolution is larger than
approximately 100 yr or only time scales larger than approxi-
mately 1000 yr are considered. This is confirmed by a sys-
tematic statistical analysis �40�.

However, the situation is different for the volatility series.
As discussed in Ref. �33�, the estimate of �V suffers from
strong finite-size effects. This is directly reflected in Fig. 3,
which shows systematic deviations from the expected
asymptotic behavior for a single realization B0.8�ti� with an-
nual resolution. Moreover, the fluctuation functions for the
volatility series of B0.8

V,R�tk� with R=25, 50, 100, 200, and 400
yr, respectively, seem to behave differently even for large n.

To investigate this systematically, we consider ensembles
of 1000 realizations of FBM for different values of H. For
each ensemble, we compute the average �V and estimate its
standard error �41�. In particular, we compare the results for
BH

R,V�tk� with those for BH
R�tk� where the latter corresponds to

the resampled series in the absence of the Vostok filter. To
take into account the apparent variability of �V over different
intervals of n �see Fig. 3�, we compute �V for sliding win-
dows spanning slightly less than an order of magnitude in n
similar to the approach in Ref. �42�. The averages of these
local slopes are shown in Fig. 4. Obviously, there are clear
statistical differences between BH

R,V�tk� and BH
R�tk� for R

�500 yr. In contrast to the estimate of H �see Fig. 2�, these
differences often even persist on large time scales, namely,
n�1000 yr.

As Table I shows, these differences are not as obvious if
one only considers the global estimates of �V. However, it is

clear in both cases that the differences are more pronounced
for H→1.

While FBM is a linear stochastic process, we also find
that estimates of the volatility properties of nonlinear time
series generated by a variant of the multiplicative random
cascade process �43� are severely biased for small resolutions
R due to the Vostok filter. This indicates that this phenom-
enon is not restricted to linear processes and indeed of rather
general nature.

V. CORRECTION METHOD

To correct for the bias induced by the Vostok filter, we
introduce a modified volatility series. One of the main effects
of the varying time intervals associated with the bag aver-
ages is to render the variance between subsequent measure-
ment values inhomogeneous. To compensate for this, we de-
fine

ûj
2 =

�BH
V�tj+1� − BH

V�tj��2

var�BH
V�tj+1� − BH

V�tj��
. �6�

For an evenly sampled time series, var�BH
V�tj+1�−BH

V�tj��
would be constant. For an unevenly sampled time series,
however, it typically fluctuates. One can easily compute the
variance �see the Appendix for details� and it is given by

var�BH
V�tj+1� − BH

V�tj�� = 

0

m+n

h�
�c�
�d
 . �7�

Here, m= tj+1− tj, n= tj+2− tj+1, c�
� is the two-point correla-
tion function of the increments of FBM, and the function h is
given by

h�
� =�
�n + m − 
3�

12mn
+

�n + m��
 − n�3

12mn2 +
�n + m��
 − m�3

12m2n
for 0 � 
 � n,m

�n + m − 
�3

12mn
+

�n + m��
 − n�3

12mn2 for m � 
 � n

�n + m − 
�3

12mn
+

�n + m��
 − m�3

12m2n
for n � 
 � m

�n + m − 
�3

12mn
for n,m � 
 � n + m .� �8�

TABLE I. Summary of global estimates for �V over the different ensembles of FBM obtained by DFA1. Each first entry corresponds to
BH

R,V�tk� while the second one corresponds to BH
R�tk�.

H=0.3 H=0.5 H=0.8 H=0.95

R=100 yr 0.52�0.03 �0.50�0.03� 0.49�0.03 �0.50�0.03� 0.59�0.05 �0.65�0.05� 0.71�0.06 �0.87�0.06�
R=200 yr 0.52�0.03 �0.50�0.03� 0.51�0.03 �0.50�0.03� 0.64�0.06 �0.65�0.05� 0.80�0.07 �0.87�0.07�
R=500 yr 0.51�0.04 �0.50�0.04� 0.52�0.04 �0.51�0.04� 0.67�0.07 �0.66�0.07� 0.87�0.08 �0.86�0.08�
R=1000 yr 0.51�0.05 �0.50�0.05� 0.52�0.05 �0.51�0.05� 0.67�0.08 �0.67�0.08� 0.87�0.1 �0.86�0.1�
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Note that c�
�� �
�2H−2 for H�0.5 and c�
�=��
� for H
=1 /2 �24,44�. As shown in the Appendix, in the special case
n=m, Eq. �7� reduces to the expected scaling

var�BH
V�tj+1� − BH

V�tj�� � m2H, �9�

which is also a good approximation for �n−m��m / �2−H�.
Since �n−m��m /10 for all j of the Vostok filter, this is the
relevant case here and Eq. �9� will be used in the following.
Note that for other unevenly sampled data sets this approxi-
mation might not be suitable in which case Eq. �7� has to be
evaluated explicitly. Some special cases are discussed in the
Appendix.

Figure 5 shows the estimates for �V for the modified vola-
tility series given by Eq. �6�. Clearly, the behavior of the
directly and evenly sampled case BH

R�tk� is recovered. Thus,
the modified volatility series allows one to reliably estimate
�V for FBM despite the uneven sampling.

VI. RESULTS FOR VOSTOK ICE CORE

The results presented above suggest that one should either
consider resolutions R
500 yr �Sec. IV� or use the correc-
tion method given in Sec. V to obtain reliable estimates for
the volatility properties of data from the Vostok ice core.
Here, we will focus on the hydrogen isotope ratio of the ice,
�Dice, which is a proxy for the surface temperature at the
time when the ice was formed and, hence, typically used to
reconstruct the global climate �13�. As for FBM, we find that
the fluctuation function of the volatility series strongly varies
with the chosen resolution—see the inset of Fig. 6. These
variations are even more pronounced if one tries to fit local
exponents �V as shown in the main panel of Fig. 6. Compar-
ing the results for FBM �see Fig. 4 and Table I� to the strong
variation in �V with R for the Vostok data suggests that the
uneven sampling is not solely responsible for the variation.
In particular, we would expect very similar behavior for R
=500 and 1000 yr based on the results for FBM. Thus, the
significant difference in �V between R=500 and 1000 yr is
surprising and implies that one should be rather cautious in
defining a single exponent characterizing the volatility be-
havior of the �Dice series.

To test whether the time series of the hydrogen isotope
ratio is indeed nonlinear as proposed in Ref. �31�, we gener-
ate surrogate data using the method described in Ref. �5�.
This method preserves the linear properties of the ���Dice� j
series but randomizes the Fourier phases which would con-
tain all nonlinear properties. Thus, it effectively generates
linear time series with the same distribution of increments
and the same linear two-point correlations as the original
one. Figure 6 shows a direct comparison between the local
exponents �V of the Vostok series and those of an ensemble
of surrogates. The clear differences between the surrogates
and the actual data for R
500 yr allow us to reject the null
hypothesis that the �Dice series is linear. As follows from the
inset of Fig. 6, the deuterium series is nonlinear over time
scales of 5–100 kyr. This interval is slightly smaller than
what was found previously when the influence of the uneven
sampling was ignored �31�.

Since �Dice is a proxy for the temperature when the ice
was formed, the findings imply that the variation in tempera-
ture over time scales between 5 and 100 kyr is nonlinear. To
be more specific, the much higher value of �V for the Vostok
data compared to the surrogates indicates that there are non-
trivial correlations in the volatility series. The presence of
such correlations implies that subsequent values tend to be
similar, i.e., values are clustered. Since volatility is a mea-
sure of the magnitude of a �temperature� change, it directly
follows that each temperature change tends to be succeeded
by a similar temperature change: large �small� temperature
changes are followed by large �small� temperature changes
as concluded in Refs. �31,32�. Note, however, that this result
does not allow us to deduce any information regarding the
sign of the changes.

To test whether the modified volatility series introduced in
Sec. V for FBM allows one to obtain a better estimate for the
volatility properties of the Vostok data as well, we first ana-
lyze the �Dice series itself. In particular, it is necessary to
estimate the behavior of the variance of the �stationary� in-
crements as a function of the time interval, which is deter-
mined by the linear two-point correlation function of the

FIG. 5. �Color online� Local exponents �V estimated from the
modified volatility series as defined in Eqs. �6� and �9� for different
values of H �lines with symbols�. One-	 error bars are given. The
�orange� lines without symbols show the local exponents �V for
BH

100�tk� �H=0.95, 0.8, 0.5 from top to bottom� for comparison
because of their similar length.

FIG. 6. �Color online� Local exponents �V of the Vostok series
shown as open symbols for resolutions R=100 yr �circles�, 200 yr
�squares�, 500 yr �diamonds�, and 1000 yr �triangles� obtained by
DFA3. Closed symbols with error bars correspond to estimates ob-
tained from 100 surrogates—see text for details. Inset: rescaled
fluctuation functions of the Vostok series for the different R. Global
fitting gives �V=0.63, 0.61, 0.70, 0.85 for increasing R. For the
surrogates, we find �v=0.51�0.03, 0.50�0.03, 0.53�0.04,
0.55�0.05 for increasing R.
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increments—see Eq. �A3�—or equivalently by the fluctua-
tion function of the underlying time series �2�. As shown in
the Appendix, if the linear two-point correlation function can
be approximated by a power law one obtains an analogous
expression to Eq. �9� where the exponent is identical to the
exponent � given by the fluctuation function of the underly-
ing time series.

Based on the results for FBM �see discussion of Fig. 2�,
we do not expect a strong influence of the uneven sampling
for R
100 yr on the estimate of the fluctuation function.
This is confirmed by Fig. 7, which shows the fluctuation
functions and the local exponents �. In contrast to FBM,
though, there seems to be a systematic variation in the local
exponents. This suggests that a single power law is too sim-
plistic to capture the behavior of the fluctuation function of
the Vostok series. Similar findings for other temperature
proxies have been reported, for example, in Refs. �26,45�.

The apparent absence of a single scaling exponent and the
presence of nonlinearities in the �Dice series as discussed
above suggest that the applicability of the correction method
using, for example, Eq. �9� could be limited in this case. This
is indeed confirmed by Fig. 8, which shows the fluctuation
function and the local exponents for the modified volatility
series of �Dice. Here, we have used the global values of � for

R=100 and 200 yr given in Fig. 7 as guidance for selecting
the exponent in Eq. �9�. The obtained fluctuation functions
can be approximated by a single �V�0.6. This is signifi-
cantly lower than the values for R=500 and 1000 yr in Fig.
6. Note also that resampling the data to a minimal resolution
of up to 200 yr and then considering the modified volatility
series does not change our findings significantly either �46�.
This suggests that the nonlinearities—rather than the appar-
ent absence of a single scaling exponent �—severely limit
the applicability of the correction method in this case. This is
supported by an analysis of nonlinear multifractal time se-
ries. For the integrated variant of the multiplicative random
cascade process described in Ref. �43�, we find that while on
average the correct behavior is approximately recovered
there are huge variations between realizations. This leads to
much larger standard errors for the local and global expo-
nents of the modified volatility series. For example, the stan-
dard error of the global �V is about 0.2 clearly indicating that
the predictive power of the modified volatility series is lim-
ited in this case.

VII. RESULTS FOR EPICA DOME C ICE CORE

While the Vostok ice core was the oldest ice core avail-
able for a number of years, the EPICA has recently provided
another deep ice core at dome C, which extends much further
back in time �15�. In particular, a high-resolution deuterium
profile is now available covering the past 800 kyr �19�. Since
it is expected that the �Dice profile for the Vostok ice core
and the EDC ice core share the same properties, we consider
the latter one here as well.

Indeed, with very few exceptions, the properties of �Dice
data from the EDC ice core are consistent with those found
for the Vostok data. For the volatility series, we observe
again that the fluctuation function strongly varies with the
chosen resolution—see Fig. 9. In an attempt to fit each func-
tion with a global �V, we obtain values which are slightly
less than those for the Vostok data. However, the variation in
these global �V’s for R
500 yr is much smaller for EDC
than for Vostok. Moreover, it seems that the local exponents

FIG. 7. �Color online� Local exponents � of the Vostok series
for different resolutions R obtained by DFA3. Inset: respective
rescaled fluctuation functions. Global fitting gives �=0.54, 0.59,
0.72, 0.72 for increasing R.

FIG. 8. �Color online� Local exponents �V of the modified vola-
tility series of the Vostok data using H=0.5 �solid lines� and 0.6
�dotted lines� in Eq. �9� for different DFA orders. The inset shows
the respective rescaled fluctuation function for H=0.5 indicating
that �V�0.6 globally.

FIG. 9. �Color online� Rescaled fluctuation function of the EDC
volatility series for different resolutions R obtained by DFA3. Glo-
bal fitting gives �V=0.53, 0.58, 0.70, 0.76, 0.74 for increasing
R. For the surrogates �shown in Fig. 10�, we find �v
=0.50�0.02, 0.50�0.02, 0.52�0.03, 0.53�0.04, 0.52�0.04
for increasing R.
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�V follow a single function for R
500 yr as Fig. 10 shows.
This consistency gives us confidence that the results for R

500 yr are reliable. Yet, it is important to notice that there
are large fluctuations in the local values of �V for any given
resolution with R
500 yr. This suggests that a simple
power law with a single exponent is too simplistic to de-
scribe the fluctuation function of the volatility series.

As for the data from the Vostok ice core, the �Dice data
from the EDC ice core exhibit pronounced nonlinear behav-
ior. Figure 10 shows a comparison between the local expo-
nents �V for the original data and an ensemble of surrogates.
The clear differences between the surrogates and the actual
data imply that we can reject the hypothesis that the deute-
rium series and, thus, the temperature series are linear. As
follows from Fig. 9, the deuterium series is nonlinear over
time scales between 5 and 200 kyr at least. This extends the
results in Ref. �31�.

VIII. DISCUSSION

By carefully analyzing the volatility properties of the deu-
terium series of the EDC ice core, we have been able to
independently confirm and extend earlier results based on the
Vostok ice core �31�: temperature changes over time scales
between 5 and 200 kyr are clustered such that large changes
tend to be followed by large changes, while small changes
tend to be followed by small changes. These findings go well
beyond the well-known glacial by interglacial variability di-
chotomy. Indeed, the observed long-range correlated tem-
perature variations indicate not only that the Milankovitch
periods of 20 and 40 kyr are secondary but also that contrary
to common belief �47� climate dynamics of all time scales
between 5 and 100 kyr are highly nonlinear. This important
result provides a benchmark test for climate models and in
particular rules out models which assume linear variations on
those time scales. As shown in Ref. �32�, many conceptual
models proposed in the past fail this test, which has led to the
conjecture that interaction between fast random fluctuations
�representing atmospheric variability� and slowly varying
fluctuations �representing oceanic variability� may underlie
the observed nonlinearity. In addition, such a test is impor-

tant to establish a clear connection between orbital variations
and climate variations �see Ref. �48� for a discussion� and,
thus, for ice core chronology.

Our results also show that a certain amount of care has to
be taken in order to analyze time series that suffer from
uneven sampling intervals. For FBM, one can correct for the
induced biases in the volatility series by a simple rescaling
approach, which should also be applicable to other stochastic
processes. Nonlinearities can, however, limit the applicabil-
ity of the method.
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APPENDIX: CALCULATION OF THE VARIANCE

Let us consider a stationary signal ui, where each ui is a
local time average of a continuously varying quantity x�t�
with zero mean, ui= �1 / �ti+1− ti���ti

ti+1dt�0
t dt� x�t��. Defining

n= ti+2− ti+1 and m= ti+1− ti, it is straightforward to show that
the difference between two subsequent values of ui is given
by

ui+1 − ui = 

0

m+n

g�t�x�t�dt , �A1�

where

g�t� = �
t

m
for t � m

n + m − t

n
for t 
 m .� �A2�

To calculate the variance of ui+1−ui, we take advantage of
the assumption that the mean of x is zero and we obtain

var�ui+1 − ui� =�
 

0

m+n

g�t1�g�t2�x�t1�x�t2�dt1dt2�
=
 


0

m+n

g�t1�g�t2�c�t1 − t2�dt1dt2. �A3�

Here, c�
�= �xtxt+
�t is the two-point correlation function of
x�t�. It is straightforward to show that Eq. �A3� reduces to

var�ui+1 − ui� = 

0

m+n

h�
�c�
�d
 , �A4�

where h is given by

FIG. 10. �Color online� Local exponents �V of the EDC series
�open symbols� for different resolutions R corresponding to the
fluctuation functions shown in Fig. 9. The curves with closed sym-
bols and error bars correspond to estimates obtained from 100
surrogates—see text for details.
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h�
� =�
�n + m − 
3�

12mn
+

�n + m��
 − n�3

12mn2 +
�n + m��
 − m�3

12m2n
for 0 � 
 � n,m

�n + m − 
�3

12mn
+

�n + m��
 − n�3

12mn2 for m � 
 � n

�n + m − 
�3

12mn
+

�n + m��
 − m�3

12m2n
for n � 
 � m

�n + m − 
�3

12mn
for n,m � 
 � n + m .

� �A5�

There are a number of special cases which are of particular interest. For the case of no correlations, i.e., c�
�=��
�, Eq. �A4�
evaluates as

var�ui+1 − ui� = h�0� =
n + m

6
. �A6�

For the case of long-range correlations, i.e., c�
�= �
�−�, where 0���1, Eq. �A4� reduces to

var�ui+1 − ui� =

 1

mn
�m3 + n3��n + m�1−� −

m + n

mn
�m3−� + n3−�� + 3�n + m�2−��

�� − 4��� − 3��� − 2��� − 1�
�A7�

�
�4 − 2��m2−�

2��� − 4��� − 3��� − 2��� − 1�
�A8�

where the last approximation is valid if �n−m��m / �2−�� for all n and m. The expression is exact for n=m.
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