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The nonequilibrium effective potential is calculated for the Frank model of spontaneous mirror-symmetry
breaking in chemistry in which external noise is introduced to account for random environmental effects. The
well-mixed limit, corresponding to negligible diffusion, and the case of diffusion in two space dimensions are
studied in detail. White noise has a disordering effect in the former case, whereas in the latter case a phase
transition occurs for external noise exceeding a critical intensity which racemizes the system.
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I. INTRODUCTION

In chemistry, enantiomers are molecules that are nonsu-
perimposible complete mirror images of each other. A re-
markable feature of nature is that this mirror or chiral sym-
metry is broken in all biological systems, where processes
crucial for life such as replication, imply chiral supramolecu-
lar structures, sharing the same chiral sign �homochirality�
for all present living systems as we know them. These chiral
structures are proteins, composed by amino acids almost ex-
clusively found as the left-handed enantiomers �L�, DNA,
RNA polymers and sugars with chiral building blocks com-
posed by right-handed �D� monocarbohydrates, and chiral
amphiphiles that form membranes. This fact has led to the
widespread perception that the presence of handed or chiral
molecules is a unique signature of living systems. The emer-
gence of this biological homochirality in the chemical evo-
lution from prebiotic to living systems is a tantalizing
enigma in the origin of life as is the robustness of homo-
chirality in actual living systems. Current reviews and sur-
veys of the origin of homochirality can be found in �1–6�.
Previous hypotheses suggesting that homochirality emerged
after the development of the primeval biological system �7�
are being replaced by the widespread conviction that enan-
tiomerically pure compounds are a prerequisite for the evo-
lution of living species and that mirror-symmetry breaking
must have taken place before the emergence of life �8–10�.

The key ingredients of theoretical models of mirror-
symmetry breaking processes in chemistry �11� include reac-
tions in which the chiral products serve as catalysts to pro-
duce more of themselves while inhibiting the production of
their enantiomer or mirror-image counterparts. Frank’s origi-
nal model �12–18�, a variant of which we study here �19�
�see Sec II�, involves the autocatalysis of the two enanti-
omers, denoted herewith as L and D and mutual inhibition or
antagonistic effects between the two chiral species. This mu-
tual inhibition occurs through the formation of LD het-
erodimers that are removed from the reacting system. More
intricate and complex polymerization networks that lead to
populations of chiral oligomers can be elaborated �21–24� on
the basis of the fundamental Frank paradigm. In these poly-
merization models, the crucial chiral antagonism occurs

through enantiomeric cross inhibition. Motivated by recent
experimental results indicating that mechanical stirring
�25,26� can effectively bias the chirality as well as numerical
studies on the effects of turbulent advection velocities �22�,
Gleiser and co-workers have been examining the influence
that external ambient noise can have on mirror-symmetry
breaking in specific models of chiral polymerization �27�.
The above are examples of external noises to be distin-
guished from noises inherent to the chemical system, such as
epimerization, reaction or diffusion noise, or temperature
fluctuations. The latter are examples of multiplicative noise,
in which the chemical concentrations �28� or kinetic rate
constants would fluctuate �29�, respectively. The noise con-
sidered by Gleiser et al. is taken to model environmental
disturbances present in early prebiotic planetary scenarios.
For example, the noise amplitude could represent sudden in-
creases in the pressure due to meteor impacts or volcanic
eruptions. They find the important result that white noise has
a racemizing tendency and can thus wipe out any net value
of the enantiomeric excess.

The evidence for the noise-induced chiral symmetry res-
toration reported in �27� is based on direct numerical simu-
lation. Symmetry breaking phenomena in nonequilibrium
stochastic systems can be treated as well by analytic means
which afford complementary perspectives on the problem
and underscore the deep formal analogies between stochastic
and quantum physics. The addition of noise to the chemical
kinetic equations converts these into Langevin equations.
Considerable information and physical insight can be gained
from studying such types of stochastic equations. With this
purpose in mind, some years ago we considered classical
field theories subject to additive noise ��x , t� described by
equations of the form

D��x,t� = F���x,t�� + ��x,t� , �1�

where D is any linear differential operator involving arbi-
trary time and space derivatives, but that does not explicitly
involve the stochastic field �. The function F is an arbitrary
forcing term, generally nonlinear in the field �.

These stochastic partial differential equations �SPDEs�
can then be studied using a functional-integral formalism
�30� which makes manifest the deep connections between
quantum field theory �QFT� and nonequilibrium fluctuation
phenomena. We demonstrated that if the noise is Gaussian*hochbergd@inta.es
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and translation invariant, we can always split the noise two-
point function into an amplitude A and shape function g2 and
this correlation can be expressed as

���x,t���x�,t��� = Ag2�x − x�� , �2�

with the convention that

� ddxdtg2
−1�x,t� = 1 = g2

−1�k = 0, � = 0� . �3�

Here, k and � denote the wave number and frequency, re-
spectively. Then a one-loop field-theoretic effective potential
V can be calculated which is associated to the original SPDE
Eq. �1� and which bears close resemblance to the one-loop
effective potential for scalar QFT. The effective potential
simply means a function which agrees with the classical po-
tential at lowest-order perturbation theory, but which is
modified in higher orders by stochastic corrections, that is,
by the noise. Such potential functions can be calculated with
the help of field theory in which systems are treated as a
continuum and “one-loop” means an expansion to first order
in the noise strength A.

The one-loop effective potential for homogeneous and
static fields in any dimension d is given by �30,31�

V��� =
1

2
F2��� +

1

2
A� ddkd�

�2��d+1

�ln�1 +
g̃2�k,��F����2F/����

�D†�k,�� − �F†/����D�k,�� − �F/���	
− �� → �0� + O�A2� . �4�

Here, �0 is any convenient background field. In the absence
of symmetry breaking, it is most convenient to choose �0
=0. As discussed in �30�, Eq. �4� is qualitatively similar to
the one-loop effective potential in self-interacting scalar
quantum field theory �32,33�. The potential V has a deep
physical meaning and inherits many of the physical features
and information content of the potential associated with
QFTs. It is also extremely useful for obtaining the effective
deterministic equations of motion at one-loop order obeyed
by the dynamical field variables. Indeed, from Eq. �4�, we
see that V is proportional to the square of the forcing term F
appearing in the original SPDE, Eq. �1�. Hence, the square
root �2V�1/2 yields an effective force FA and minus the inte-
gral of this effective force will yield the effective “mechani-
cal” potential VA=−
FA, whereby all these physical quanti-
ties are calculable by means of a loop expansion in the noise
amplitude A. To avoid confusion, we will distinguish this
mechanical potential V from the higher-level field-theoretic
potential V. The logical sequence of steps is summarized
schematically in Eq. �5�, indicating the route leading from
the stochastic differential equation to the effective mechani-
cal potential

SPDE ⇒ V ⇒ FA = �2V�1/2 ⇒ VA = −� FA. �5�

The purpose of this paper is to provide a quantitative under-
standing of the impact of external noise and chiral bias on

spontaneous mirror-symmetry breaking �SMSB� processes in
chemistry as an important application of the formal methods
developed in �30,31�. We therefore calculate the potential VA
for the Frank model, as this serves as the starting point for
many other more complex models of mirror-symmetry
breaking. The relative minima �maxima� of VA correspond to
the asymptotically stable �unstable� final states of the react-
ing system. Noise alters the form of the potential and hence
affects the corresponding stability properties of the underly-
ing chemical reactions.

This paper is organized as follows. In Sec. II A, we intro-
duce the reaction steps that define the open flow Frank model
and derive the tree-level �in the absence of noise� potential V
in the adiabatic regime where the total net chiral matter is
approximately constant. The direct production of enanti-
omers tends to racemize the system, that is, destabilizes the
symmetric pair of chiral minima. Over abundant monomer
production will fully racemize the system. The effect of chi-
ral bias is considered next in Sec. II B. Bias leads to a tilted
potential, one of the two chiral minima becomes an absolute
minimum, and there is no racemic state. In Sec. III, we add
white noise and derive the effective potential. In this zero-
dimensional case, the noise has a disordering effect on the
system and the chirality is degraded by the noise, but there is
no transition to a racemic state, certainly not within the con-
fines of the lowest-order perturbation theory employed here.
Independent evidence for this disordering behavior is pro-
vided by a Fokker-Planck treatment of similar zero-
dimensional systems. The joint effect of noise and bias is
also considered. Spatially dependent noise and diffusion is
treated in detail in Sec. IV and we derive the corresponding
effective potential for d=2 dimensions in Sec. IV A. The
field-theoretic potential V has a short-distance divergence
and thus requires renormalization and will consequently de-
pend on an arbitrary sliding scale � �31�. This dependence is
correctly handled through the renormalization-group �RG�
equations, which imply that the Frank model parameters will
run with this scale � in a mathematically explicit way �Sec.
IV B�. This is achieved using RG-improved perturbation
theory. We study the resultant scale-dependent mechanical
potential VA as a function of the competition between noise
intensity and diffusion and consider some illustrative cases
of relative physical length scales of observation in Sec. IV C.
Increasing noise intensity leads to a chiral-racemic phase
transition whenever the diffusion length scale is greater than
the microscale at which the chemical reactions take place.
The combined effects of noise and chiral bias are treated in
Sec. IV D. Our results are discussed briefly in Sec. V and
some integrals needed for the calculation of the potentials are
listed in the Appendix.

II. FRANK MODEL POTENTIAL

A. Tree-level and no chiral bias

The reaction scheme we study here is composed of the
following steps, where the ki�k−i� denote the forward �re-
verse� reaction-rate constants and A is an achiral reactant
maintained at constant concentration by controlling its inflow
to the system �20�:
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Direct production of chiral monomers

A�
k−1

k1

L, A�
k−1

k1

D . �6�

Autocatalytic amplification

L + A�
k−2

k2

L + L, D + A�
k−2

k2

D + D . �7�

Mutual inhibition or heterodimerization

L + D→
k3

LD . �8�

We express the corresponding mean-field kinetic equations
in terms of the enantiomeric excess 	= �L−D� / �L+D�,
which is the order parameter, and the total chiral matter 

=L+D. From Eqs. �6�–�8�, we thus obtain

d

dt
	 = − 2k1A

	



+

1

2
�k3 − k−2�
	�1 − 	2� , �9�

d

dt

 = 2k1A + �k2A − k−1�
 − 
2�k−2 +

1

2
�k3 − k−2��1 − 	2�	 .

�10�

By taking into account the constant concentration of the
achiral reactant A, we introduce dimensionless time �
= �k2A−k−1�t and verify that when the rate of autocatalytic
amplification exceeds the rate of monomer decay, 
 changes
more rapidly than the enantiomeric excess 	. The system
rapidly reaches a quasisteady state for 
�d
 /dt�0� and then
the slow variable 	 evolves and the full system reaches its
true steady state �34�. For this adiabatic regime, we then put

→
� in Eq. �9�, where 
� denotes the quasisteady value for

. Then define the potential V by

d	

dt
= F�	� = −

dV�	�
d	

= − V��	� , �11�

which implies

V�	�
b

=
	4

4
+ �r −

1

2

	2 + v0, �12�

where v0 is an integration constant, and where b= 1
2 �k3

−k−2�
��0, r=a /b, and a=k1A /
�
0. For the scaled po-
tential, r is the only free variable. This is plotted in Fig. 1 as
a function of −1�	�1 and for 0�r�

1
2 . The absolute

minima of V correspond to the asymptotic stable states of the
chemical system and are located at 	= ��1−2r. By varying
r, we see how direct chiral monomer production �k1�0�
tends to racemize the system as the two chiral minima move
continuously toward zero and then coalesce at the origin as
k1A increases from zero. The dependence of 	 on r is dis-
played in Fig. 2. Strict homochirality �	�=1 holds only for
k1A=0, otherwise, k1A�0 implies �	��1. For r


1
2 , the

chiral-symmetric state 	=0 is the only stable solution.
Gleiser and Walker �27� obtained a potential qualitatively
similar to Fig. 1, for a reduced N=2 polymerization model
with direct production of monomers, which also clearly ex-

hibits the racemizing tendency of such autogenic terms �see
their Fig. 1�a��. Their potential generalizes that obtained by
Brandenburg and Multamäki �22�, which contains quadratic
and logarithmic terms; ours in Eq. �12� has instead quartic
and quadratic terms. The explicit mathematical form of the
potential is not so crucial; the true significance of the poten-
tial lies rather in its maxima or minima structure.

B. Chiral bias

External magnetic, electric, and gravitational fields, hy-
drodynamic vortex motion, as well as polarized radiation can
induce mirror-symmetry breaking �35�. Chiral bias can be
studied via the potential by assigning chiral specific reaction
rates �27,36,37� to the monomer production and autocatalysis
steps and substituting the rate constants ki by ki

L=ki�1+ 1
2��

and ki
D=ki�1− 1

2��, where ki= �ki
L+ki

D� /2. In this situation, we
must modify the steps Eqs. �6� and �7� as follows:

Biased production of chiral monomers

A�
k−1

L

k1
L

L, A�
k−1

D

k1
D

D . �13�

Biased autocatalytic amplification

-1 -0.5 0 0.5 1
Η

-0.2

-0.1

0

0.1

V
�

Η
�

�
b

FIG. 1. The Frank model potential V�	� /b, Eq. �12�, displaying
the racemizing tendency of the direct chiral monomer production
A→L , A→D. The sequence of curves from bottom to top corre-
sponds to r=0,0.2,0.4 and r=0.5. For r�0.5, the racemic state is
the unique stable final outcome.

0 0.1 0.2 0.3 0.4 0.5
r

0

0.2

0.4

0.6

0.8

1

Η

FIG. 2. Tree-level potential: the enantiomeric excess 	 as a
function of r=a /b. We display the positive branch 	=+�1−2r.
There is also a mirror-image negative branch which completes the
figure and gives the classic bifurcation diagram. Note 	=0 for all
r�

1
2 .
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L + A�
k−2

L

k2
L

L + L, D + A�
k−2

D

k2
D

D + D . �14�

Biased mean-field rate equations that generalize Eqs. �9� and
�10� are straightforwardly derived from Eqs. �8�, �13�, and
�14� and for the adiabatic regime 
�
�, we find the poten-
tial can be written as

V�	� = V0�	� + �V��	� , �15�

where V0 denotes the unbiased �=0 contribution and is given
above in Eq. �12�, whereas the biased part is

�V��	� = −
�

2
�2k1A

	


� + �k2A − k−1 −
1

2
k−2
�
�	 −

	3

3

	 .

�16�

For convenience, we now set k1=0. Then we can factor out
the overall scale factor b as we did above and express the
biased potential as a function of a single free parameter 1
���
0,

�V�	�
b


 =
	4

4
−

	2

2
− ���	 −

	3

3
	 , �17�

where ��=�
�k2A−k−1−1

2
k−2
��

�k3−k−2�
� . We remark that for any nonzero
bias ��0 and in the absence of any other influence, there is
no racemic solution. This is because the pure biased part of
the potential Eq. �16� is an odd function of 	, containing
linear and cubic terms. Instead, a new unstable chiral solu-
tion emerges. There are then three chiral states, two are
stable homochiral states located at 	= �1, together with this
third unstable chiral, but not homochiral, state at 	=−��
�0 �see Fig. 3�. For ��0, the absolute minimum is located
at 	=1 implying that the final outcome will be composed
entirely of the L monomers. The above discussion applies
equally well to the case where the bias parameter ��0 is
negative, in which case Fig. 3 is simply tilted in the opposite
sense, with the D monomers being the favored stable out-
come.

III. ADDING NOISE: THE WELL-MIXED CASE

In this section, we consider the effects of ambient white
noise on well-mixed systems or equivalently, systems with
zero or negligible diffusion. This association between mixing
and diffusion becomes clear if we introduce the concept of
mixing velocity u in a system on a length scale L. Then for a
diffusion constant D, good mixing corresponds to large val-
ues of uL

D and hence small values of D. In the absence of
diffusion, the dynamics can be treated as zero dimensional.
We are interested in the influence of a random external en-
vironment on the chemical system and the simplest way to
consider this is by adding white noise to the kinetic rate
equations. This is a working assumption in what follows. So,
adding noise to Eq. �11� then leads to a stochastic differential
equation

d	

dt
= F�	� + ��t�, ���t���t��� = A��t − t�� . �18�

For temporal white noise, the associated one-loop field-
theoretic potential V, Eq. �4�, has been calculated in d=0
dimensions in �31� and is given by �we set 	0=0�

V�	� =
1

2
F2�	� +

1

2
A�Re��F��	��2 + F�	�F��	�

− ��F��	��2� + O�A2� , �19�

where Re indicates taking the real part of the expression.
From this V, we then calculate the one-loop effective force
FA�	�= �2V�1/2 �31� which is given by

FA�	� = F�	� +
1

2

A
F�	�

�Re��F��	��2 + F�	�F��	�

− ��F��	��2� + O�A2� . �20�

We remark in passing that, as discussed in �31�, the original
stochastic differential equation Eq. �18� can be written as an
ordinary differential equation in terms of the effective noise-
corrected force FA as follows:

d	

dt
= FA�	� . �21�

It is convenient to proceed by first establishing the con-
straints implied by the reality projector. For r=0, Eq. �12�
implies the tree-level force F�	�=b	�1−	2�. Then the ex-
pression under the first square root in Eq. �20� is �F��	��2

+F�	�F��	�=b2�1−12	2+15	4�. This is negative on the
open intervals �−0.84,−0.31� and �0.31,0.84�, zero on their
end points, and is strictly positive elsewhere �38�.

The one-loop effective potential is therefore given by

VA�	� = −� FA�	�d	 + v1, �22�

where v1 is an integration constant. We define

-1 -0.5 0 0.5 1
Η

-0.4

-0.3

-0.2

-0.1

0
V

�
Η

�
�
b

w
i
t
h

b
i
a
s

FIG. 3. Tree potential subject to small chiral bias, Eq. �17�. The
dashed curve corresponds to zero bias. For ���0, the point 	=1 is
the absolute minimum of the potential. For the sequence of solid
curves below dashed curve, from top to bottom, ��=0.1, 0.2, and
0.5. For ���0, the curves will be tilted in the opposite sense.
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I1 =� d	

F�	�
��F��	��2 + F�	�F��	� . �23�

This integral is evaluated in the Appendix and setting �=0 in
Eq. �A3� yields

2I1 = − ln� 2�R − 12	2 + 2

	2 � + 2 ln� 4�R + 18�	2 − 1� + 8

	2 − 1
�

− �15 ln�2�15R + 30	2 − 12� , �24�

valid whenever R=1−12	2+15	4
0. Otherwise, from Re
in Eq. �20� we have I1=0. Next, we define I2 as follows:

I2 =� d	

F�	�
��F��	��2. �25�

Since the function ��F��	��2=b��1−3	2��, then setting �=0
in Eq. �A5� yields I2 which is

=� 1
2 ln�	2� + ln�1 − 	2� + c1, �− 1

�3
� 	 �

1
�3�

− 1
2 ln�	2� − ln�1 − 	2� + c2, �	 � − 1

�3
& 1

�3
� 	� .

�
�26�

Matching up at 	2= 1
3 ensures continuity in I2. Without loss

of generality, we take c2=0. Then c1=−ln1
3 −2 ln2

3 �1.91.
The effective potential Eq. �22� can be expressed in terms

of the difference of these two integrals as follows:

VA�	� = V�	� −
A
2

�I1 − I2� + O�A2� , �27�

up to constants of integration used to match up the one-loop
corrections to ensure continuity. For domains over which R

0, namely, 	�−0.84, and −0.31�	�0.31 and 	�0.84,
then I1 is given by Eq. �24�, otherwise when R�0, then
I1=0. Thus, for those regions over which R�0, the one-loop
correction in Eq. �27� is equal to +A

2 I2. On the two outer
intervals �−1,−0.84� and �0.84,1�, the one-loop correction is
given by −A

2 �I1−I2�. From Eqs. �24� and �26�, we calculate
this quantity valid over these intervals and find that

�I1 − I2� = −
1

2
ln� 2�R − 12	2 + 2

	2 � +
1

2
ln�	2� + ln�4�R

+ 18�	2 − 1� + 8� −
�15

2
ln�2�15R + 30	2 − 12� .

�28�

Whereas for the central interval �−0.31,0.31�, we calculate
this difference and find

�I1 − I2� = −
1

2
ln�2�R − 12	2 + 2� − ln�1 − 	2� − c1

+ ln� 4�R + 18�	2 − 1� + 8

	2 − 1
� −

�15

2
ln�2�15R

+ 30	2 − 12� . �29�

Lastly, write VA=V+ �A /2��V then the form of the pure
one-loop correction �V�	� is completely specified as fol-
lows:

�V�	� =�
�Vout�	� + v1: �− 1,− 0.84�
I2�	� + v2: �− 0.84,− 0.31�
�Vin�	� + v3: �− 0.31,0.31�
I2�	� + v2: �0.31,0.84�
�Vout�	� + v1: �0.84,1� .

�
Here, −�Vout is given by Eq. �28�, −�Vin by Eq. �29�, and I2
by Eq. �26�. Matching up at the end points of the above
subintervals fixes the constants v2=v1+3.182, v3=v1
−0.001, where v1 is an overall integration constant we are
free to choose �see Eq. �22��. We take v1=�Vin�0�.

We now consider the role of weak external noise on
mirror-symmetry breaking using the effective potential �39�.
We first scale out by the factor b and evaluate VA /b while
varying the dimensionless noise amplitude 0�

A
2b �1. The

absolute minima of the effective potential correspond to the
allowed stable final chemical states. From the sequence of
curves in Fig. 4, corresponding to A

2b =0.0, 0.05, 0.1, 0.2, and
0.3, we see that increasing the noise amplitude tends to de-
stabilize the system. The homochiral states �	�=1 exist only
in the absence of noise �see bottommost curve�. For low
levels of noise, the system has stable chiral states corre-
sponding to �	��1. The noise erodes the enantiomeric ex-
cess, driving it to absolute values less than unity.

A symmetric pair of new relative maxima begins to form
and persist for A /2b�Ac /2b�0.2, thus leading to a pair of
seemingly metastable chiral states �see Fig. 4�. At the same
time, the potential’s origin becomes locally flat and then
curves upward to a local minimum for increasing noise lev-
els. However, since Eq. �18� is a zero-dimensional system,
we do not expect a true phase transition to occur as the noise
intensity is increased. Instead, an increase in the noise serves
to disorder the system and this is reflected in the shift of the
relative minima �	��1 which decrease continuously from
unity as A /2b is increased from zero. Unlike the sequence of
curves in Fig. 1, the pair of chiral minimum does not con-
tinuously approach and merge at the origin if the noise level
is turned up. Independent evidence corroborating this behav-
ior is provided by a Fokker-Planck equation analysis of the
Landau model, which is mathematically similar to the system

-1 -0.5 0 0.5 1
Η
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FIG. 4. The one-loop effective potential VA /b for the Frank
model, Eq. �27�. The final enantiomeric excess 	 corresponds to the
absolute minima of the potential and decreases in absolute value
below unity as the noise strength increases. The curves from bottom
to top correspond to A /2b=0.0, 0.05, 0.1, 0.2, and 0.3.
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Eq. �18� considered here. In the Landau model, the noise-
averaged order parameter ��	�� and its variance �= ��	2�
− ��	��2� /A are calculated as functions of the noise intensity
by means of the probability distribution function. The order
parameter shows a decrease from unity as the noise is
switched on that bottoms out at ��	��minimum�0.8 for A
�0.3 and then rises very slowly as the noise is increased, but
never approaches unity. The variance reaches a global maxi-
mum ��0.8 for A�0.12 followed by a monotone decrease
for stronger levels of noise �40�. This behavior is regarded as
indicating a noise-induced disordering transition.

Recall that our calculation of the potential Eq. �27� is
founded on lowest-order perturbation theory and so is valid
strictly for small noise intensities. We estimate an approxi-
mate critical intensity Ac /2b�0.3 as the upper limit for
which the one-loop approximation is likely to break down,
since this is where the racemic state becomes a global mini-
mum of the potential �see Fig. 4�. That is, for noise intensi-
ties near or greater than this level, the potential would predict
a discontinuous transition from a chiral to a racemic state, a
feature not seen in the analysis of the Landau model dis-
cussed above. From the figure, we read off the minimum
value of the enantiomeric excess to be approximately �	�min
�0.7, which is in good agreement with the value obtained in
the Landau model. Using the nominal values �18� k3
�102 Ms−1, k−2�10−5 Ms−1, and 
�=1 M, then 2b
=100 s−1, we estimate external noises within the range 0
�A�33 s−1 would be perturbatively valid.

Finally, we consider the combined effect of noise and chi-
ral bias. When we include noise, the one-loop biased effec-
tive potential is obtained by subtracting ���	−	3 /3� from
the right-hand side of Eq. �27� and the overall expression is
valid up to the second-order terms O���A� and O�A2�. The
effect of the bias is to tilt the noise-corrected potential in the
same sense as shown in Fig. 3, so that the sequence of noise-
induced minima located at 0�	�1 in Fig. 4 now becomes
the absolute minimum �see Fig. 5�. Due to this tilting, the
origin of the potential is no longer locally flat, that is
VA� �0��0 for any value of the noise. The noise has a desta-
bilizing effect upon the biased system and the effective po-
tential possesses a global minimum corresponding to a chiral
but not homochiral state �see Fig. 5�. The sense of tilt in the
figure simply flips over for ��0. If the direct racemization

step L↔D is included in the Frank scheme Eqs. �6�–�8�,
then a recent numerical simulation suggests that additive
noise can lead to enantioselection for otherwise tiny unde-
tectable chiral biases �41�.

IV. NOISE AND DIFFUSION IN TWO DIMENSIONS

Chemical reactions take place in space as well as in time.
For well-mixed chemical systems, the condition we assumed
in the previous section, then the spatial dependence plays no
important role. In a well-mixed system, there are no concen-
tration gradients and thus no large-scale diffusion. The well-
mixed system is in effect zero dimensional. For poorly mixed
or heterogeneous systems, spatial diffusion should be in-
cluded and the associated effective potential, including the
effects of a spatially dependent external noise, as in Eq. �2�,
can be calculated analytically within perturbation theory.
Such an analytic expression for the square of the one-loop
effective force FA in reaction-diffusion equations subject to
white noise has been calculated for arbitrary force terms F in
d=2 dimensions in �31�.

A. One-loop effective potential

To include the effects of diffusion, we replace d
dt by �

�t
−D�2 in Eq. �11�, where D is the diffusion constant. As
before, the simplest way to model a random environment is
through additive white noise. So we next add spatially de-
pendent external white noise ��x , t� and then we have an
SPDE of the form displayed in Eq. �1�. In this case, the shape
function g2�x−x��=��x−x����t− t�� and automatically satis-
fies Eq. �3�. For d=2, the renormalized one-loop field-
theoretic potential V in Eq. �4� is calculated in �31� and is
given by

V�	� =
1

2
F2�	� +

A
16�D

�F����F��2 + FF� − ��F��2�

− FF� ln���F��2 + FF� − F�

2D�2 � +
1

2
FF�	 + O�A2� .

�30�

There is also a reality projector Re implicit in the derivation
of this expression and we are instructed to take the real part
�31�. The ratio A

D multiplying the one-loop term is dimen-
sionless: thus we immediately appreciate that the relative
magnitude of the correction term to the tree-level contribu-
tion is determined through the competing effects of noise and
diffusion. Diffusion thus acts to “buffer” external distur-
bances. We also emphasize that the stochastic field theory for
the SPDE Eq. �1� contains a hidden scale parameter �
�1 / l, with units of an inverse length l, that must be intro-
duced to define the parameters of the theory, that is, to renor-
malize it. In two dimensions, the expression Eq. �4� contains
a logarithmic short-distance divergence which requires regu-
larization and renormalization. The latter procedure intro-
duces an arbitrary scale � into the resultant expression. The
dependence of the theory on this sliding scale parameter � is
described by the renormalization group and � will appear in
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FIG. 5. The biased one-loop effective potential VA /b for the
Frank model with ��=0.1. The sequence of curves from bottom to
top corresponds to A /2b=0.0, 0.05,0.1, and 0.2. Compare and con-
trast to Fig. 4.
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the RG-improved effective potential. We will come back to
this important point below.

The corresponding one-loop effective force implied by V
is

FA = F +
A

16�D
�F�

F
���F��2 + FF� − ��F��2�

− F� ln���F��2 + FF� − F�

2D�2 � +
1

2
F�� + O�A2� .

�31�

Thus the effective mechanical potential corresponding to this
force is given by

VA = −� FA�	�d	 + v1. �32�

Just as we did for the zero-dimensional case, we recall the
subintervals over which the first square-root expression is
real. For the moment consider a=0 and then the expression
under the first square root in FA can be written as

q = b2�1 − 12	2 + 15	4� . �33�

This is negative on the intervals �−0.84,−0.31� and
�0.31,0.84� and positive otherwise. For those intervals over
which q
0 the one-loop effective potential is given by

VA�	� = V�	� −
A

16�D
�� d	�F�

F
���F��2 + FF� − ��F��2�

− F� ln���F��2 + FF� − F�

2D�2 � +
1

2
F�
 + v1�

+ O�A2� , �34�

where v1 is a constant of integration.
It is convenient to break the calculation down into smaller

more manageable integrals. So, for q
0, we define

I1 =� d	
F��	�
F�	�

��F��	��2 + F�	�F��	� ,

=
b

2
� dx�1

x
+

2

x − 1

�1 − 12x + 15x2, �35�

where we have used the change of variables x=	2 and the
identity 1

x�x−1� =− 1
x + 1

x−1 .
We next define

I2 =� d	
F��	�
F�	�

��F��	��2

=
b

2
� dx�1

x
+

2

x − 1

�1 − 3x� . �36�

In close analogy with the prior d=0 effective potential cal-
culation, we can combine these two integrals to determine
their contribution �I1−I2� over the full −1�	�1 interval.
First consider regions over which R
0 and specifically the
two outer intervals �−1,−0.8399� and �0.8399,1�. From Eqs.

�A3� and �A5� and setting �=3, we calculate this difference
and find

�I1 − I2�/b =
3

2
�R −

1

2
ln� 2�R − 12	2 + 2

	2 � − 2 ln�4�R

+ 18�	2 − 1� + 8� +
1

2
ln�	2� +

6
�15

ln�2�15R

+ 30	2 − 12� −
9

2
	2. �37�

On the other hand, for the central interval
�−0.3074,0.3074�, we calculate

�I1 − I2�/b =
3

2
�R −

1

2
ln�2�R − 12	2 + 2�

− 2 ln� 4�R + 18�	2 − 1� + 8

	2 − 1
� +

6
�15

ln�2�15R

+ 30	2 − 12� + 2 ln�	2 − 1� +
9

2
	2 − c1. �38�

Next we define and calculate

I3 =
1

2
� d	F��	� = −

3b

2
	2. �39�

As for remaining integral, we also cast this in terms of the
variable x=	2,

I4 =� d	F� ln���F��2 + FF� − F�

2D�2 �
=− 6b� d		 ln� b��1 − 12	2 + 15	4 − �1 − 3	2��

2D�2 � . �40�

We employ an analytic approximation to this contribution as
discussed in the Appendix �see Eqs. �A7� and �A8��.

We now have all the contributions to the one-loop correc-
tion. Then from Eq. �34�, we can write

VA�	� = V�	� −
A

16�D
��I1 − I2� + I3 − I4� + O�A2�

=V +
A

16�D
�V + O�A2� ,

�V = − �I1 − I2� − I3 + I4, �41�

and the form of the pure one-loop correction �V�	� is com-
pletely specified as follows in terms of the subinterval con-
tributions
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�V�	� =�
�Vout�	� − I3 + I4 + v1: �− 1,− 0.84�
I2�	� − I3 + I4 + v2: �− 0.84,− 0.31�
�Vin�	� − I3 + I4 + v3: �− 0.31,0.31�
I2�	� − I3 + I4 + v2: �0.31,0.84�
�Vout�	� − I3 + I4 + v1: �0.84,1� .

�
Here, −�Vout is given by Eq. �37�, −�Vin by Eq. �38�, and I2
by Eq. �A5�. We match the individual contributions to the
one-loop potential over the indicated subintervals. Once this
is done, we can then assess the effects of diffusion and noise
by varying the ratio 0�

A
16�D �1. Before doing so, we must

first turn to the renormalization-group equations �RGEs� to
determine the �-scale dependence of the model parameters
�the various combinations of the reactions rates and chemical
concentrations�. This step will be required in order to carry
out the perturbative RG improvement of the effective poten-
tial, which is the subject of the next section.

B. Renormalization group equations and improved potential

As we remarked above, the field-theoretic potential in d
=2 dimensions has a short-distance logarithmic divergence
which requires regularization and renormalization. These
preliminary procedures were already carried out in �31� and
this required introducing the arbitrary renormalization scale
�. The bare unrenormalized field-theoretic potential V Eq.
�4� does not of course depend on the arbitrary renormaliza-
tion scale � so that we have the condition �31,42,43�

�
dV�	;d = 2�

d�
= 0. �42�

This fact directly implies the following condition on the
renormalized force �31�:

�
dF�	�

d�
= −

A
8�D

F��	� + O�A2� . �43�

We go back to the renormalized tree-level force and write it
as follows, where a��� and b��� denote the renormalized
parameters:

F�	� = − b���	3 + �b��� − 2a����	 ,

F��	� = − 6b���	 . �44�

We insert these expressions back into the RGE Eq. �43�, use
the general theorem of algebra, and find that a and b must
individually satisfy the following equations:

�
db���

d�
= 0 + O�A2� , �45�

�
da���

d�
= −

3A
8�D

b��� + O�A2� . �46�

Although b does not run with scale at one-loop order, a does
run with the scale according to

a��� = −
3Ab

8�D
ln� �

�0

 + a��0� + O�A2� , �47�

where �0 is an initial scale �proportional to an initial inverse
length scale 1 / l0�. Recall the discussion in Sec. II A of the
racemizing tendency as r=a /b→1 /2 in the tree-level poten-
tial. As we will demonstrate below, in the renormalization-
group improved effective potential, the noise intensity and
the running scale ���0 �i.e., the large length scale limit� in
tandem induce a positive increase in r and thus tend to race-
mize the system.

A few words devoted to this procedure in Eqs. �43�–�47�
are in order. RG improvement consists of substituting the
bare parameters appearing in a field theory by their running,
scale-dependent forms, calculated to some order in perturba-
tion theory: e.g., here we replace a ,b→a��� ,b���. The very
scale dependence of these couplings or parameters is of
course a consequence of the noise and fluctuations present in
the theory. The scale dependence is handled by the renormal-
ization group whose aim is to describe how the dynamics of
a system evolves as we change the scale at which the phe-
nomena are being observed. Improved perturbation theory
then results from combining the tools of the RG with pertur-
bation theory and allows us to go beyond the strict limita-
tions imposed by conventional perturbation theory alone
�42,43�.

So, with the scale dependence of the parameters deter-
mined, to proceed, we insert a��� and b��� into the tree-
level potential thus

V�	�
b

=
	4

4
+ �r��� −

1

2

	2, �48�

r��� = r��0� −
3A

8�D
ln� �

�0

 + O�A2� . �49�

Then the complete one-loop potential can be evaluated, vary-
ing not only the noise intensity and the diffusion constant,
but also the sliding scale �. Note we can insert the bare
values of a and b into the pure one-loop term �V and we
choose a��0�=0, i.e., no direct monomer production. This is
valid to the one-loop order at which we are working, as the
renormalized parameters a��� , b��� are themselves of order
A and any corrections would then be of second order O�A2�.
So taking into account Eqs. �48� and �49�, we evaluate and
plot below the complete one-loop RG-improved effective po-
tential

VA�	� = V�	� −
A

16�D
��I1 − I2� + I3 − I4� + O�A2�

=V +
A

16�D
�V ,

�V = − �I1 − I2� − I3 + I4. �50�

By inspection of VA�	�, we have three independent dimen-
sionless ratios to consider, namely, A

16�D , the dimensionless
noise intensity or loop-parameter plus �

�0
as well as �b�

2D�2 . We
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now establish their physical ranges and interpret them ac-
cordingly. The first one is fairly obvious, as we are dealing
with perturbation theory so we should restrict 0�

A
16�D �1.

The actual magnitude of the perturbation depends on the
relative strength of the external noise to the internal diffu-
sion. Second, as there are no negative rate constants in chem-
istry, we must have a���
0, which from Eq. �47�, holds if
and only if ���0 given that b�0, the latter being the nec-
essary condition for mirror-symmetry breaking. But this
makes good physical sense since we are actually interested in
the large length scale properties of the potential, which cor-
respond to the limit ��1 / l→0. As remarked above, we set
a��0�=0, which is equivalent to shutting off the direct mono-
mer production step at the microlength scale l0�1 /�0 of the
chemical reactions. Lastly, the ratio �b�

2D�2 can in principle be
either greater or less than unity and we consider both of these
possibilities below. In summary, the three independent ratios
that define the effective large scale properties of the model
are

0 �
A

16�D
� 1, 0 �

�

�0
� 1, �51�

0 �
�b�

2D�2 �
�dif f

2

�2 , �52�

where the latter ratio introduces an inverse length scale
�dif f =

b
2D associated with the diffusion. Given the identifica-

tion of �0�1 / l0 as an initial inverse microlength scale, there
are in principle four cases we can distinguish:

�I�:�dif f = �0

�II�:�dif f � � � �0

�III�:� � �dif f � �0

�IV�:�dif f � � � �0. �53�

This latter case translates into �IV�: �2= b
2D , with ���0. So,

this corresponds to identifying the sliding scale � to the �in-
verse� diffusion length scale and the diffusion length scale
greater than the microscopic length scale. This is physically
reasonable. From this perspective, the cases �II� and �III�
allow for the diffusion length scale to be greater or lesser
than the sliding length scale, but both of these are individu-
ally greater that the microlength scale and we will see below
there is no essential difference between any of the three latter
cases. There is, however, a major qualitative difference be-
tween these cases and case �I�.

C. Chiral symmetry restoration and racemization

To further drive home the significance of the relative
length scales involved, we estimate some characteristic val-
ues of the diffusion length scale ldif f �1 /�dif f associated
with molecular diffusion in water at room temperature, as
well as length scales typical of the turbulent eddy diffusivi-
ties as actually measured in the ocean �44�. Such large scale

flows were argued to be relevant for the spreading of homo-
chirality in the ocean �22�. It will be clear that ldif f is indeed
a macroscopic length scale.

The molecular diffusion in water �at room temp� is

D = 10−9 m2/s.

Turbulent �eddy� diffusivity in the ocean is

D � 10−4 m2/s �vertical-mixing�

and

D � 103 m2/s �horizontal-mixing� .

Then using the nominal values k3=10,100 M /s �18� and

�=1 M, the characteristic reaction time scales are given by

b = 5 s−1, 50 s−1.

The associated diffusion length scales are as follows:
Diffusion length scale �water�

ldif f = �2D

b

1/2

= �2 � 10−9 m2/s
5 s−1 
1/2

= 2 � 10−5 m = 2 � 10−3 cm. �54�

Diffusion length scale �vertical eddy diffusivity�

ldif f = �2D

b

1/2

= �2 � 10−4 m2/s
5 s−1 
1/2

= 0.63 � 10−2 m = 0.63 cm. �55�

Diffusion length scale �horizontal eddy diffusivity�

ldif f = �2D

b

1/2

= �2 � 103 m2/s
5 s−1 
1/2

= 20 m = 2000 cm.

�56�

Choosing the second estimate for b above just decreases the
diffusion length scales by an overall factor of 10.

With this intended to orient the physical context, we turn
to the evaluation of the RG-improved effective potential for
the various cases listed above in Sec. IV B. Identifying the
relative scales as per case I, we have

�0
2 =

�b�
2D

⇒
�b�

2D�2 =
�0

2

�2 . �57�

This case is somewhat outré in that we are identifying the
macro- and microscopic length scales: ldif f = l0. This results
in an exact cancellation between the logarithm term in the
renormalized tree potential, Eqs. �48� and �49�, and the loga-
rithm in the I4 integral contribution, Eq. �40�. The depen-
dence on the sliding scale � thus drops out of the expression
for the one-loop potential Eq. �50� and the only remaining
free parameter is the ratio of the noise intensity to the diffu-
sion. We evaluate Eq. �50� for various values of the noise
parameter as shown Fig. 6. For zero noise intensity, we re-
cover the classic double-well potential indicating that the
final chemical states will be homochiral 	= �1 with equal
probability �see bottom curve�. At this microlength scale l0,
for increasing noise intensity, we observe that the potential
minima deepen at 	= �1 while the origin 	=0 changes
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from being a global maximum �negatively curved� to a local
minimum �positively curved�, indicating that the racemic
state goes from being a completely unstable state to a meta-
stable state. Note however that a high potential barrier sepa-
rates the racemic from the chiral states at this smaller length
scale.

When the diffusion length scale is greater than the initial
scale ldif f � l0, then we are in the regime of cases II–IV,
which are all qualitatively very similar. In Fig. 7, we plot the
potential for case II for ldif f =10� l0 and l=5� l0 and for a
range of reasonably small noise intensities.

Here the situation is strikingly distinct from that of case I.
When the diffusion length scale is greater than the initial
microscale, then the noise induces a true phase transition,
whereby the stable homochiral states that pertain in the ab-
sence of any noise are destabilized and the racemic state
emerges as the unique stable outcome for noise intensities
above a certain critical value; compare to Fig. 6. There is a
continuous merger of the two chiral minima at the origin as
the noise intensity increases, a characteristic typical of
second-order transitions.

For ���dif f ��0, we have case III. This means the scale
of observation l� ldif f is greater than the diffusion length
scale and both are larger than the initial scale l0. This is
plotted in Fig. 8 for ldif f =5� l0 and l=10� l0 and a range of

small noise intensities. The potential is qualitatively similar
to that of case II �compare to Fig. 7�.

Finally, for �=�dif f ��0, we have case IV. The scale of
observation l= ldif f is identical to the diffusion length scale
and larger than the initial length scale l0. This situation is
plotted in Fig. 9 for ldif f =1000� l0 and for a range of small
noise intensities. We also considered the alternative choices
ldif f =10� l0 and ldif f =100� l0, but these yield no qualitative
differences in the form of the effective potential.

As remarked above, we confirm that there are only two
qualitatively distinguishable cases. Namely, case I stands
apart from cases II–IV. That is, either we are “sitting right on
top” of the initial chemical microscale �dif f =�0, in which
case the chiral states are still the most stable, even when
noise is turned on �the racemic state becomes metastable�, or
else we are observing the system at length scales �dif f ��0
and ���0 larger than this chemical microscale, for which
increasing noise has a bona fide racemizing tendency leading
to a phase transition: increasing the noise level drives the
two equivalent chiral minima to the origin in a continuous
fashion. We did not observe this transition behavior in zero
dimensions d=0, for which we detect only a noise-induced
destabilizing effect, but no true phase transition.

From Fig. 9 and for the relative scales involved there, we
may roughly estimate the critical value of the loop parameter
to be A

16�D �0.015. On the other hand, the purely numerical
simulations in d=2 reported in the first two papers of �27�
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FIG. 6. �Case I� With �dif f =�0. The d=2 one-loop effective
potential VA /b for the Frank model. The � dependence drops out in
this case. The range of the noise parameter A

16�D
= �0,0.1,0.3,0.5,0.7� corresponds to the sequence of curves from
bottom to top.
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FIG. 7. �Case II� The d=2 one-loop effective potential VA /b.
With �dif f ����0, specifically: ldif f =10� l0, and l=5� l0. Noise
parameter A

16�D = �0,0.01,0.02,0.03,0.04�; sequence of curves from
bottom to top.
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FIG. 8. �Case III� The d=2 one-loop effective potential VA /b.
With ���dif f ��0. Specifically, ldif f =5� l0 and l=10� l0. Noise
parameter A

16�D = �0,0.01,0.02,0.03,0.04�; sequence of curves from
bottom to top.
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FIG. 9. �Case IV� The d=2 one-loop effective potential VA /b.
With �=�dif f and ldif f =1000� l0. Noise parameter A

16�D
= �0,0.005,0.01,0.015�; sequence of curves from bottom to top.
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yield
Ac

D �1.15 for a computation over an L�L domain
where L=1024�x and �x is the lattice spacing. We tentatively
identify L with ldif f and �x with the microlength scale l0.
Dividing the simulated value of the critical noise parameter
by the geometric factor 16��50 yields �

Ac

16�D �Gleiser
�1.15 /50=0.023 in d=2. Bearing in mind that the model
treated by Gleiser and co-workers is an N=2 truncation of
Sandar’s polymerization reaction network, we regard this as
a rather good agreement between the analytic calculation car-
ried out here and the direct numerical simulation reported in
�27�.

D. Chiral bias plus noise

We consider the combined effect of chiral bias and spatial
noise in d=2 dimensions by subtracting the terms ���	− 	3

3 �
from the right-hand side of VA in Eq. �50�, which will be
valid up to the second-order terms O���A� and O�A2�. The
effective potential is tilted and for increasing noise levels the
resultant inequivalent pair of chiral minima merge continu-
ously to the limiting nonzero value 	���, indicating that
there is no racemization in the presence of bias. This is illus-
trated in Fig. 10, in which we include chiral bias to the
situation defined in case IV. Of course, if the bias is very
small, say less than the intrinsic statistical chiral imbalance
�45�, then it will not be detected. For example, �= �E

kT
�10−17 for parity violation in the electroweak interactions at
room temperature, where �E is the energy difference be-
tween the two enantiomers �37�, whereas the intrinsic statis-
tical deviations about the ideal racemic composition are on
the order of �	�statistical�6.7�10−9% for millimolar
�laboratory-size� samples �45�.

V. DISCUSSION

In this paper, we have applied the stochastic field-theory
formalism in �30,31� to study the impact of external noise on
chirality in a key model of SMSB. We focused on the el-
ementary Frank model due to the central role it plays in
theoretical approaches to mirror-symmetry breaking
�9,11,12,18,19,21–24,27,28,34–37,39�. By purely analytic
means, we verified that weak noise tends to racemize the
system, eroding homochirality. In zero-dimensional or well-

mixed systems, the noise disorders the system and there is no
transition to a racemic state. By contrast, in two space di-
mensions with diffusion, the system does undergo a continu-
ous phase transition to a racemic state. We obtain this result
from renormalization-group improving the potential �42,43�
to one-loop order in perturbation theory. At length scales
above the microscale cutoff of the chemical reactions them-
selves, increasing noise levels drive the potential minima
from chiral to racemic states in a continuous fashion. Since
the chiral to racemic transitions examined here all occur for
loop parameters A

16�D all lying in the range from 10−3 to 10−2,
we regard this as valid results within the limits of perturba-
tion theory and confirms previous direct numerical results
obtained by Gleiser and co-workers �27�.

An important feature of this approach is the �-scale de-
pendence of the RG-improved effective potential VA in d
=2 dimensions. Because the field-theory potential V requires
renormalization, the Frank model parameters necessarily run
with scale and the racemizing tendency of the noise is there-
fore a weakly scale-dependent phenomena. We established
that two qualitatively distinct cases arise as a result, namely,
�i� when one observes the system at the short length scales
typical of the chemical reactions themselves or �ii� when the
system is observed at the larger length scales typical of mo-
lecular diffusion. For the former, the chiral states are still the
most stable outcome, regardless of how strong the noise may
be, whereas for the latter, the racemic state will be the unique
stable outcome for noise levels exceeding a critical value.
This scale dependence is in keeping with the aim or purpose
of the renormalization group, which is to “describe how the
dynamics of a system evolves as one changes the scale of the
phenomena being observed” �46�. Since we are interested in
the large length scale properties of the system, the latter case
�ii� is the most interesting one. The dependence of chirality
on length scale can be appreciated visually through direct
numerical simulations in two dimensions. At small scales,
the reaction domain is typically composed of a myriad of
tiny chiral domains, but when averaged �course-grained�
over the entire domain, the overall configuration can be close
to racemic �22,28�.

We have considered effects due to external noise. Other
independent sources of randomness are present in reacting
systems and it is important to carefully distinguish internal
from external noises. One is at liberty to couple the reacting
system to any external random force of one’s choosing, the
temporal and/or spatial dependence is not determined by the
critical state of the chemical system; it is after all, external
and is not slaved to the internal state of the chemical system.
If the system is near a bifurcation point, then small amplitude
external noise can have important effects as we have demon-
strated here.

By contrast, internal noise depends on the state of the
chemical system and one is not free to choose its mathemati-
cal form. There are two kinds of internal noise at play: �i�
statistical and �ii� reaction noise. The former arises because
exactly equal proportions of the two chiral enantiomers
never occur in practice and this inevitable chiral imbalance
yields an initial statistical enantiomeric excess �45�. In the
latter, diffusion-limited noise is always present to some de-
gree in imperfectly mixed spatially heterogeneous systems
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FIG. 10. The biased d=2 one-loop effective potential VA /b for
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and is sufficient to drive the mirror-symmetry breaking
�28,34�.
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APPENDIX: SOME INTEGRALS

Here we list the individual integrals needed to evaluate
the pure one-loop corrections to the potential �V in both d
=0 and in d=2 space dimensions. For
Re��F��	��2+F�	�F��	��0 we define

I1
� =

b

2
� dx

�1 − �x�
x�1 − x�

�1 − 12x + 15x2 �A1�

=
b

2
� dx�1

x
+

1 − �

x − 1

�1 − 12x + 15x2, �A2�

where �=0��=3� for d=0�d=2�, respectively. Then from
�47�, we have

I1
�/b =

�

2
�R +

9� − 15

2�15
ln�2�15R + 30x − 12�

−
1

2
ln� 2�R + 2 − 12x

x
� − ��

− 1�ln� 4�R + 18�x − 1� + 8

x − 1
� . �A3�

Otherwise I1
�=0 when Re��F��	��2+F�	�F��	�=0.

Next, define

I2
� =

b

2
� dx�1

x
+

1 − �

x − 1

�1 − 3x� , �A4�

where again �=0��=3� for d=0�d=2�, respectively. Then
I2

� /b,

=� 1
2 ln�	2� + �1 − ��ln�1 − 	2� − 3

2	2 + c1, for�− 1
�3

� 	 �
1
�3�

− 1
2 ln�	2� − �1 − ��ln�1 − 	2� + 3

2	2 + c2, for�	 � − 1
�3

& 1
�3

� 	� .
� �A5�

Match these two pieces up at 	2=1 /3. Without loss of gen-
erality, we take c2=0. Then for d=0, c1=−ln1

3 −2 ln2
3

�1.91, whereas for d=2, then c1=−ln1
3 +4 ln2

3 +3�2.477.
Finally, we need to evaluate the integral I4. From Eq. �40�

we can write

I4/b = − 3� dx ln��1 − 12x + 15x2 − �1 − 3x��

− 3� dx ln�b/2D�2� . �A6�

The first integral however in Eq. �A6� cannot be worked out
in closed form. It is also singular at the origin x=0�	2=0� so
a further renormalization would be required to render the
potential finite. We can take care of both of these problems
by approximating the integral by one we can work out in
closed form, namely,

J4/b = − 3� dx ln��15x − 6/�15 + �15x2 − 12x + 1�

=
− 3
�15

���15	2 −
6

�15

ln��15	2 −

6
�15

+ �R�
− Re�R	 . �A7�

This means we will put

I4/b → J4/b − 3 ln� �b�
2D�2
	2 �A8�

into the expression for the one-loop correction �V to the
potential, Eq. �41�.
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