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Controlling self-organized criticality in sandpile models
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We introduce an external control to reduce the size of avalanches in some sandpile models exhibiting
self-organized criticality. This rather intuitive approach seems to be missing in the vast literature on such
systems. The control action, which amounts to triggering avalanches in sites that are near to become critical,
reduces the probability of very large events, so that energy dissipation occurs most locally. The control is
applied to a directed Abelian sandpile model driven by both uncorrelated and correlated depositions. The latter
is essential to design an efficient and simple control heuristic, but has only small influence in the uncontrolled
avalanche probability distribution. The proposed control seeks a trade-off between control cost and large event
risk. Preliminary results hint that the proposed control works also for an undirected sandpile model.
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Since the seminal ideas of self-organized criticality (SOC)
[1] were applied to a simple sandpile model, this concept has
evolved to describe a much larger number of systems such as
earthquakes [2], evolutionary bursts [3], forest fires [4], rice
piles [5], and financial markets [6]. In SOC dynamics, energy
is injected at a constant low rate while dissipation occurs in
avalanchelike events of different sizes.

Human beings have always attempted to understand and
control nature. Within the SOC framework, “control” can be
understood as a series of man-devised actions to interfere in
the processes by which the system dissipates energy, in such
a way as to concentrate dissipation in moderate sized events
and reduce the occurrence probability of very large ava-
lanches. The difficulties to control large events such as earth-
quakes, hurricanes, floods, and so on depend both on the
magnitude of the stored energy as well as on the impossibil-
ity of interfering, in an appropriate way, in the dynamics of
energy dissipating events. However, under certain limits,
other events following the SOC statistics can be subjected to
human control. In particular, there are studies that deal with
the engineering problem of inducing snow avalanches in re-
stricted hill slides [7], where the purpose is to warrant safety
for ski riders. Although not explored yet, similar control may
reduce crisis caused by the break of large economic bubbles,
which arise due to asymmetry of information or speculative
behavior [8].

In this work, we show how it is possible to reduce the risk
associated with the occurrence of large avalanches in a SOC
system, by considering the simplest directed Abelian sand-
pile model proposed by Dhar and Ramaswamy [9]. The con-
trol scheme, devised to avoid large avalanches in a prese-
lected restricted area of the system, is divided into two
different stages. In the first one there is no direct intervention
in the system. The control just learns about the dynamics of
the system and acquires a global estimate of avalanche risk
in the preselected area. In the second stage, which starts
when such knowledge has been achieved, the control scans
the preselected region and identifies potentially large events
whenever the avalanche risk is high enough. Once a threat is
detected, an externally induced avalanche is triggered. The
scanning phase has a large cost of CPU time and computer
operations during numerical simulations, but it does not
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modify the model rules. Changes in the rules are restricted to
the intervention phase. The devised control heuristic takes
into account a simple balance between cost and risk repre-
sented by large events.

The research area on control strategies applied to specific
outputs of a complex system is of increasing interest. The
classical example is the chaos control methodology [10,11].
Other examples may be found in complex social systems
[12], complex biological networks [13], communication sys-
tems [14], and discharge plasmas [15].

The Dhar model [9] considers a two-dimensional square
lattice of NXN sites (i,j), with i,j=1,...,N. Each site
stores a certain amount z;; of mass units. At each time step,
the system is driven by two update rules: (a) addition rule: at
each time step, a mass unit is added to a randomly selected
site (k,€), so that z;¢— z¢+1. (b) Toppling rule: if z;;>z,
=1, then z;—2z;=2, zj1;—Zi1,;+1, and 2z —2; 0 +1.
The model is usually represented after performing a 5m/4
rotation of the standard square lattice, in such a way the site
(i+1,j+1) lies just below the site (i,j), and the x and y
directions are at 57/4 and 7m/4 angles with the horizontal
axis.

To speed up the avalanche size control, we may change
the nature of the mass deposition process. It amounts to con-
sider a weighted deposition probability similar to the one
presented in [16]: if at time ¢, a particle was deposited on the
site (i,/), the probability to select the site (k,€) to add the
particle at t+1 is

A
{al(i.)). (k. OB}

where 8(i,j),(k,€)] is the Euclidian distance between sites
(i,j) and (k,€), while A and B are constants related to the
normalization of P and to the largest distance between any
two sites on the system. The uncorrelated scenario corre-
sponds to choosing y=0 and A=1/N?, B=1. The correlated
deposition rules can be justified by the existence of a natural
time correlation in rain, snow, social, and financial events.
The model was implemented both for y=0 and y>0. Al-
though this change is not essential to the results, uncorrelated

P[(k,0)/(i.))]= (1)
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deposition causes a noticeable additional tracking cost. The
size control also takes advantage of the fact that the model is
directed.

It is convenient to distinguish between SOC systems that
require the presence of a “carrier” for the event propagation
(trees in forest-fire models) from those which do not (actual
sand or snow avalanches). Control mechanisms are more
easily to be implemented on actual system with carriers. Al-
though Dhar’s model assumes essential sandpile features, it
requires the presence of an excess mass along the avalanche
path, or the event dies out. Thus, the model dynamics is, in a
certain sense, similar to those for systems with carriers. On
the other hand, models that aim to describe systems without
such a feature, e.g., sliding snow avalanches with increasing
size, may not be suitable to be controlled along the proposed
lines.

In order to implement a useful strategy, it is necessary to
select a target size a,, which is a choice for the largest
natural avalanche that might occur in the system. Of course
a.>1; otherwise, we would have to release down hill the
added mass grain at each time unit. Therefore, consider the
two-dimensional system I" schematically represented by the
array

00 0 0 0 0O
00 0 0 0 0O
00T, T Tg OO
r=lo o L X R 00 2)
O O B, BBy OO
00 0 0 0 0O
00 0 0 0 0 0]

In Eq. (2), each element of I indicated by O, T;, T, Tg, L, X,
R, B;, B, and By represents by itself a fixed size square
region of sites, corresponding to smaller arrays of order
Ni X Ni. We assume here that avalanche size control takes
place inside the region X only. O indicates all matrix posi-
tions that are not in the Moore neighborhood of X. B, L, R,
and T label the following neighboring positions with respect
to X: bottom, left, right, and top. They play a special role in
our study, as they may trigger or just propagate avalanches
that reach the region X. They can bounce back or simply be
influenced by avalanches triggered inside X. The model dy-
namics is uniform over the whole lattice, so that sites on the
border of any region may receive (deliver) grains from (to)
the neighboring region.

A number of steps are required to control the avalanche
sizes inside X. An avalanche in X may arise when the depo-
sition process adds a particle in a site belonging to this re-
gion (internal avalanche) or as consequence of an avalanche
that started in another region of the system I' (external ava-
lanche). The mathematical modeling of this process (at least
in finite scale, far from the thermodynamic limit) is not
simple since it is based on a larger set of coupled stochastic
nonlinear difference equations.

Let R be the set of all regions in the system I'. In the first
control stage, one has to estimate the conditional probability
P/ (t+1/t) of occurring the addition of mass in region
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K e R at time 7+ 1 assuming that mass was added on a site in
region J € R at time ¢. In the second stage, such estimates
lead to the definition of a threshold value p. that decides
whether the control should be activated whenever a new
mass unit is deposited in a given region of I'. If at time ¢ the
mass is added on the region J € R and py,,(t+1/t) =p,, then
the control should be activated. Such an activation requires
one to check the effect of adding a unit mass at any of the
sites in the controlled region X, i.e., to follow any virtual
avalanche that would occur inside the region X if any of the
sites in X were actually chosen at random. In order to follow
the virtual avalanches, we consider an internal replica I'y of
the system, i.e., a restricted copy of the model that describes
its dynamics inside the region X, as if it was isolated from
the rest of I'. Based on this replica of X, if any added particle
in site (i,j) € X generates a virtual avalanche of size a=a,,
the control “explodes” the corresponding site of I'. This
means that a real avalanche is triggered by emptying the site
(i,/), which amounts to topple the single unit mass with 50%
of probability to the site (i+1,j) or to the site (i,j+1).
For instance, let X be given as follows:

0 0 1 1 I 1

Assume that the control is activated with a.=3. Then, the
control scans the region X seeking for danger of great ava-
lanches. Note that the only occupied site that may trigger an
avalanches larger than a, is the one at the first line, while the
occupied sites at the second and third lines are not danger-
ous. Therefore, the control explodes the critical site and, de-
pending on the side grain topples, one may find one either
the configuration X; (if the grain topples leftward) or X (if
in the other direction). In this example, in no other situation
the control would intervene in the system.

A fundamental point here is that the size of the virtual
avalanche observed in I'y is only a lower bound estimation
of the actual avalanches that take place in X. First, the replica
considers a priori that the internal avalanches are entirely
contained in X, not considering the influence that these ava-
lanches may receive from their Moore neighbors. Second,
the restricted model I'y clearly does not consider the external
avalanches that may be triggered in other areas of the system
I" and reach X. The balance between cost and risk considers
that our control is devised to avoid large avalanches within X
and that, due to the large size of I', it would be unacceptably
expensive to propose a scheme to follow all possible ava-
lanches over the entire system.

The control cost is measured by the number of sites that
were accessed to verify whether they are saturated or not and
by the number of explosions that have been carried out. If a
site is saturated, it is necessary to assess the size of the pos-
sible “virtual” avalanche. This requires the cost of simulating
the event for any site (i,j) € X that could become critical.
For the correlated process (1) and an appropriate threshold
value a., the cost control can be reduced. Indeed, for a
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FIG. 1. Probability distribution of avalanche sizes p(s) in region
X when Nr=128. Points were obtained by logarithmic size bins
over the whole range of s. In the inset, curves are for Ny=64 (dia-
monds) and 32 (triangles). Solid and hollow symbols denote uncon-
trolled and controlled systems, respectively. Both straight lines re-
sult from least-square fitting to the solid symbols in the main panel.
a.=4 for all three cases.

strongly correlated deposition process, there is only a small
probability that it will add particles in the region X at r+1 if
a unit mass was added to any of the other 40 regions of
system I that is not in the Moore neighborhood of X at time
t.

The choice of p. is based on the following robust heuristic
based on the neighbors of the region X:

Pc= min[PX/TL(l +1/1),  pxp(t+1/1),
Pxir(t+1/1),  px(t+1/1),
px(t+ /1), pyp (t+1/1),

pxp(t+1/1), pX/BR(t"' 1/1)]. (3)

Equation (3) was implemented in systems with 7 X 7 regions
[see Eq. (2)], with Ng=32, 64, and 128, and y=1 in Eq. (1).
Figure 1 compares the probability distribution function
(PDF) of avalanche sizes p(s) of the uncontrolled system
(solid symbols) with that of the controlled system (hollow
symbols). Note that s counts only the number of sites in X
that topple during the event and, correspondingly, p(s) iden-
tifies avalanches where at least one toppling site belongs to
X. Thus, in a given event, s can be smaller than the total
number s* of toppling sites in the whole system. While the
data of the uncontrolled system include internal and external
avalanches, those of the controlled system include internal,
external, as well as avalanches triggered by the control sys-
tem. The PDF of the uncontrolled systems seems to follow a
power law p(s) ~s~" with an exponent 7.~ 1.12, while the
PDF obtained for the original Dhar model is described by an
exponent 7=4/3. The straight line in Fig. 1 is the best fit
to the data for the system with Nz=128 in the interval
s €[10°,10%%]. It is clear from Fig. 1 that the same exponent
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FIG. 2. Complementary probability Q(s’ <s) when Nz=64 and
a.=4. Solid (hollow) symbols refer to uncontrolled (controlled) sys-
tem: triangles, diamonds, and squares indicate internal, external,
and control generated avalanches.

holds for the systems with Np=32 and 64 as their slopes are
roughly the same as for Np=128. Finite-size effects are made
evident by the position of the last two points, which deviate
from the straight line. Figure 1 also shows that the intro-
duced control is able to strongly reduce the probability of
large events. Graphs with similar features are obtained when
a.=8.

In Fig. 2, we show the complementary probabilities
0.(s"<s)=[yp.(s")ds’, where p,(s) describes the specific
avalanche distribution types, i.e., u indicates internal, exter-
nal, or control induced (explosion) avalanches. Figure 2,
where each individual p,(s) is normalized to 1, shows clearly
the effect of the external control on the size and on the type
of avalanches. Although we use the I'y replica to follow pos-
sible avalanches, the control is efficient to reduce both inter-
nal and external avalanches.

Figure 3 evaluates the efficiency of the control system by
the ratio f between the numbers of avalanches of the con-
trolled to the uncontrolled system. It makes clear that the
control system is actually reducing the number of large size
avalanches, i.e., its effect is not restricted to increasing the
number of small and medium size events. In Fig. 3, we also
illustrate the effect of increasing a.. It is intuitive that, if a, is
increased, the controller is less efficient to reduce the chance
of large avalanches, but larger values a. are clearly more
economical. This can be seen in the small s region in Fig. 3,
where the number of small avalanches of the controlled sys-
tem with a.=8 is smaller than that with a.,=4. To be more
precise, a,=4 and 8 require, respectively, 0.32 and 0.12 in-
terventions per time. In fact, the computational cost of the
scanning phase was empirically determined to have the same
order of growth as Nz and to have a smaller order of growth
than a.. Moreover, we have empirically found that the num-
ber of interventions has a smaller order of growth than Ny
and decreases almost linearly with a,.

The inset in Fig. 3 shows the performance of the random
control, which scans the system with the same frequency of
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FIG. 3. Ratio f between total number of avalanches in the con-
trolled and uncontrolled simulations. The number of time steps
(equal for both simulations) depend on the system size. Line types
indicate the following values of (Ng,a.): (64,4), solid curve; (64,3),
dashed curve; (32,4), dotted curve; and (128,4), dotted-dashed
curve. Decrease in f in the large size region indicates control suc-
cess. The increase in the value of f for very large avalanche sizes,
observed for some curves, is due to finite-size effects. The logarith-
mic scale in vertical axis shows that, in the inset, the performance
of random control (dashed curve) is much worse that that provided
by targeted control (solid curve). The inset also displays results for
the BTW model, with (Ng,a.)=(32,4) (dotted curve), showing that
the control works also very efficiently.

targeted control and blindly explodes some saturated sites.
The slight decrease in the number of large avalanches results
from the fact that, since only saturated sites are exploded by
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random process, some of them are correctly chosen. How-
ever, the random control performs much worse for any val-
ues of Ny and a,.

It is still worth commenting that, in the uncorrelated depo-
sition process, the transition probability from any region
I T to any region J €I is the same and, in our case, given
by 1/49. If p.>1/49, the controller will never scan the sys-
tem, but if p.<<1/49 it will do at each time step and, con-
trary to what we observed above, the scanning cost would be
very high. Our simulations have shown that controlling a
process with correlated or uncorrelated deposition presents a
very similar performance in the risk reduction, as long as p.
is sufficiently small. This happens because both of them will
intervene only when there is a risk of virtual avalanche larger
than a,.

Although we have considered Dhar’s model as a starting
point for studying the problem of controlling systems that
exhibit SOC, results from preliminary simulations in Fig. 3
suggest that these ideas also work for undirected systems
such as the Bak-Tang-Wiesenfeld (BTW) model [1]. In that
case, the undirected nature of the model causes a much larger
number of small and medium size explosion avalanches.

Our results show that a simple control system reduces the
risk of large avalanches in SOC models. Interesting paths to
be followed are (1) to propose a control scheme that does not
depend on the simulated virtual avalanches, but only on
some properties of the internal structure of the system that
can be used as early-warning signals [17,18], and (2) to ap-
ply this scheme to real SOC systems such as the one pre-
sented in [19].
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