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The thermodynamic behavior of a continuous homopolymer is described using the Wang-Landau algorithm
for chain lengths up to N=561. The coil-globule and liquid-solid transitions are analyzed in detail with
traditional thermodynamic and structural quantities. The behavior of the coil-globule transition is well within
theoretical and computational predictions for all chain lengths, while the behavior of the liquid-solid transition
is much more susceptible to finite-size effects. Certain “magic number” lengths �N=13,55,147,309,561�,
whose minimal energy states offer unique icosahedral geometries, are discussed along with chains residing
between these special cases. The low temperature behavior near the liquid-solid transition is rich in structural
transformations for certain chain lengths, showing many similarities to the behavior of classical clusters with
similar interaction potentials. General comments are made on this size dependent behavior and how it affects
transition behavior in this model.
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I. INTRODUCTION

The simulation of flexible homopolymers has been a topic
of vigorous research over the past decade, with studies vary-
ing from investigations of single chains to the interaction of
chains with surfaces or pores. In studies of single chains, the
models have varied as much as the physical situations, with
some being on-lattice �1,2�, some in the continuum �3–9�, as
well as bond-fluctuation lattice models �10–12�. The level of
interest is due in part to the number of interesting techno-
logical and biological applications, and in part from the
availability of extended ensemble simulation methods. These
methods allow efficient sampling of all thermodynamic be-
havior where more traditional methods are unable to probe
the rough energy landscapes associated with these systems
�13�. Regardless of the model and method used, certain char-
acteristic features remain consistent: As the temperature of a
distended, single chain is decreased, a collapse transition
from an unwound coil to a globular state �coil-globule� oc-
curs, followed by another transition from a liquid-globule to
a “solid,” compact globule �liquid-solid�. Recent studies
have attempted to illuminate the behavior of these two tran-
sitions using Wang-Landau sampling. One set of studies us-
ing the bond-fluctuation model �10,11�, and another employ-
ing off-lattice simulations �6,7�, have analyzed these
transitions for a number of different chain lengths. Notice-
able discrepancies resulted in thermodynamic properties and
it was unclear whether these were due to differences between
the models or in the details of the application of the method.
As we began our own work �14,15�, we found that our re-
sults were not in good agreement with those seen in the
previously mentioned off-lattice case, particularly for the
qualitative behavior of the liquid-solid transition.

In addition, lattice models using only nearest-neighbor in-
teractions have further highlighted the complexities of this
transition, showing that behavior does not develop smoothly
with chain length �1,2�. One might think simulating with
long range interactions in the continuum would cause this
behavior to decrease or disappear, however, subtle complexi-
ties near the liquid-solid boundary remain. Recent studies

using multicanonical simulations �3,4� compared classical
Lennard-Jones clusters and their own continuous homopoly-
mer equivalent, highlighting the behavior of chains near the
liquid-solid transition. A number of unique, chain length de-
pendent, transformations can occur in this region, making the
finite-size analysis of the liquid-solid transition much more
complicated than previously thought. These finite-size effects
have an excellent correlation with the behavior of classical
clusters, e.g., the “magic number” set �N=13,55,147,
309,561, . . . ,�, whose minimum energy states all have icosa-
hedral geometries. This magic number behavior, along with
other unique geometries associated with particular chain
lengths, has also been shown to occur in simulations of ho-
mopolymers �3,4,9�. In cluster simulations, the global mini-
mum energy structures play an important role in transition
behavior near the liquid-solid transition, and with the above
correlations with homopolymers, these types of effects must
be considered.

In this article, we present results of Wang-Landau simu-
lations of flexible homopolymers for chain sizes up to N
=561; including detailed discussion of the simulation and
analysis methods. First, we focus on the general behavior of
our largest chain lengths, analyzing the coil-globule and
liquid-solid transition as has been done in previous studies.
We then focus on a particular set of chain lengths between
the N=13 and 55 magic numbers. This set exemplifies the
finite-size effects associated with classical Lennard-Jones
clusters. Estimates of the infinite-chain transition tempera-
tures are provided when appropriate, along with discussion
of finite-size effects seen for many chain lengths. We also
make qualitative and quantitative comparisons with a few of
the most recent studies of homopolymer behavior.

II. MODEL

A chain of N identical monomers is defined in continuous
space, with each monomer having bonded and nonbonded
interactions. Nonbonded monomers interact via a truncated-
shifted Lennard-Jones potential given by
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UNB�rij� = �ULJ�rij� − ULJ�rc� , 0 � rij � rc,

0, otherwise,
� �1�

where

ULJ�rij� = ��� �

rij
	12

− 2� �

rij
	6
 . �2�

rij is the distance between a pair �i , j� of nonbonded mono-
mers, � is the well depth, and � is the distance at which the
potential energy has its minimum. Dimensionless units are
used, where �=1, �=2−1/6, and the interaction cutoff dis-
tance rc is 3�.

Interactions between two bonded monomers consists of a
combination of finite extensible nonlinear elastic �FENE�
�16,17� and Lennard-Jones potentials

UB�li� = �UFENE�li� + ULJ�li� , 0 � li � Ro,

0, otherwise,
� �3�

where the Lennard-Jones potential ULJ�li� is of the same
form as described above and the FENE potential UFENE�li� is
given by

UFENE�li� = − 0.5kRo
2ln�1 − �li/Ro�2� . �4�

Ro is the finite extensibility, k is the stiffness constant, and li
is the bond length. Dimensionless units are again imple-
mented, where Ro=1.2 and k=2. Analyzing the derivative of
UB�li� with the above values allows this potential to be set
such that its minimum is zero and occurs at an equilibrium
value lo=1. Note, the parameter � found in the ULJ�li� term
in Eq. �3� is used to adjust the distance at which the mini-
mum occurs and it has a different value than that applied in
Eq. �2�.

All parameters for UNB and UB were chosen such that the
minima of both these potentials occur at a dimensionless
distance of 1. For comparison, these potentials are plotted in
Fig. 1. Other recent studies of continuous homopolymers
�3,4,6,7,18� have used an alternate implementation of UB

compared to that described above. In these studies, the non-
bonded Lennard-Jones potential is still applied to bonded
monomers, meaning that their models contain N−1 more
nonbonded interactions compared to our model. Results are
still comparable since these extra interactions are simply su-
perimposed on an already dominant bonded interaction.

III. METHODS

A. Wang-Landau sampling

The temperature dependence of thermodynamic proper-
ties can be calculated from the partition function, which, in
terms of a density of states g�E�, is

Z�T� = �
E

g�E�e−E/kBTdE � 

E

g�E�e−E/kBT, �5�

where g�E� is the density of states, E is the energy range of
a particular system, T is the dimensionless temperature, and
kB is Boltzmann’s constant. The �E represents the continuous
representation, while the 
E represents an approximation of-

ten used in simulations �see below�. While g�E� is generally
quite difficult to determine, the Wang-Landau algorithm is
now known to be quite efficient in iteratively estimating the
density of states g�E� for both discrete and continuous dis-
tributions of energy. Details used in the iteration process can
be found elsewhere �19,20�. In this study, the modification
factor is reduced to ln�f�→10−6 and we require a flatness of
p=0.4 for the histogram, where p is the minimum histogram
entry divided by its average. We have chosen ln�f�→10−6

based on other studies of similar systems �5,6,10,11,21� and
also through our own testing of the effects of varying this
parameter �15�. Recent studies �1,22� have shown that ln�f�
→10−6 can be insufficient, meaning that the modification
factor must be reduced further �or in a different way all to-
gether �23,24��. For the majority of our chains, we found
very little improvement in results when reducing the modifi-
cation factor below 10−6, with the exceptions being our larg-
est chains, N=500 and 561, where fluctuations in thermody-
namic properties were improved by reducing ln�f�→10−7.
However, these two chains pose the most challenges to our
simulation techniques and general conclusions regarding
ln�f� should not be taken from these cases alone. Our choice
of flatness criteria was based on our own testing and offers a
balance between the most stringent case �p�0.8� and cases
where little or no flatness criteria is used at all �p�0.1�. In
Fig. 2, the logarithm of the density of states is plotted versus
energy for chain lengths ranging from N=50 to N=500. Each
curve is the result of a single Wang-Landau simulation and
the maximum of each curve is set to zero for clarity. The
most noticeable aspects of Fig. 2 are the large differences in
relative height between the highest and lowest energy states.
The challenges associated with analyzing these data will be
discussed shortly.

Another feature of Fig. 2 is that the minimum energy
�Emin /N� is set according to chain length, while the maxi-
mum energy �Emax /N� is set to Emax /N=3.0 for all chain
lengths. In our previous studies �14,15�, we discussed how
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FIG. 1. �Color online� Bonded and nonbonded potentials versus
the distance between two monomers. A harmonic potential is plot-
ted as a reference for the bonded potential �FENE-Lennard-Jones
combination�. The nonbonded potential is plotted to a distance of
only 1.5 for clarity �the actual cutoff occurs at 3�.
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the energy range over which the random walk is performed
can dramatically affect the location of transitions in thermo-
dynamic quantities, leading to inaccurate estimations of tran-
sition temperatures. Since the minimum energy and transi-
tion temperatures vary with chain length, care was taken to
run a number of different simulations, varying the energy
range for each chain �14,15�, with our goal being to attain
consistent behavior for each chain. Energy range effects have
been seen in other studies as well �11� and are likely to be the
leading contributor to inconsistencies seen in recent work on
continuous homopolymers �6,7�. Use of lower Emin /N values
requires longer CPU times; hence, all minimum energies are
set both to allow determination of low temperature thermo-
dynamic behavior and to consume reasonable amounts of
CPU time. The behavior of the coil-globule transition is con-
sidered in the same way, but this transition was found to be
less susceptible to energy range effects �15�. A constant value
of Emax /N=3.0 was found to be appropriate.

Equation �5� requires a continuous energy range, but in
practice, the energy range must be discretized such that E is
divided up into a number of energy bins Ei= idE+Emin,
where dE is the binning resolution, i is the bin index, and
Emin is the minimum energy sampled. Typically, bin widths
dE=0.1 were used for chain lengths �100, while chain
lengths �100 were simulated with dE=1.0. Exception was
taken with the largest chain lengths, N�500, where dE
=2.0. A number of binning resolutions were used, and for the
range discussed above, we found that the greatest effect was
on computational efficiency, where the number of bins is
proportional to both N and CPU time. Minor differences in
thermodynamic quantities can be observed when varying dE,
but these are generally within statistical errors. An important
note is that implementing a large number of bins can lead to
excessively large CPU times; the nature of the algorithm is to
visit all binned energies a significant number of times in each
simulation. Therefore, we attempted to keep the number of
bins in each simulation from growing larger than �4000, but

in some cases this could not be avoided. Similar descriptions
of the implementation of the Wang-Landau algorithm in con-
tinuous systems can be found elsewhere �21,25,26�. All
simulations were run on a single CPU �one core� using the
KISS random number generator �27� and error bars were
determined from Jackknife analysis of results from multiple,
independent runs. The results were unchanged when tests
with other random number generators were performed.

Structural quantities were also calculated, including the
radius of gyration, the end-to-end distance, and the core den-
sity. For example, the radius of gyration is

Rg
2 = 


i

N

�r�i − r�cm�2/N , �6�

where the sum is over all N monomers, �r�i−r�cm� is the rela-
tive separation between monomer i and the center of mass of
the chain. Ideally, one of these quantities would be incorpo-
rated as a second sampling direction �25�, but this becomes
unrealistic when multiple structural quantities are desired.
Therefore, we calculated the average value of these quanti-
ties as a function of energy, e.g., Rg

2�E�, Re�E�, or �̄c�E�. This
gives the canonical form

�Rg
2��T� =

1

Z�T�
E

g�E�Rg
2�E�e−E/kBT, �7�

where Z�T� is again the partition function for a given tem-
perature, the 
E is over all energies E, g�E� is the “final”
density of states, Rg

2�E� is the average value of the radius of
gyration for each energy, and the exponential is the Boltz-
mann factor. This approach has been used in other studies as
well �11,12�.

The average values of these structural quantities are cal-
culated after each simulation is complete. Because of ineffi-
ciencies in sampling at low values of f �15,23�, a saved copy
of g�E� from a previous iteration �around ln�f��10−3� is
sampled with normal Wang-Landau transition rates. Then,
while resampling this iteration, we calculate the average val-
ues of structural quantities for each bin visited, making these
calculations whether the new trial state is accepted or re-
jected, and requiring that each bin be visited at least 106

times. Using Eq. �7�, these structural averages are then ap-
plied to the final g�E�, which is unaffected by this procedure.
In Fig. 3, the average squared radius of gyration is plotted
versus energy per monomer. These data show the general
collapse behavior of this system, where at high E /N the
chain is unwound, and at low E /N the chain becomes more
compact. These curves are all monotonic, which is most dis-
cernible at high E /N, where the value of Rg

2�E� increases
systematically with N. To check the accuracy of our work,
we also applied this technique to the final iteration of g�E�
instead of a previous iteration �ln�f��10−3�, with the only
differences being that using the final iteration required longer
simulation times. We also kept track of the structural aver-
ages over entire simulations and found no differences in
these techniques.
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FIG. 2. �Color online� The relative density of states versus en-
ergy per monomer for a number of chain lengths. The maximum of
each curve is set to zero for plotting purposes. Values for the highest
and lowest energy states for the longest chain �N=500� differ by
�1000 orders of magnitude. �Each curve represents a single run
and the majority of symbols were omitted for clarity.�
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B. Analysis

All thermodynamic and structural quantities are averaged
over multiple, independent simulations �typically 20�; how-
ever, care must be taken when averaging data whose expo-
nent value can be out of the range of double precision arith-
metic. The N=500 chain, for example, can easily give an
underflow when working with g�E�. In order to avoid this
issue �which typically occurs for sizes N�100 in this study�,
we calculate thermodynamic and structural properties for a
given temperature T using only the relevant portion of g�E�,
which is found by analyzing the canonical probability distri-
bution P�E ,T�. This analysis allows us to sum over only the
most important portion of each g�E�, minimizing the sum
over the partition function �see Eq. �5��, hence, minimizing
the underflow issues. Two criteria are applied when analyz-
ing the importance of g�E� for a particular T, both consider-
ing the relative weight of P�E ,T� with the maximum of
the distribution Pmax�E ,T�. The first is that for each
bin considered in the 
E, the relative weight must be
P�E ,T� / Pmax�E ,T��10−16. This restriction ensures that ex-
tremely small contributions to Z�T� are not considered, e.g.,
low temperatures where the behavior of P�E ,T� becomes
similar to that of a delta function, there is no need to sum
over the entire g�E�. The second criterion ensures that each T
has a complete distribution, where P�E ,T� / Pmax�E ,T�
�0.001 on both sides of the distribution. This restriction
avoids the inclusion of thermodynamic values near the
boundaries where often g�E� can be incomplete due to en-
ergy restrictions �a similar scheme was implemented in Ref.
�6��. When considering k multiple runs, each distribution
Pk�E ,T� is analyzed and their relevant energy range stored.
The maximum energy range encompassing all of these indi-
vidual ranges is then applied to the summation in Eq. �5�.
Each g�E� is then normalized within this newly defined range
and these curves are averaged, giving g�E� for that range.
Thermodynamic and structural quantities are then calculated
using a resolution of dT=0.001 for temperatures between

0.001�T�5.0. The second constraint gives an applicable
temperature range that mainly depends on Emin /N. In this
study, the lowest applicable temperature is for the smallest
length �N=10� and is T=0.036. This lower limit increases
with N, and is T=0.511 for our largest chain �N=561�. Care
is taken to incorporate as much of the low temperature be-
havior as is possible within our limits of CPU time. Thermo-
dynamic properties are not only difficult to determine at
these temperatures but also exhibit rich phenomena in ho-
mopolymers, heteropolymers, and clusters �1,3,4,22,28,29�.
The error bars of all quantities are calculated using a Jack-
knife analysis �30�. Quantities such as the heat capacity CV
are calculated after g�E� is averaged.

Recent studies of single homopolymer chains �6,7,10,11�
have all reported transition temperatures for the coil-globule
transition using Wang-Landau simulations. Another study us-
ing lattice models and multicanonical simulation techniques
gave an in depth analysis of this transition �2�. In each study,
the following size dependence was considered:

T�N� − T	 = a1/�N + a2/N , �8�

where T�N� is the transition temperature for each chain
length and T	 is the 	 temperature �31�.

An infinite-chain length prediction of the liquid-solid
transition has also been offered �10,11�,

T�N� − Tls = a/N1/3, �9�

where T�N� is again the transition temperature for each chain
length and Tsl is the liquid-solid transition temperature for an
infinite chain. Infinite-chain estimates have been reported
�6,7,10,11� for the liquid-solid transition, but with the recent
understanding of chain length dependencies �2–4� in these
types of systems, more care must be taken when analyzing
this transition. One question that has also been addressed in
many of the recent homopolymer publications �2,6,7,10� is
whether these two transitions merge in the infinite-chain
limit. Simulations of the bond-fluctuation model �11� origi-
nally showed these two transitions approaching each other,
but a later study �10� showed that by extending the range of
this interaction, the transitions remained separated in the
infinite-chain limit. Studies of lattice homopolymers �1,2�
have also shown these two transitions to remain separated,
along with simulation of continuous models �3,4,6,7,14,15�.
Whether these two transitions merge or remain separated is
still a relevant issue. A recent study, detailing how crystalli-
zation may prevent the collapse if the range of the attractive
part of the interaction is sufficiently short, has been used to
model protein phenomena �5�.

IV. SIMULATION RESULTS

A. Heat capacity

In Fig. 4, the heat capacity is plotted versus temperature
for chain lengths between 100�N�500 �heat capacity was
chosen for visual clarity�. Two distinct features are observed,
the most discernible being sharp �weakly rounded first-order�
peaks at low temperatures ��0.3–0.6� representing the
liquid-solid transition, and the other being shoulders at
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FIG. 3. �Color online� The radius of gyration versus energy per
monomer for chain lengths 100, 200, 300, 400, and 500. All curves
are monotonic at both low and high E /N. �The majority of symbols
were omitted for clarity and error bars are smaller than the symbol
size.�
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higher temperatures ��1.75–2.75� indicating the coil-
globule transition. The two transitions are well separated,
with no indication that they would merge in the infinite-chain
limit �in view of the arguments �5,10� about when such a
merging could occur, it is not expected for the present
model�. The region between these two transitions is also of
interest since one study claims that a liquid-liquid transition
occurs �6,7�, while another has hypothesized that “interesting
behavior” may occur �10�. Our results show no evidence of a
third independent transition, and analysis of structural quan-
tities supports this conclusion. The heat capacity, together
with visualizations of the homopolymer, describes the gen-
eral trends discussed previously, i.e., as T decreases, a single
chain undergoes a coil-globule transition, followed by a
liquid-solid transition. However, we will show that certain
chain lengths exhibits nonmonotonic finite-size effects in the
liquid-solid temperature regime. Estimation of infinite-chain
behavior will be discussed in detail later in this section.

B. Structural quantities

In Fig. 5, we plot the squared radius of gyration per
monomer versus temperature, along with its derivative with
respect to T, for the same chain lengths considered previ-
ously. The radius of gyration behaves monotonically at both
low and high temperatures, showing the relation between
overall size and chain length. The derivatives with respect to
temperature provide more illuminating results. Temperatures
between �0.3–0.6 show five sharp, individual peaks, each
representing the liquid-solid transition for a particular chain
length. The temperatures at which these peaks occur corre-
spond with those seen in Fig. 4. Clear indications of the
coil-globule transition are the most noticeable feature, indi-
cated by the large, broad peaks between temperatures of
�1.75–2.75. The similarity between the N=400 and N
=500 curves suggests that we are reaching chain lengths in
the asymptotic regions, however, we are also pushing the

limits of our ability to sample these large systems. The
liquid-solid peaks however remain well separated, but are
still less distinguishable compared to the coil-globule peaks.
The radius of gyration gives an excellent description of the
coil-globule transition, as does the end-to-end distance,
which is not shown because the two quantities give nearly
identical results. However, another quantity is perhaps
needed in order to better characterize the liquid-solid transi-
tion.

One such quantity is the core density, which is plotted in
Fig. 6, along with the negative of its derivative with respect
to T, for the chain lengths previously considered. This quan-
tity counts the number of monomers within a spherical shell
whose origin is at the center of mass and radius is the maxi-
mum interaction distance of the nonbonded potential, 3�.
For chain lengths �200, large peaks similar to those seen in
the heat capacity form in the derivative at T�0.3–0.6, giv-
ing clear indications of the liquid-solid transition. Since this
quantity simply counts the number of monomers within an
interaction sphere around the central monomer, the N=100
length chain has only a small peak, due to the fact that nearly
all monomers are already within the interaction sphere at the
temperature where the liquid-solid transition occurs. The
largest chains show very similar behavior in the core density
since they are simply reaching the limit of the number of
monomers that can be packed into this single interaction
sphere. However, the derivatives still describe the liquid-
solid transition quite well, where large peaks can be seen
steadily increasing in height and temperature as N increases.
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FIG. 4. �Color online� The heat capacity for chain lengths 100,
200, 300, 400, and 500. Two noticeable features appear: large peaks
at low T representing the liquid-solid transition, and shoulders at
high T representing the coil-globule transition. Each curve is the
average of at least 20 independent simulations, where the error bars
are calculated using a Jackknife analysis �dT=0.001�.
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FIG. 5. �Color online� The radius of gyration �top� and its de-
rivative �bottom� versus temperature for chain lengths 100, 200,
300, 400, and 500. Features that were seen in the heat capacity are
also present in this figure. The derivative indicates the coil-globule
transition by large, broad peaks at high T. The liquid-solid transition
is also represented at low T, but the peaks are much smaller in
height and less distinguishable. �The majority of symbols were
omitted for clarity and error bars are smaller than the symbol size,
dT=0.001.�
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Furthermore, there are indications of the coil-globule transi-
tion at high T, but they are not as discernible as those seen in
Fig. 5.

The results for the chain lengths discussed so far offer a
qualitative description of the collapse behavior in our system
and can be compared directly with work seen in other ho-
mopolymer studies using similar chain lengths. Results from
the bond-fluctuation model �10–12� show qualitative agree-
ment with the behavior of our model, while results from
off-lattice models remain mixed �3,4,6,7�. The comparison
with off-lattice cases is especially important, particularly
since our models are so similar. Quantitative comparisons
will be made later in this section.

C. Transitions and clusters

All of the quantities discussed above offer insight into the
nature of the coil-globule and liquid-solid transitions. Ana-
lyzing these quantities gives the location of transition tem-
peratures Ttr�N� for each chain length, which then leads to
estimations of infinite-chain transition temperatures. How-
ever, a more detailed resolution in N reveals complex finite-
size effects associated with the liquid-solid transition. These
effects must be addressed before estimates of the infinite-
chain transition temperatures can be calculated. In Fig. 7,
transition temperatures Ttr�N� �top� determined from the spe-
cific heat, along with the subsequent peak values CV�N� �bot-
tom�, are considered for a number of chain lengths between
10�N�561 �numerical data can be found in Table I�. For

such small systems in the canonical ensemble, no sharp
phase transition can occur, and only a rounded transition re-
gion appears. By “transition temperature” we then denote the
temperature at which the specific heat maximum occurs,
marking the center of the region. Three distinct trends in
peak behavior can be found in these data: the coil-globule
transition, and two transitions found in the liquid-solid re-
gime. The coil-globule transition is represented by filled
circles, the liquid-solid transition is represented by filled and
unfilled squares, and the solid-solid transition �not reported
in many previous studies �6,7,10,12� with which we have
compared� appears for chain lengths 30�N�54 and is rep-
resented by unfilled triangles. The discussion begins by con-
sidering the coil-globule transition, which is found by ana-
lyzing the shoulder seen at high temperatures in the specific
heat �see Fig. 4�. In Fig. 7, each chain length has an estimate
of Ttr and fluctuations are small relative to neighboring chain
lengths. The largest fluctuations are seen for the largest chain
lengths, where the shoulders representative of this transition
can become increasingly difficult to analyze and error be-
comes more relevant. The coil-globule transition has been
analyzed in detail in other studies �2,6,7,10,12� of homopoly-
mers and our results compare qualitatively well with those
works. However, the quantitative description of the infinite
chain still differs according to model �which will be dis-
cussed shortly�.
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FIG. 6. �Color online� The core density �top� and its derivative
�bottom� versus temperature for chain lengths 100, 200, 300, 400,
and 500. Features that were present in previous figures are also
found here, namely, peaks at low T indicative of the liquid-solid
transition and broad peaks �similar to the shoulder seen in the spe-
cific heat� at high T indicative of the coil-globule transition. �The
majority of symbols were omitted for clarity and error bars are
smaller than the symbol size, dT=0.001.�
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FIG. 7. �Color online� Transition temperatures �Ttr� from the
specific heat �top�, along with the corresponding specific heat
�CV /N� values �bottom�, plotted versus chain length N. The coil-
globule �circles�, the liquid-solid �squares�, and solid-solid �tri-
angles� transitions are all represented. The coil-globule and liquid-
solid transitions are present in nearly all chain lengths, while the
solid-solid transition appears between 30�N�54. The small gap
between 42�N�54 is a result of the difficulty in distinguishing
between the liquid-solid and solid-solid transition. This plot has
striking similarities compared to recent studies of classical Lennard-
Jones clusters �Ref. �28,29,32��. �Error bars are on the order of or
smaller than the symbols.�
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The most striking feature seen in Fig. 7 is the low tem-
perature behavior in the “liquid-solid” region. The belief re-
garding various homopolymer models has been that these
systems undergo only two distinct transformations, namely,
the coil-globule transition and a single liquid-solid �crystal-
lization� transition. What was found by Schnabel and co-
workers �3,4�, and verified by our results, is that for certain
chain lengths, a number of unique structural transformations,
not limited to a single crystallization, can be found at low
temperatures. The data plotted in Fig. 7 for low temperature
transitions �T�0.6� has remarkable similarities to the behav-
ior of Lennard-Jones clusters �28,29,32,33�, and Schnabel
and co-workers �3,4� have confirmed that there is a near
one-to-one correspondence between these two systems. To
fully understand the behavior of our model, general features
of classical Lennard-Jones clusters must be considered.

In Table II, we list features which have been reported in
recent cluster studies �28,29,32� regarding the ground state
and transition behavior of cluster sizes up to N=309 �these
features are also present in �3,4� with only a few exceptions�.
The magic number set N=13, 55, 147, 309, and 561 all have
icosahedral geometries and smaller magic number configu-
rations remain as cores of the longer chains. The specific
heat versus temperature from our own homopolymer simula-
tions of the magic set lengths can be found in Fig. 8 �numeri-
cal data can be found in Table I�. These chains offer the

previously expected transition behavior, namely, a single
liquid-solid transition and a coil-globule transition. However,
they also account for the plethora of unexpected ground state
and transformation behaviors occurring for chain lengths be-
tween these numbers. The general descriptions of anti-
Mackay and Mackay arrangements �32,34,35� are used to
classify the ground state configurations of clusters. In Fig. 9,
the anti-Mackay and Mackay overlayers are represented on
one face of a N=13 icosahedral core. These terms describe
packing in the outer shell of a cluster, where typically an
icosahedral core �based on the magic set� forms and addi-
tional monomers begin arranging on its surface. In the
Mackay case, enough monomers are present that the next
layer of a magic number icosahedron forms. Anti-Mackay
packing can form a variety of geometries where monomers
locate the most energetically favorable place to attach to the
core’s surface. In clusters, sizes between 14�N�30 have
anti-Mackay ground states and a single peak associated with
melting is visible in the specific heat. At N=31, the ground
state behavior changes to the Mackay type and a peak forms
well below the melting transition. This new peak corre-
sponds to a transformation in the outer shell of the cluster

TABLE II. Table of transformations seen in studies of classical
Lennard-Jones clusters �Refs. �28,29,32�� for various cluster sizes.
These transformations are typically identified using peaks in the
specific heat. A recent study of homopolymers �Refs. �3,4�� with
Lennard-Jones interactions revealed striking similarities. The peaks
identified here are found near the liquid-solid transition.

Cluster size Ground state Peaks in CV

13,55,147,309 Complete icosahedral 1

14�N�30 Anti-Mackay 1

31�N�54 Mackay 2

56�N�81 Anti-Mackay 1

82�N�146 Mackay 2

Exceptions

38,75–77 Non-icosahedral 2

98,102–104
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FIG. 8. �Color online� The specific heat versus temperature for
the magic set of chain lengths, where minimum energy configura-
tions for each chain correspond to an icosahedral geometry. These
chain lengths offer two generic features: a shoulder in CV /N indica-
tive of the coil-globule transition �high temperatures� and a first-
order like peak indicative of a liquid-solid transition �low tempera-
tures�. They also offer a basis for understanding the behavior of
chain lengths between two magic lengths.

TABLE I. Liquid-solid �Tls� and coil-globule �Tcg� transition temperatures along with corresponding
CV /N values for magic number chain lengths. Data corresponds to Figs. 7 and 8. �Error estimates were
calculated using a Jackknife analysis.�

N Tls CV�Tls� /N Tcg CV�Tcg� /N

13 0.33679
0.00007 5.037
0.003 0.9230
0.0005 1.3294
0.0009

55 0.3614
0.0003 13.31
0.03 1.799
0.001 1.145
0.001

147 0.425
0.001 15.7
0.4 2.258
0.002 1.101
0.003

309 0.5024
0.0006 26.4
0.2 2.542
0.006 1.071
0.009

561 0.556
0.002 50.0
1.7 2.65
0.01 1.13
0.03
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and is representative of a change from anti-Mackay to
Mackay states �aM/M�. This transition has been well studied
in cluster systems �29,32,36�, but has not been considered in
great detail in homopolymer studies until recently �3,4�.

In Fig. 7, we see very similar behavior compared to the
cluster studies ��28,29,32�� discussed above, as well as the
recent homopolymer study �3,4�. In particular, chain lengths
between 30�N�42 exemplify the finite-size effects seen in
these studies. Chains below this range have a single peak

representative of the liquid-solid transition �unfilled squares�,
the most prominent being the magic length N=13, whose
ground state is a perfect icosahedron. At N=30, a small peak
forms �open triangles� and it continues to grow as N in-
creases, eventually merging with the liquid-solid transition.
This is contrary to both recent cluster studies and Schnabel et
al., where in those studies the small peak indicative of a
transformation in the outer shell of the homopolymer appears
for N=31 rather than N=30 �which we currently attribute to
the minor model differences discussed in Sec. II�. In Fig. 10
we provide more detailed evidence of this behavior by plot-
ting CV /N and d�Rg

2� /dT as functions of temperature. In our
work, the solid-solid �aM/M� transition first appears for N
=30 at T=0.1 in both quantities. Chain lengths 30�N�34
offer the most discernible indication of the solid-solid
�aM/M� transition and the liquid-solid transition existing in a
single chain. As N increases, the solid-solid transition be-
comes more defined, while the liquid-solid transition be-
comes broader, appearing to eventually overcome the solid-
solid transition near N=42. A shoulder still exists for many
larger lengths in the 42�N�55 range, but this is not easily
analyzed within our current framework. The merger of these
two transitions is an interesting, but also challenging topic.
Cluster simulations �29,32�, as well as the recent homopoly-
mer study �3,4�, have given details regarding behavior in this
region and our results are in good agreement. Cluster studies
have shown these two transitions to merge just below the
N=55 Mackay icosahedron �37�, where the Mackay ground
states become much more favorable compared to the anti-
Mackay states as they approach N=55. What these chain
lengths indicate, along with the studies discussed above, is
that the interplay between Mackay and anti-MacKay states
can lead to significant thermodynamic behavior.

An important issue brought about by these effects is
whether or not these types of transformations occur in larger
chain lengths. The range of sizes between the two magic
number N=55 and 147 have shown similar Mackay and anti-
Mackay structure in the outer shell of particular cluster sizes
�as represented in Table II� and Schnabel and co-workers
�3,4� have found similar behavior in this range �with a few
exceptions�. This becomes more interesting for the next
magic number range 147�N�309, where in Fig. 7 one

FIG. 9. �Color online� Illustration of Mackay and Anti-Mackay packing, along with minimum energy states for N=13, N=40, and N
=55. N=13 is the first icosahedral geometry in the magic set, and N=55 is the next. The N=40 state represents a Mackay ground state, where
a N=13 icosahedral core can be found at its center. This illustration represents a class of minimum energy states where the outer layer
surrounding the icosahedral core begins forming the overlayer for the next magic number chain length. �The central monomer is red, the first
monomer layer is yellow, and the outer monomer layer is blue.�
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FIG. 10. �Color online� The heat capacity �top� and the deriva-
tive of the radius of gyration �bottom� versus temperature for chain
lengths between 13�N�55. These chain lengths offer unique be-
havior in the liquid-solid regime, where for some chains two peaks
can be seen in the heat capacity and a peak and shoulder in the
radius of gyration. Each curve is shifted by an arbitrary amount for
visual clarity. �dT=0.001�
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might expect these effects to have become insignificant be-
cause of core-surface arguments. However, cluster studies
still show signs of multiple transitions at low temperatures.
In fact, one study �35� has shown two-peak behavior within
the magic number N=309. This implies that these effects
may continue well past the range of chain lengths considered
in most recent studies. This could all be further complicated
by transformations in larger clusters �1690, where systems
prefer decahedral geometries over icosahedral �3,4,38�. The
results shown in Figs. 7 and 10 reveal that transition behav-
ior in homopolymers is not as ideal as has been presented in
previous studies. The coil-globule transition is still rather
consistent, but the liquid-solid transition is far more suscep-
tible to finite-size effects. Real polymer chains are much
more complicated than the present model, and optimal pack-
ing near the liquid-solid transition will subsequently depend
on chemical structure.

In Fig. 11, the predictions discussed in the methods sec-
tion are considered, where Eqs. �8� and �9� are applied to
results �seen in Fig. 7� from the analysis of the specific heat
and the radius of gyration. The coil-globule transition be-
haves as is expected, and the fit is seen to coincide with the
data for all chain lengths. In Table III, we present the fitting
results for the coil-globule transition using both specific heat
and radius of gyration data, where the infinite-chain predic-

tion of the 	 temperature is T	=3.156
0.007 for CV /N and
T	=3.176
0.004 for Rg

2. This fit was applied to chain
lengths between 10�N�561 and the results agree quite
well with the prediction in Eq. �8�. There are some fluctua-
tions, especially at large N, but these fluctuations do not fall
outside the bounds of statistical error. In comparing our fit-
ting results with those seen in the work from Parsons and
Williams, we find that our estimate of T	 is significantly
larger. This is most likely due to our sampling of a broader
energy range, where Emax /N=3.0 rather than zero. It is also
noted that when the shortest chains are excluded from the
fitting procedure, the estimates for T	 increase slightly, but
systematically. In all cases the “best fit” for the Rg

2 data yield
a slightly larger value of T	 than is obtained from the spe-
cific heat. Thus, the error estimates for the values in Table III
may be underestimated due to possible, residual finite-size
effects for our smallest chain lengths.

The analysis using Eq. �9� to describe the liquid-solid
transition data is also shown in Fig. 11; however, finite-size
effects previously discussed must be considered. The varia-
tions with size below N=100 makes it hard to include these
results for extrapolation to the infinite-chain limit. In Fig. 7,
the N=55 specific heat peak is uncharacteristically high
compared to the other chain lengths, as well as other magic
numbers. This large peak is not novel and can be seen in
many similar analyses of clusters �28,29,32�. Understanding
this peak may take more analysis of the liquid-solid and
solid-solid transitions, and in particular, how these two
merge before the N=55 chain length. Because of the finite-
size effects discussed above, we restrict our analysis to 100
�N�561 when applying the prediction of Eq. �9�. The data
for N�100 appear to be rather smooth and magic number
spikes decrease as N increases �see points N=147, N=309,
and 561�. Results for this fit are presented in Table III, where
Tls=0.790
0.007 using the CV /N data and Tls=0.79
0.01
using the Rg

2 data. These results still offer perspective into
previous issues in homopolymer studies. The first is that the
coil-globule and liquid-solid transition remain separated in
the infinite-chain limit. The second is that our estimate of the
liquid-solid transition is significantly lower than that given
by Parsons and Williams, providing further evidence that
sampling a restricted energy range will yield imprecise re-
sults. However, this analysis is further complicated by finite-
size effects that have been shown to occur for chain lengths
greater than N=55 and which are currently beyond our abil-
ity to characterize.

V. CONCLUSIONS

Results describing the general behavior of single flexible
homopolymer chains have been obtained for a wide range of
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FIG. 11. �Color online� Analysis of the liquid-solid and coil-
globule transitions using transition temperatures provided by fea-
tures in the specific heat. The liquid-solid transition data �squares�
are plotted with the lower-horizontal axis, and the coil-globule tran-
sition data �circles� are plotted with the upper-horizontal axis.
Dashed lines represent the fits from Eqs. �8� and �9�.

TABLE III. Table of transition temperatures for both the liquid-solid �Tsl� and the coil-globule �T��
transitions. These transitions have been analyzed using both specific heat and radius of gyration data.

Fit function Data T�N→�� a1 ,a2 N

T�N�−T	=a1 /�N+a2 /N CV /N 3.156
0.007 −11.90,13.98 10→561

Rg
2 3.176
0.004 −11.56,12.77 10→500

T�N�−Tls=a1 /N1/3 CV /N 0.790
0.007 −1.94 100→561

Rg
2 0.79
0.01 −1.9 100→500
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chain lengths. The application of the Wang-Landau algorithm
has proven to be an efficient and straightforward method for
studying thermodynamic and structural properties of ho-
mopolymers. Nonetheless, the few parameters involved re-
quire a careful adjustment in order to yield an optimal bal-
ance between simulation accuracy and computational effort,
e.g., the density of states must be obtained for a sufficiently
broad range of energies. Unlike earlier studies of continuous
models �6,7�, we find only two transitions for similar chains,
and as has been shown in studies of a bond-fluctuation model
�10�, these two transitions remain distinct in the limit of in-
finite size. We also see a significantly higher T	 compared to
these off-lattice studies �6,7�, most likely due to our broader
sampling of energy. The liquid-solid transition is more diffi-
cult to analyze because of finite-size effects occurring for
chain lengths 30�N�54, where additional solid-solid tran-
sitions associated with transformations in the outer shell of a
collapsed chain are visible in thermodynamic and structural
quantities. Such effects have been seen in a very recent study
of Lennard-Jones homopolymers �3,4�, with indications of

such behavior in longer chain lengths. However, for N
�100 variations in behavior with chain length become
smoother and we were able to estimate the infinite-chain
transition temperature. Our value of Tls is significantly lower
than that found in previous off-lattice studies, which we
again attribute to energy range effects. Results also show that
size dependent effects are prominent and do not behave in a
simple, monotonic manner as chain length increases. These
finite-size effects must be considered in future studies of
single homopolymer chains. Our simulations are at the limit
of what is currently possible with current computing re-
sources, and adaptations to our method will be needed in
order to perform further analysis.
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