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I. INTRODUCTION

The development and analysis of continuum field theories
to model complex nonequilibrium structures or spatial pat-
terns have made a tremendous impact in many areas of re-
search in condensed-matter and materials physics. A central
idea in the development of such models is the recognition
that the patterns are controlled by the type and interaction of
defects that define the patterns. For example, in spinodal de-
composition, surfaces between different atomic species can
interact through diffusion in the bulk providing one of the
mechanisms for the phase segregation process. In block co-
polymer systems �1�, disclinations interact through elastic
fields and control the ordering of lamellar phases. While it is
desirable that models of these processes be derived from
some fundamental atomic theory, they are frequently phe-
nomenologically proposed. Classic phenomenological mod-
els include the Ginzburg-Landau theory of superconductivity
�2� and the Cahn-Hilliard-Cook theory of phase segregation
�3,4�.

Several years ago, a phase-field model of crystallization
was phenomenologically proposed by exploiting the proper-
ties of free-energy functionals that are minimized by periodic
fields. In crystallization, this field is interpreted as the atomic
number density ���, which is uniform in a liquid phase and is
typically periodic in the solid phase. By incorporating elas-
ticity, dislocations, and multiple crystal orientations, such
functionals naturally incorporate the type and interaction of
the defects that control many crystallization phenomena.
This so-called phase-field-crystal �PFC� model �5,6� has
been used to study glass formation �7�, climb and glide dy-
namics �8�, premelting at grain boundaries �9,10�, epitaxial
growth �11,12�, commensurate to incommensurate transitions
�13,14�, sliding friction phenomena �15�, and the yield
strength of polycrystals �5,6,16,17�. More recently, a simple
binary phase-field-crystal model was developed �18� that
couples the features of the PFC model of a pure material
with a concentration field so that eutectic growth, spinodal

decomposition, and dendritic growth can also be studied. As
shown in Refs. �7,18�, PFC models can be linked with clas-
sical density-functional theory �CDFT� and dynamical
density-functional theory �7,19,20� although the approxima-
tions are quite drastic. For example, in recent studies on Fe
�21� and colloidal systems �20�, CDFT predicts that � is very
sharply peaked in space �at atomic lattice positions� while
the PFC solutions are almost sinusoidal in space. Neverthe-
less, these same studies seem to indicate that the parameters
entering PFC models can be adjusted to match experimental
quantities.

While the periodic structure of PFC models is essential
for describing elasticity and plasticity, it is very inconvenient
for numerical calculations. For example, PFC simulations
typically require 8d �where d is dimension� spatial grid points
per atomic lattice site. Obviously, this limits the method to
relatively small systems, although several new computational
algorithms have been developed that can significantly extend
the applicability of both pure �22–25� and binary PFC mod-
els �26�. To alleviate this limitation, an amplitude expansion
of the PFC model was developed by Goldenfeld et al.
�27–29�. To understand the idea behind such expansions, it is
useful to consider a one-dimensional equilibrium state of the
form n=A sin�qx�, where the amplitude, A, is zero in the
liquid and finite in the solid state. While the field n varies
rapidly in space, on a length scale set by �=2� /q, the am-
plitude A is uniform in crystalline regions and only varies
near dislocations and liquid solid surfaces. Deformations of
the crystal lattice can be represented by spatial variations in
the phase of the amplitude. Using this amplitude representa-
tion, Athreya et al. �30� were able to apply adaptive mesh
refinement to simulate grain growth on micron scales while
simultaneously resolving atomic scale structures at inter-
faces. This remarkable achievement suggests that the devel-
opment of amplitude expansions is very promising for com-
putational materials research. More recently, this expansion
has been extended to include spatial variations in the average
number density in two and three dimensions �31�.
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In addition to greatly increasing computational efficiency,
amplitude representations of PFC models can also be ex-
ploited to establish a link between PFC-type models and tra-
ditional phase-field models. This link provides insight into
the specific terms that enter the bulk free-energy and
gradient-energy coefficients of traditional phase-field models
�32–35�. Since the relationships between the parameters that
enter phase-field models and sharp interface models are well
established �36–38�, the relationship between parameters in
PFC models to sharp interface models can then be estab-
lished.

In this paper, amplitude expansions are developed for tri-
angular �two-dimensional, 2D�, bcc, and fcc crystal symme-
tries. The method of multiple scales expansion methods em-
ployed by Yeon et al. �31� is used. In the small deformation
limit, the expansions are shown to reproduce standard phase-
field models of solidification and eutectic growth which in-
corporate elasticity and solute segregation effects. Sample
simulations of grain-boundary segregation, eutectic solidifi-
cation, and quantum dot growth on nanomembranes are also
presented to illustrate the flexibility of the amplitude equa-
tions.

II. BINARY PHASE FIELD CRYSTAL MODEL

As discussed above, the binary-alloy PFC model devel-
oped recently �18� can incorporate the important features of
solidification, phase segregation, and solute expansion in al-
loy systems, in addition to the elasticity, plasticity, and mul-
tiple crystal orientations that characterize the crystalline
state. For an alloy consisting of A and B atoms, the model
can be written in the case of equal atomic mobilities of the
constituents as

�n

��
= M�2

�F
�n

,

��

��
= M�2

�F
��

, �1�

where M is the mobility and � is time. In principle, random
thermal fluctuations can be included in these equations but
are left of for simplicity. The field n is the dimensionless
number density difference given by n���A+�B−��� /��,
where �A, �B, and �� are the atomic number densities of A
atoms, B atoms, and a reference liquid, respectively. The
field �= ��A−�B� /�� plays the role of a concentration field.
The free energy is given by

�F
kBT�l

=� dr��B�

2
n2 + Bxn

2
	n −

t

3
n3 +
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4

n4 + 
� + �
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�4

4
+

K�

2
��� ��2	 , �2�

where 	�2R2�2+R4�4 and t, v, 
, �, u and K� are con-
stants. This model is essentially a very approximate version
of the classical density-functional theory �CDFT� of freezing
proposed by Ramakrishnan and Yussouff �39� in which the
Helmholtz free-energy functional is expanded in a functional

Taylor series of the number density field. Equation �2� is
obtained by truncating the functional Taylor-series expansion
for a binary system at second order as proposed by Rick and
Haymet �40�, expanding to order n4 and �4 and by fitting the
first peak in the second-order direct correlation function in
Fourier space �18�. While the resulting free-energy func-
tional is a crude approximation to the second-order model
proposed by Rick and Haymet �40� or the more sophisticated
weighted DFT binary model proposed by Denton and Ash-
croft �41�, it does provide a computational efficient model
that incorporates elasticity, plasticity, multicrystal orienta-
tions, solidification, and phase segregation. In addition, as
will be shown, it reduces to standard continuum models of
elasticity, solidification, and phase segregation in the appro-
priate limit. The parameters B�, Bx, and R depend on � and
in the simplest nontrivial case can be set to B��B0

�+B2
��2,

Bx=B0
x, and R=R0�1+���. In this context, the “simplest non-

trivial case” refers to a parameterization that leads to typical
phase diagram containing liquid-solid coexistence lines, eu-
tectic points, and critical points �as shown in Figs. 1, 7, and
8�. In addition, the lattice constant R is assumed to be lin-
early proportional to �, i.e., the solute expansion satisfies
Vegard’s law. Details of the parameters entering this model
are described in Ref. �18�. Here, � is the solute expansion
coefficient and to further simply calculations, it will be as-
sumed to be small. This approximation is valid for systems
in which the relative size difference in the atomic species is
small. In this limit, the free energy can be rewritten as

F =� dx��n

2
�	0 + ��	1�n −

t

3
n3 +

v
4

n4 + 
� +
�

2
�2 +

u

4
�4

+
K

2
��� ��2	 , �3�

where

	0 � �B0 + B2
��2 + B0

x�1 + �2�2,

	1 � 4B0
x��2 + �4� , �4�

�B0�B0
�−B0

x, F��F / �kBT��Ro
d�, x� �r� /Ro, and K�K� /Ro

2.
The equations of motion are then

FIG. 1. Sample phase diagram for two-dimensional triangular
system with parameter set �B0

x ,B2
� ,v , t ,� ,u�= �1,−1.8,1 ,

3 /5,0.30,4�. Also �=0.088 and 0.008 in �a� and �b�, respectively.
In each panel, the filled regions correspond to regions of phase
coexistence.
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�n

�t
= �2�	0n − tn2 + vn3 +

�

2
��	1n + 	1n��	 , �5�

��

�t
= �2��� + n2B2

� − K�2�� + u�3 +
�

2
n	1n	 , �6�

where a time scale MkBT��Ro
d has been adopted for the res-

caling.
In the following section, the equations of motion will be

developed for the slowly varying amplitudes that describe
various crystalline systems. More formally, for any given
periodic structure, the density field can be expanded as

n = n0 + 

G� j


 jexp�iG� j · r�� + 

G� j


 j
�exp�− iG� j · r�� , �7�

which separates the “slow”-scale complex amplitudes 
 j and
average density field n0 from the underlying small-scale
crystalline structure that is characterized by G� j = lq�1+mq�2
+nq�3, where �q�1 ,q�2 ,q�3� are the principle reciprocal-lattice
vectors, �l ,m ,n� are integers, and the subscript j schematic
refers to a specific set of �l ,m ,n�. This particular parameter-
ization implicitly assumes that a substitutional alloy is being
considered, consistent with solutions that minimize both Eqs.
�2� and �3�. This analysis does not apply to more complicated
ordered or superlattices structures. Since the equilibrium so-
lutions of Eq. �2� for n are relatively smooth, only a few
amplitudes in Eq. �7� are required. In what follows, model
equations will be developed for only the lowest-order ampli-
tudes that are needed to reconstruct a given crystal symmetry
and defect structures relevant for controlling elastic and plas-
tic effects in solidification and impurity segregation.

Recently, many efforts have been devoted to developing
amplitude expansion for various physical systems. The cen-
tral assumption of these approaches is that the amplitudes
vary on scales much larger that the short �or “fast”� atomic
spacing scale. Formally, a small parameter can then be intro-
duced that represents the ratio of the two scales and an ex-
pansion in this variable can be performed. To apply this
analysis to Eqs. �5� and �6�, both the amplitudes �
 j� and
concentration field � are assumed to be slow variables �for
technical details of this multiple-scale analysis, the reader
can refer to Yeon et al. �31� and the references therein�. For
simplicity, in this paper, the average atomic density �i.e., n0�
will be assumed as constant and zero, since miscibility gaps
between liquid and solid phases can be accounted for �to
some extent� by a miscibility in �. Moreover, noise dynam-
ics will be neglected here. More complete analysis involving
dynamic variation of n0, noise effects, as well as the general
case of different atomic mobilities will be presented else-
where �42�.

III. AMPLITUDE EXPANSION FOR TRIANGULAR
SYMMETRY

In two dimensions, the free energy given in Eq. �3� is
minimized by a triangular lattice. The corresponding prin-
ciple reciprocal-lattice vectors are given by

q�1 = qeq�− x̂ − 1/�3ŷ�, q�2 = qeq�2/�3ŷ� , �8�

where qeq=�3 /2 is the equilibrium wave number. To con-
struct the minimal model of a triangular lattice, only the
lowest-order reciprocal-lattice vectors are needed, which cor-
respond to q�1, q�2, and q�3�−q�1−q�2=qeq�x̂−1 /�3ŷ�. To ob-
tain equations of motion for the amplitudes of these lowest-
order reciprocal-lattice vectors, a standard method of
multiple-scale expansion �43� can be employed in the limit
of small �=−�B0 /B0

x. In such an expansion, the slowly vary-
ing amplitudes and concentration field are written as a func-
tion of the slowly varying scales, i.e., �X ,Y ,T�
= ��1/2x ,�1/2y ,�t�. The next step is to expand 
 j and � in a
power series in �1/2, substitute them into Eqs. �5� and �6�, and
obtain dynamical equations at each order of �. Using a stan-
dard solvability condition �43� to solve these equations for
complex amplitudes of only the lowest-order reciprocal vec-
tors and to all orders in � �31,42� leads to the following
equations of motion:

�
 j

�t
= L j��	 j

0 + 3v�A2 − �
 j�2��
 j − 2t

i�j


i
�

+
�

2
��	 j

1
 j + 	 j
1
 j��� ,

��

�t
= �2��w + B2

�A2 − K�2�� + u�3

+
�

2 

j

�
 j�	 j
1��
 j

� + 
 j
�	 j

1
 j�	 , �9�

where

	 j
0 � �B0 + B2

��2 + B0
x�G j�2,

	 j
1 � 4B0

xL jG j ,

L j � �2 + 2iq� j · �� − �q� j�2,

G j � �2 + 2iq� j · �� ,

A2 � 2

j=1

3

�
 j�2. �10�

To further simplify calculations, a long-wavelength approxi-
mation will be made such that L j �−�q� j�2=−1. Unfortu-
nately, a similar long-wavelength approximation cannot be
made for G j �e.g., replacing G j by 2iq� j ·�� � as then the equa-
tions would not be rotationally invariant. The rotational in-
variance of these equations is straightforward to show using
the procedure described in Ref. �44�, which shows that the
full operator G j is required to preserve rotational symmetry
and lead to equivariant amplitude equations for a specified
set of base wave vectors q� j. In this long-wavelength limit,
the equations of motion become
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�
 j

�t
= − ���B0 + B2

��2 + B0
xG j

2 + 3v�A2 − �
 j�2��
 j − 2t

i�j


i
�

− 2�B0
x��G j
 j + G j
 j��� ,

��

�t
= �2��w + B2

�A2 − K�2�� + u�3

− 2B0
x�


j

�
 jG j
�
 j

� + 
 j
�G j
 j�	 . �11�

These dynamics can alternatively be written in a form of
model C type �in the Halperin-Hohenberg classification
scheme �45��, i.e.,

�
 j

�t
= −

�F

�
 j
� ,

��

�t
= �2�F

��
, �12�

where

F =� dr���B0

2
A2 +

3v
4

A4 + 

j=1

3 �B0
x�G j
 j�2 −

3v
2

�
 j�4�
− 2t�


j=1

3


 j + c.c.� + �� + B2
�A2�

�2

2
+

u

4
�4 +

K

2
��� ��2

− 2B0
x�


j=1

3

�
 jG j
�
 j

� + c.c.��	 , �13�

with c.c. referring to the complex conjugate.

A. Small deformation limit

To gain insight into the above results and make connec-
tion with traditional phase-field models, it is useful to rewrite

 j in the form 
 j =�eiq� j·u�. In this case, the magnitude of
� distinguishes between liquid ��=0� and solid phases
���0�, while u� is the displacement vector introduced in
continuum elasticity theory �48� to describe displacement of
atoms from a perfectly ordered crystal lattice. To make a
connection with standard phase-field models, this expression
is first substituted into Eq. �13� and then Eq. �13� is expanded
up to the lowest-order nontrivial gradients in �, �, and u� .
This calculation gives

F =� dr���3�B0�2 − 4t�3 +
45

2
v�4 + �� + 6B2

��2�
�2

2

+
u

4
�4� + �K

2
��� ��2 + 6B0

x��� ��2� + 3B0
x�


i=1

2 �3

2
Uii

2�
+ UxxUyy + 2Uxy

2 ��2 + 12�B0
x�− ��2� + 


i=1

2

Uii�
2��	 ,

�14�

where Uij ���ui /�xj +�uj /�xi� /2 is the linear strain tensor.
The first set of terms �defined by the � . . . � brackets� is re-
markably similar to standard phase-field models developed

for eutectic and dendritic solidifications �46,47�. The polyno-
mial in � gives a first-order transition from a liquid ��=0� to
solid phase ���0�. The polynomial in � is the typical “�4”
free energy used in the Cahn-Hilliard-Cook-type models.
The coupling term �2�2 �note: B2

� is negative� can lead to
phase segregation at low temperatures when � becomes
large. The second and third sets of terms account for surface
and linear elastic energies, respectively. From the form of the
third term, it is straightforward �48� to derive the elastic con-
stants in dimensionless units, i.e., C11=C22=9B0

x�2 and C12
=C44=C11 /3.

Finally, the last set of terms couples the concentration
field to the liquid-solid order parameter � when the atomic
species have a different size �i.e., ��0�. The term, ���2�,
implies preferential phase segregation to liquid-solid sur-
faces, grain boundaries, and dislocations �i.e., regions in
which � varies in space�. Dynamically, this term is respon-
sible for solute migration at grain boundaries and solute
drag. The last term ��2�Uxx+Uyy� implies a coupling be-
tween strain and concentration as should be expected when
the atomic species have different sizes. It may appear un-
usual that the free-energy functional depends on the sign of
the displacement gradients �via Uxx=�ux /�x�; however, this
sign determines whether there is a local compression or ex-
pansion of the lattice which would favor a specific atomic
species based on the sign of solute expansion coefficient �.

B. Equilibrium phase diagram

The equilibrium phase diagram can be evaluated to lowest
order by considering � and � constant and a bulk compres-
sion to account for solute expansion, such that u� ���xx̂
+yŷ�. In this limit, the free energy per unit area �A� becomes

F

A
= 3�B0�2 − 4t�3 +

45

2
v�4 +

u

4
�4 + �� + 6B2

��2�
�2

2

+ 12B0
x�2��2 + 2���� . �15�

Minimizing with respect to � gives �eq=−��. As expected,
the contraction or expansion of the lattice is controlled by
��. Substituting �eq for � leads to

F

A
= 3�B0�2 − 4t�3 +

45

2
v�4 + �� + 6B2

��2�
�2

2
+

u

4
�4

− 12B0
x�����2, �16�

which is then minimized with respect to �, yielding

�eq =
t + �t2 − 15v��B0 + �2�B2

� − 4B0
x�2��

15v
. �17�

Substituting Eq. �17� into Eq. �16� yields a free energy per
unit area that is only a function of �. This result can be used
to construct the phase diagram in an analogous manner as
was done in Ref. �18�. Two example phase diagrams and the
corresponding model parameters required to obtain each are
shown in Fig. 1.

The derivation of amplitude equations and the related
simplifications presented above can be readily extended to
three-dimensional systems. In Appendixes A and B, the rel-
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evant equations and sample phase diagrams for both bcc and
fcc symmetries are presented.

IV. APPLICATIONS

To further examine the above amplitude equations, nu-
merical simulations of the model described by Eqs. �12� and
�13� were undertaken and the results are shown in Figs. 2–6.
In Fig. 2, simulations were conducted to study the coupling
between composition and topological defects �dislocations
and grain boundaries� in binary alloys with components of
different atomic sizes, i.e., nonzero solute expansion coeffi-
cient �. For this study, a symmetric tilt grain boundary be-
tween two grains with a misorientation angle of �=3.76° was
created by dynamically evolving an initial configuration of
two perfect crystals separated by a layer of supercooled liq-
uid. As time evolves, the liquid solidifies and a grain bound-
ary spontaneously forms. The dislocation cores that comprise
the grain boundary interact with the different atomic species
or alloy composition. As shown in Fig. 2, the larger �smaller�
solute atoms preferentially segregate around the dislocation
cores in regions of tensile �compressive� strain. This prefer-
entially segregation around dislocation cores has been ob-
served directly in experiments �49,50� and is usually referred
to as a Cottrell atmosphere after Cottrell and Bilby �51�.

Simulation results for eutectic solidification and phase
separation are presented in Fig. 3, where three small grains
of different orientations are heterogeneously nucleated for
the parameters used in Fig. 1�b� and for a “temperature” �B0
below the eutectic point. As the grains grow, lamellar con-

centration bands form within the grains as a result of phase
separation. The formation of such lamellar structures is a
well-known phenomenon that has been observed in many
experiments and theoretical studies �46,47,52–55�. The rela-
tively large lattice mismatch �roughly 8.4% in equilibrium
due to a finite solute expansion coefficient� between the
lamellae results in the spontaneous nucleation of dislocation
at the lamellar interfaces. It is reasonable to assume that the
misfit strains and the dislocation nucleation between lamellae
will modify the spacing selection mechanism predicted by
previous eutectic solidification theories �52,53�. The collec-

FIG. 2. Solute segregations in symmetric grain boundaries with
misorientation �=3.76° are shown for �=0 �a� and �=0.2 �b�. Left
and right panels correspond to 
 j�
 j�2 and �, respectively. In the
corner insets of left panels, the density field n is reconstructed from
the amplitudes 
 j for the boxed region. In the right panels, the dark
�light� color corresponds to the larger �smaller� of the atomic spe-
cies. The parameters for �a� and �b� correspond to Figs. 1�a� and
1�b� at �B0=0.01, respectively. The dimension of each panel is
55a�55a, where a is the lattice constant.

FIG. 3. Eutectic solidification for parameters in Fig. 1�b� at
�B0=0.022 and �=0.0. Panels �a�, �b�, and �c� correspond to di-
mensionless times 30 000, 60 000, and 105 000, respectively. From
left to right, the columns correspond to n reconstructed from 
 j �for
the boxed region�, 
 j�
 j�2, �, and the local free-energy density.
Dislocations are most easily identified as small black dots in the
local free-energy density. The sizes of the panels are 27.5a
�27.5a and 110a�110a in the first column and last three columns
respectively, where a is the lattice constant.

FIG. 4. Quantum dot formation on a 5-atomic-layer-thick na-
nomembrane at times t=20 000, 60 000, and 100 000 �for �a�, �b�,
and �c�, respectively�. The columns from left to right correspond to

�
 j�2, �, and the local free-energy density. The parameters used for
this simulation are from Fig. 1�a� except �=0.26 and B0

�=1.028.
Each 122a�53a panel shown is a portion of the full 122a�211a
simulation cell, where a is the lattice constant of the unstrained
film.
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tion of dislocations at such interfaces has been reported in
other studies �56� and is expected to alter the concentration
segregation rate. When the grains impinge on one another
�i.e., coarsening occurs�, additional dislocations form, lead-
ing to complex patterns as shown in Figs. 3�b� and 3�c�.
These simulations indicate that the amplitude model estab-
lished here can simultaneously describe the complex evolu-
tion of liquid-solid interfaces, grain boundaries, dislocations,
and interfaces between regions of different compositions.

Numerical simulations were also conducted to study is-
lands or quantum dots formation on thin freely standing films
or solid nanomembranes. Recent experiments of Ge on Si
membranes �57,58� have suggested that growth on such na-

nomembranes strongly influences the maximum size that the
strained islands can form coherently �i.e., without disloca-
tions� and can lead to correlation or self-ordering of multiple
islands. To examine this phenomenon, simulations were set
up such that islands of one material were grown on a thin
free-standing membrane of another material by exploiting a
eutectic phase diagram �such as that shown in Fig. 1�b��. To
initiate growth of the islands, a small crystal region at �=
−0.12 was constructed coherently on top of a thin membrane
at �=0.2 in a supercooled liquid at �=−0.03, with �B set to
be 0.028. Sample simulation results are shown in Figs. 4 and
5. As can be seen in these figures, the dot grows coherently
with the membrane until reaching some critical size at which
dislocations are nucleated at the liquid-dot-membrane junc-
tion. Perhaps, more interestingly by comparing Figs. 4 and 5,
it is apparent that for the thinner membrane, the dots can
grow to a larger size before nucleating dislocations. This
result occurs as the strained quantum dots partially relax by
straining the substrate membrane and thinner membranes are
easier to deform than thicker ones. Such mechanism has
been proved to play an important role in engineering the
self-assembly of thin-film nanostructures such as quantum
dots �57�.

Another interesting consequence of the membrane defor-
mation is that it locally creates favorable and unfavorable
positions for the nucleation of other islands or dots, with an
alternative sequence on the two sides of the membrane, as
can be seen in Fig. 6 which was conducted at a higher liquid
supersaturation �i.e., �=−0.04� or growth rate. Once a dot is
formed, e.g., on the top of the membrane, it is preferable for
the next ones to nucleate under the edges rather than directly
underneath the top quantum dot. After these bottom-side dots
are formed, they in turn create preferential regions for a new
set of dots to nucleate on the top �above their edges� and the
process repeats. In such a fashion, the process leads to the
correlated dot growth as observed in experiments of Ge or
SiGe islands on Si membranes �57,58�. This phenomenon
can in principle be exploited to create periodic strained nano-
structures that in turn produce periodically modulated band
gaps.

Finally, it should be noted that in the dynamics described
by Eq. �12�, the diffusion constant for the concentration field
��� is similar in magnitude in the liquid and solid phases.
However, it is typically the case that diffusion or atomic
mobility in liquids is much larger than in solids. In most
traditional phase-field models of binary-alloy solidification,
this difference is modeled by making the mobility depend on
the order parameter �i.e., phase-field� as well as the concen-
tration �60–62�. A similar approach can be taken for the am-
plitude equations by using the following dynamic equation
for �:

��

�t
= �� · �M�A,����

�F

��
� , �18�

where the mobility now depends on A2=
 j�
 j�2. The follow-
ing functional form:

FIG. 5. Quantum dot formation on a 12-atomic-layer-thick na-
nomembrane at times t=20 000, 40 000, and 60 000 �for �a�, �b�,
and �c�, respectively�. The parameters used and system size are
identical to those in Fig. 4.

FIG. 6. Correlated quantum dot formation on a 3-atomic-layer-
thick nanomembrane at times t=20 000, 40 000, 60 000, 80 000,
100 000, and 120 000 �for �a�–�f�, respectively�. The parameters
used and system size are identical to those in Fig. 4 except for a
higher liquid supersaturation.
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M�A,�� = MX��� + �ML��� − MX�����1 − tanh�aA�� ,

�19�

Would, for example, change M from the mobility of the crys-
tal �MX� at large aA to the mobility in the liquid phase �ML�
at small or zero aA. The parameter a would control how
quickly the M changes from liquid to solid phases. Note that
while the binary PFC model presented in Eq. �1� assumes
both atomic species have the same mobility, the individual
phase mobilities Mx and ML are concentration dependent.

V. DISCUSSIONS AND CONCLUSIONS

In this paper, amplitude equations have been derived from
the binary phase-field-crystal model for a two-dimensional
triangular lattice and for three-dimensional bcc and fcc struc-
tures. Furthermore, the connection to standard phase-field
models has been established and for small deformations, the
results have been shown to recover linear continuum elastic-
ity theory and reconstruct the equilibrium phase diagrams for
binary-alloy systems. Sample simulations of the amplitude
equations have shown that this relatively simple model can
effectively model many complex phenomena and the emer-
gent microstructures that arise and reveal the underlying
mechanisms. While these amplitude equations were derived
from an atomistic model, they can in themselves be regarded
as phase-field models with complex order parameters. One
advantage of this amplitude description is that the liquid and
solid phases are easily distinguished by a relative uniform
quantity A2�
 j�
 j�2 and the coupling and interaction be-
tween structure �i.e., amplitudes� and concentration can be
well identified. In this regard, it may be possible to extend
the equations to naturally incorporate other uniform fields,
such as magnetization, polarization, temperature, etc., and
simultaneously include elastic and plastic deformations in
polycrystalline samples.
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APPENDIX A: AMPLITUDE EQUATIONS FOR BCC
SYMMETRY

For a bcc lattice, the principle reciprocal-lattice vectors
are

q�1 = qeq�x̂ + ŷ� ,

q�2 = qeq�x̂ + ẑ� ,

q�3 = qeq�ŷ + ẑ� , �A1�

where qeq=1 /�2 is the equilibrium wave number. In a one-
mode approximation, the above principle reciprocal-lattice
vectors need to be combined with the following vectors: q�4

=q�1−q�2=qeq�ŷ− ẑ�, q�5=q�2−q�3=qeq�x̂− ŷ�, and q�6=q�3−q�1
=qeq�−x̂+ ẑ�. Thus, the bcc structure can be represented in the
usual manner, i.e.,

n = 

j=1

j=6


 j�r�,t�exp�iq� j · r�� + 

j=1

j=6


 j
��r�,t�exp�− iq� j · r�� .

�A2�

Repeating the calculations presented in Sec. III �with the
same level of approximations� gives the following complex
amplitude equations:

�
1

�t
= − ���B0 + B0

xG1
2 + 3v�A2 − �
1�2��
1 − 2t�
3
6

� + 
2
4�

+ 6v�
3
4
5 + 
2
5
�
6

�� − 2�B0
x��G1
1 + G1
1��� ,

�A3�

�
4

�t
= − ���B0 + B0

xG4
2 + 3v�A2 − �
4�2��
4 − 2t�
5

�
6
� + 
1
2

��

+ 6v�
1
3
�
5

� + 
3
2
�
6

�� − 2�B0
x��G4
4 + G4
4��� ,

�A4�

with equations of motion for 
2 and 
3 obtained by cyclic
permutations on the groups �1,2,3� and �4,5,6� in Eq. �A3�,
while equations for 
5 and 
6 can be obtained by the similar
cyclic permutations of Eq. �A4�. The corresponding concen-
tration equation is given by

��

�t
= �2��w + B2

�A2 − K�2�� + u�3

− 2B0
x�


j

�
 jG j
�
 j

� + 
 j
�G j
 j�� . �A5�

Once again, Eqs. �A3�–�A5� can be rewritten in a model
C–type form, i.e.,

�
 j

�t
= −

�F

�
 j
� ,

��

�t
= �2�F

��
, �A6�

where

F =� dr���B0

2
A2 +

3v
4

A4 + 

j=1

6 �B0
x�G j
 j�2 −

3v
2

�
 j�4�
+ 6v�
1
3

�
4
�
5

� + 
2
1
�
5

�
6
� + 
3
2

�
6
�
4

� + c.c.�

− 2t��
1
�
2
4 + 
2

�
3
5 + 
3
�
1
6 + c.c.� + �
4

�
5
�
6

�

+ c.c.�� − 2B0
x�


j=1

6

�
 jG j
�
 j

� + 
 j
�G j
 j�� + �� + B2

�A2�
�2

2

+
u

4
�4 +

K

2
��� ��2	 . �A7�

As discussed in Sec. III A, it is interesting to replace 
 j by
� exp�iq� j ·r��, yielding
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F =� dr���6�B0�2 − 16t�3 + 135v�4 + �� + 12B2
��2�

�2

2

+
u

4
�4� − �K

2
��2� + 8Bx�1 + 3�����2��

+ 4B0
x�


i=1

3 �Uii
2 + 4��Uii +

1

2

j�i

3

UiiUjj�
+ 2


i=4

6

Uii
2��2	 . �A8�

Similarly, the elastic constants can be derived as C11=C22
=C33=8B0

x�2 and C12=C13=C23=C44=C55=C66=C11 /2.
Furthermore, minimizing with respect to � gives �eq=−��,
which leads to the following result for the free energy per
unit volume:

F

V
= 6�B0�2 − 16t�3 + 135v�4 + �� + 6B2

��2�
�2

2
+

u

4
�4

− 24B0
x�����2, �A9�

which can be minimized with respect to � to obtain

�eq =
2t + �4t2 − 45v��B0� + �2�B2

� − 4B0
x�2�

45v
. �A10�

The corresponding phase diagram for this model is shown in
Fig. 7.

APPENDIX B: AMPLITUDE EQUATIONS FOR FCC
SYMMETRY

Recently, Wu �59� showed that the basic phase-field crys-
tal model can be extended to model a fcc lattice by including
an extra length scale. Replacing the operator �B+Bx�1
+R2�2�2→D��B+16Bx�1+2R1

2�2+R1
4�4��1+2R2

2�2+R2
4

+E�, where R2=�3 /2R1 for a fcc lattice and the extra factor
of 16 is introduced just for convenience, gives a revised alloy
PFC free energy

F =� dr��nDn

2
−

t

3
n3 +

v
4

n4 +
�

2
�2 +

u

4
�4 +

K

2
��� ��2� .

�B1�

Here, the parameter E controls the symmetry of the phase
such that for large �small� E, a bcc �fcc� structure is favored.
The following calculations focus on the fcc phase in the limit
of E=0. Furthermore, to examine the influence of solute ex-
pansion, the parameters R1 and R2 can be set to be R1=1
+�� and R2=�3 /2�1+���. In the small �� limit, the free-
energy functional becomes

F =� dr��n	0n

2
+ ��

n	1n

2
−

t

3
n3 +

v
4

n4 +
�

2
�2 +

u

4
�4

+
K

2
��� ��2� , �B2�

showing the same form as Eq. �3� but with different opera-
tors

	0 � �B0 + B2
��2 + 16Bx�1 + �2�2�1 + 3/4�2�2,

	1 � 16Bx�2�1 + �2��1 + 3/4�2��7 + 6�2� . �B3�

The corresponding equations of motion are also governed by
Eqs. �5� and �6�, with 	0 and 	1 given above.

For the fcc symmetry, the principle reciprocal-lattice vec-
tors are

q�1 = qeq�− x̂ + ŷ + ẑ�/�3,

q�2 = qeq�x̂ − ŷ + ẑ�/�3,

q�3 = qeq�x̂ + ŷ − ẑ�/�3. �B4�

To construct a fcc crystal, the following reciprocal-lattice
vectors are also required:

q�4 = − q�1 − q�2 − q�3 = qeq�− x̂ − ŷ − ẑ�/�3,

q�5 = q�1 + q�2 = 2qeqẑ/�3,

q�6 = q�2 + q�3 = 2qeqx̂/�3,

q�7 = q�3 + q�1 = 2qeqŷ/�3. �B5�

Unlike the triangular and bcc symmetries, the fcc lattice re-
quires at minimum two sets of vectors of different lengths,
i.e., �q�1 ,q�2 ,q�3 ,q�4� with length qeq and �q�5 ,q�6 ,q�7� with length
2 /�3qeq. The density field n is then expanded in the usual
fashion, i.e.,

n = 

j=1

j=7


 j�r�,t�exp�iq� j · r�� + c.c. �B6�

Following the standard procedure, the amplitude equations
can be derived as

FIG. 7. Sample phase diagram for three-dimensional bcc system
with same parameter set and notation as in Fig. 1 except �=0.05 in
�a�.
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�
1

�t
= L1�	1

0
1 − 2t�
2
�
5 + 
3

�
7 + 
4
�
6

�� + 6v��A2

− �
1�2/2�
1 + 
2
�
3

�
4
� + 
2
6

�
7 + 
3
5
6
� + 
4
5
7�

+
�

2
��	1

1
1 + 	1
1
1�	 , �B7�

�
2

�t
= L2�	2

0
2 − 2t�
3
�
6 + 
4

�
7
� + 
1

�
5� + 6v��A2

− �
2�2/2�
2 + 
1
�
3

�
4
� + 
1
6
7

� + 
3
5
7
� + 
4
5
6�

+
�

2
��	2

1
2 + 	2
1
2�	 , �B8�

�
3

�t
= L3�	3

0
3 − 2t�
4
�
5

� + 
1
�
7 + 
2

�
6� + 6v��A2

− �
3�2/2�
3 + 
1
�
2

�
4
� + 
1
5

�
6 + 
2
5
�
7 + 
4
6
7�

+
�

2
��	3

1
3 + 	3
1
3�	 , �B9�

�
4

�t
= L4�	4

0
4 − 2t�
1
�
6

� + 
2
�
7

� + 
3
�
5

�� + 6v��A2

− �
4�2/2�
4 + 
1
�
2

�
3
� + 
1
5

�
7
� + 
2
5

�
6
� + 
3
6

�
7
��

+
�

2
��	4

1
4 + 	4
1
4�	 , �B10�

�
5

�t
= L5�	5

0
5 − 2t�
1
2 + 
3
�
4

�� + 6v��A2 − �
5�2/2�
5

+ 
6
1
3
� + 
6

�
2
4
� + 
7
2
3

�

+ 
7
�
1
4

�� +
�

2
��	5

1
5 + 	5
1
5�	 , �B11�

�
6

�t
= L6�	6

0
6 − 2t�
2
3 + 
4
�
1

�� + 6v��A2 − �
6�2/2�
6

+ 
7
2
1
� + 
7

�
3
4
� + 
5
3
1

� + 
5
�
2
4

��

+
�

2
��	6

1
6 + 	6
1
6�	 , �B12�

�
7

�t
= L7�	7

0
7 − 2t�
1
3 + 
2
�
4

�� + 6v��A2 − �
7�2/2�
7

+ 
5
2
�
3 + 
5

�
1
4
� + 
6
1
2

� + 
6
�
3
4

��

+
�

2
��	7

1
7 + 	7
1
7�	 , �B13�

��

�t
= �2��w + B2

�A2 − K�2�� + u�3

+
�

2 

j

�
 j�	 j
1��
 j

� + 
 j
�	 j

1
 j�� , �B14�

where L j ��2+2iq� j ·�� − �q� j�2, A2�2
 j�
 j�2, and

	 j
0 � �B0 + B2

��2 + 16Bx�1 + L j�2�1 + 3L j/4�2,

	 j
1 � 16BxL j�1 + L j��1 + 3/4L j��7 + 6L j� . �B15�

Note that �q� j�2=1 for j=1,2 ,3 ,4 and �q� j�2=4 /3 for j
=5,6 ,7 and thus

	 j
0 = ��B0 + B2

��2 + Bx�G j�2�3G j + 1�2 j = 1,2,3,4

�B0 + B2
��2 + Bx�3G j − 1�2�G j�2 j = 5,6,7

�
� �B0 + B2

��2 + Bx�G j�2 j = 1, . . . ,7, �B16�

	 j
1 = � 4x�G j − 1�G j�3G j + 1��6G j + 1� j = 1,2,3,4

4Bx�G j − 4/3��3G j − 1�G j�6G j − 1� j = 5,6,7
�

� � − 4Bx�G j� j = 1,2,3,4

− 4Bx�4G j/3� j = 5,6,7,
� �B17�

where G j ��2+2iq� j ·�� . Finally, as described in Sec. III A,
the operator L j acting on the right-hand side of each equation
can be approximated by constants, i.e., L j �−�q� j�2. As before,
the dynamical equations can be written as

�
 j

�t
= − �q� j�2

�F

�
 j
� ,

��

�t
= �2�F

��
, �B18�

where

F =� dr���B0

2
A2 +

3v
2

A4 + 

j=1

7 �Bx�G j
 j�2 −
9v
2

�
 j�4�
− 2t�
1

��
2
�
5 + 
3

�
7 + 
4
�
6

�� + 
2
��
3

�
6 + 
4
�
7

��

+ 
3
�
4

�
5
� + c.c.� + 6v�
1

��
2
�
3

�
4
� + 
2
6

�
7 + 
3
5
6
�

+ 
4
5
7� + 
2
�
5�
3
7

� + 
4
6� + 
3
�
4
6
7 + c.c.�

− 2�B0
x�


j=1

4


 j
�G j
 j +

4

3

j=5

7


 j
�G j
 j + c.c.��

+ �� + B2
�A2�

�2

2
+

u

4
�4 +

K

2
��� ��2� . �B19�

Setting 
 j =� exp�iq� j ·r�� as before gives
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F =� dr���7�B0�2 − 24t�3 +
693v

2
�4 + �� + 14B2

��2�
�2

2

+
u

4
�4� − �K

2
��2� + 32B0

x�1

3
+ �����2��

+
16

9
B0

x�

i=1

3 �5Uii
2 + 14��Uii + 


j�i

3

UiiUjj�

+ 4

i=4

6

Uii
2��2	 , �B20�

from which the elastic constants for a fcc lattice can be ob-
tained: C11=C22=C33=160B0

x�2 /9 and C12=C13=C23=C44
=C55=C66=32B0

x�2 /9=C11 /5.
Minimizing the above free-energy expression with respect

to � gives �eq=−�� and hence the following free energy per
unit volume:

F

V
= 7�B0�2 − 24t�3 +

693

2
v�4 + �� + 7B2

��2�
�2

2
+

u

4
�4

−
112

3
B0

x�����2, �B21�

which is minimized when

�eq =
18t + �324t2 − 4851v��B0 + �2�B2

� − 16B0
x�2/3��

693v
.

�B22�

A phase diagram for this fcc amplitude model is presented in
Fig. 8.
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