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Force cycles and force chains
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We examine the coevolution of N cycles and force chains as part of a broader study which is designed to
quantitatively characterize the role of the laterally supporting contact network to the evolution of force chains.
Here, we elucidate the rheological function of these coexisting structures, especially in the lead up to failure.
In analogy to force chains, we introduce the concept of force cycles: N cycles whose contacts each bear above
average force. We examine their evolution around force chains in a discrete element simulation of a dense
granular material under quasistatic biaxial loading. Three-force cycles are shown to be stabilizing structures
that inhibit relative particle rotations and provide strong lateral support to force chains. These exhibit distinct
behavior from other cycles. Their population decreases rapidly during the initial stages of the strain-hardening
regime—a trend that is suddenly interrupted and reversed upon commencement of force chain buckling prior
to peak shear stress. Results suggest that the three-force cycles are called upon for reinforcements to ward off
failure via shear banding. Ultimately though, the resistance to buckling proves futile; buckling wins under the
combined effects of dilatation and increasing compressive load. The sudden increase in three-force cycles may
thus be viewed as an indicator of imminent failure via shear bands.
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I. INTRODUCTION

Fruit vendors through history have understood the ben-
efits of a packing rich in 3 cycles: a favored arrangement in
many fruit packings in which three objects are arranged in
mutual contact. Supporting elements arranged in 3 cycles
(e.g., trusses) also form the basic “building blocks™ of count-
less structures, bridges, towers, and machines. Indeed, the
ubiquity of such elements in everyday life is a testament to
the strength and stability of the triangle as a structural shape.
For this reason, columns and other major structural supports
are often reinforced by these stabilizing agents. To what ex-
tent are these structural motifs found in granular materials?
Do these materials, known for their propensity to self-
organize, construct internal structures that exhibit these fea-
tures? In this paper, we explore the functionality and evolu-
tion of such mesoscopic structures in a quasistatically
deforming granular material. Attention is paid to the coexist-
ence and hence the integrated evolution of these structures
with the phenomenon of “force chains.”

Force chains have attracted widespread interest (e.g.,
[1-11] and references therein) owing to their primary role in
force transmission and energy dissipation. These quasilinear
structures bear and transmit the compressive load on the sys-
tem, the effectiveness of which depends on the lateral sup-
port provided by their confining neighbors [1,2,12]. A de-
tailed characterization of these laterally supporting contacts
is thus necessary for the knowledge of not only force trans-
mission but also stability of dense granular systems. To date,
very little is known about the nature of this support [12]. A
way forward is to examine the contact topology of this sup-
port and its strain evolution within the framework of graph
theory—specifically, from the standpoint of N cycles. An N
cycle in an undirected graph is a closed path or a noninter-
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secting walk of length N, where N =3 with no repeated ver-
tices other than its initial and final vertex [13]. In this con-
text, force chains exist conjoined with cycles. (In graph
theory, a cycle is sometimes called a circuit. However, cycles
or circuits bear a different meaning to “loops:” a loop is
defined to be an edge joining a vertex to itself.) In contrast to
force chains, cycles have received scant attention, especially
in regard to their evolution in a deforming medium [14]; see
also [8,9,15,16] for earlier studies of these structures in static
and deforming granular packings. To the best of our knowl-
edge, the coevolution of cycles and force chains has not yet
been investigated. Three cycles, dominant in dense granular
systems, suppress rotations [ 15,16]. Thus, the question which
lends particular interest to the coexistence of these structures
is the extent to which the relatively unstable force chains
depend on 3 cycles for support. The techniques of graph
theory and the cognate area of complex networks offer a
relatively nascent yet promising approach to this problem
[10,11,14-16]. This study could have far-reaching implica-
tions. Understanding the evolution of force chains and their
stability is a fundamental goal of granular physics; it is also
central to constitutive theory which aims to deliver robust
predictions of granular behavior in a diverse range of pro-
cesses, e.g., in geology, physics, and civil and chemical en-
gineering [1,2,5,10,11,14]. Further afield, this study may
beneficially impact (i) other areas of materials science, as
analogous force networks exist in various soft condensed
matter [17-19], and (ii) other areas of complex science
where networks inhabit similar motifs, e.g., chemical, bio-
logical, and telecommunication structures [20], particularly
as motifs in granular networks lend themselves to direct
physical analysis and interpretation.

Numerous studies of two-dimensional systems using par-
ticle data from discrete element method (DEM) simulations
and experiments on photoelastic disk assemblies have shown
that force chains generally align in the direction of maximum
compressive principal stress [1,2,5-7,21]. Thus, under con-
tinued loading and loss of lateral support due to dilatation,
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these axially compressed particle columns become unstable
and prone to buckling [1,2,12]. There is mounting evidence
that force chain failure via buckling, a mechanism governed
by large relative rotations, is the underpinning mechanism
for shear bands (e.g., [1,2,6,7,21]).

A recent study of the stability and buckling of force
chains from DEM and photoelastic disk experiments con-
firmed that relative rotations between particles form the pri-
mary contact motion in confined force chain buckling
[6,12,21,22]. Mechanisms that provide resistance to this mo-
tion (e.g., sliding and rolling friction), both within the force
chain as well as in the contacts with and within the laterally
supporting neighbors, would therefore serve to stabilize
force chains. Results from DEM simulations also suggest
that the stability of these laterally supporting contacts bears a
major influence on the load-carrying capacity of force chains
[12,22]. Evidence from structural mechanics analysis cor-
roborates this and further suggests that the duration of
elastic-plastic bucking is longest if the contact failure nucle-
ates from force chain contacts (i.e., between force chain par-
ticles): that is, the laterally supporting contacts remain stable
and elastic as the limiting rolling resistance at force chain
contacts is reached [12,23,24]. These structural stability stud-
ies have also shown quantitatively the governing influence of
the laterally supporting contacts on the critical buckling load
and corresponding buckling modes of force chains, both in
the absence and presence of geometrical imperfections (i.e.,
misalignment). However, as in any structural mechanics
analysis, these formulations require information on the spa-
tial distribution and forces imparted by the lateral supporting
contacts. Currently, the modeler is faced with the difficult
challenge of making a judicious choice from a vast number
of possible configurations to achieve progress in the analysis
[12,23,24]—this points to a glaring gap in the knowledge on
force chains. Consequently, studies aimed at unraveling the
nature of these supports and their integrated evolution with
force chains are warranted. In this paper, we report on a
detailed analysis of the coevolution of contact cycles and
force chains using data from a DEM simulation of a densely
packed cohesionless granular assembly under biaxial loading
[6].

The remainder of this paper is organized as follows. In
Sec. II we briefly describe the DEM model, loading condi-
tions, and parameters used. As force chains are one of the
most fundamental structures in a deforming granular material
we present in Sec. III a summary of the algorithms used to
identify force chains and their failure via confined buckling.
Section IV introduces our concept of force cycles and inves-
tigates the interplay between these structures and force
chains. We shed light on the spatial distribution and strain
evolution of three-force cycles and their dual function with
respect to force chain evolution and shear band development
in Sec. V. The paper is closed in Sec. VI with a synopsis.

II. DISCRETE ELEMENT MODEL

The DEM model consists of a densely packed polydis-
perse assembly of spherical particles constrained to move
along a plane throughout the loading history [6,7]. This
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DEM model has been employed to examine the constitutive
response of other granular assemblies subject to a variety of
compression and penetration tests (e.g., [6,7,12,21,22]). Re-
sistances to relative motion at the particle-particle and
particle-wall contacts are governed by combinations of a lin-
ear spring, a dashpot, and a friction slider. The model is
designed to mimic the response of assemblies of noncircular
particles (e.g., [25]). Thus, it incorporates a moment transfer
to account for rolling resistance in accordance with [26,27].
This modification to the classical DEM model of Cundall
and Strack [28], which allows the relative rotations of par-
ticles at contacts to be controlled, has been found to be es-
sential in achieving more realistic rotations and stress predic-
tions (e.g., [29-33]).

A combination of Hooke’s and Coulomb’s laws defines
the interaction between contacting particles, namely,

f'=k"Au" + b"AV", (1)

2)

K'Au'+b'Av' for|Au'| < ulf"|/k'
wlf] for|Aw’| = ulf"|/K',

where f" and f' are the normal and tangential components of
the contact force, k" and k' are spring stiffness coefficients,
b" and b' are the viscous damping coefficients, and w is the
Coulomb friction coefficient. Following the modified DEM
in [26,27], the rolling resistance or contact moment—defined
in an analogous fashion to Coulomb’s law—is expressed as

o [KBa G forlAa] < R K 5
- /'LrRmin|fn| f0r|Aa| = lu’rRmin|fn|/kr’

where R,,;, denotes the smaller of the radii of the two inter-
acting particles, k" is the spring stiffness coefficient, and " is
the friction coefficient. The remaining quantities in the above
relations are the relative normal and tangential displacements
and relative rotations denoted, respectively, by Au”, Au’, and
Aa; AV", AV, and Ad represent the relative normal and tan-
gential translational and rotational velocities, respectively.

Table I provides a summary of the simulation and material
parameters used. The particular assembly comprises 5098
circular particles, created randomly, the radii of which are
uniformly distributed between [%R, %R] where R=1.14 mm.
The initial configuration is isotropic with a solid fraction of
0.858, a value slightly above the jamming transition where
the system first attains mechanical equilibrium. The vertical
walls are frictionless so that particles can slide and roll along
them without any resistance; otherwise, all other material
properties are identical to those of the particles. The top and
bottom walls are assumed to have the same material proper-
ties as the particles. The stiffness coefficient for the rolling
resistance is chosen based on the assumption that, under
equilibrium conditions, contact moments due to rolling resis-
tance are comparable to the moments due to the tangential
forces [6].

The initial sample is prepared by dropping particles into
the (rectangular) container under a gravitational field with
the friction coefficient between particles set to zero. The as-
sembly is left to settle until the kinetic energy is negligible.
The sample is compressed at a constant strain rate in the
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TABLE 1. DEM parameters and material properties used.

Parameter Value
Applied strain rate £, —-8X1073/s
Confining pressure o, 7.035% 10> N/m
Time-step increment 4x107° s
Initial height:width ratio 1:1
Number of particles 5098
Particle density 2.65%X 103 kg/m?
Smallest radius %R
Largest radius %R
Average radius R 1.14X 1073 m
Initial packing density 0.858
Interparticle friction u 0.7
Particle-wall friction u (top, bottom) 0.7
Particle-wall friction wu (sides) 0.0
Rolling friction u” 0.02

1.05X 10° N/m
525X 10* N/m
6.835% 1072 N m/rad

Normal spring stiffness k"
Tangential spring stiffness k'

Rotational spring stiffness k"

vertical direction, while allowed to expand in the horizontal
direction under a constant confining pressure. The rate of
compression is given by &,,=-0.008 s~!. Inertial effects are
quantified by the dimensionless group &,\m,,/c,,, where
myg, is the average particle mass and o, is the confining
pressure. This dimensionless group is on the order of 1075,
which is significantly less than that suggested to correspond
to the transition between the quasistatic and dense flow re-
gimes of 1073 [34]. Damping coefficients are assigned values
according to the formulas b"=0.1\m,,;,k", b'=0.1Nm,,;,k',
and b'=0.1R,,;,\m,,;,k", where m,,;, is the mass of the
smaller particle. Additional simulations performed at even
smaller rates of deformation confirmed that the strain rate is
sufficiently small to ensure quasistatic conditions. The dis-
crete time step used in the numerical integration of the equa-
tions of motion is assigned a value according to At
=0.1\m,,;,,k"=4 X 107 s. Additional tests with smaller time
steps have been performed: no effect on the particle dynam-
ics has been observed. The average overlap between particles
depends on the value of the stiffness coefficient k" and the
assumed confining pressure o,,. The ratio o, /k"=0.0067,
which results in an average overlap between particles of ap-
proximately 1%, was chosen so that strain localization and,
in particular, the formation of a persistent shear band are
reproduced.

The strain evolution of the system exhibits distinct re-
gimes of deformation, typically seen for dense cohesionless
granular assemblies (e.g., dry sand under plane strain biaxial
compression [35]): a period of strain-hardening regime, fol-
lowed by strain softening and, finally, the so-called critical
state regime. The strain hardening is characterized by a
monotonic increase with axial strain of the shear stress to a
peak value, with the applied shear stress being given by the
stress ratio (o,,—0,)/ (0 +0y,). Postpeak, relatively large
fluctuations are evident: the ensuing strain-softening regime
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is characterized by a sequence of precipitous drops in the
shear stress before the critical state regime where the shear
stress then fluctuates about an essentially steady-state value
(we show this later along with other system properties). A
single persistent shear band governs the dynamics in the
critical state regime. The sample dilates globally prior to this
regime. The onset of global dilation occurs in the latter half
of the strain-hardening regime, with the maximum rate
achieved just after the peak shear stress during the strain-
softening regime. Global dilation of the sample essentially
ceases during the critical state, although small fluctuations
about the near constant bulk volume are evident. These small
fluctuations are due to particle rearrangements inside the
shear band [6,21,22]. Inside the band, two concurrent mecha-
nisms prevail: collapse by buckling of old force chains and
birth of new force chains. These mechanisms lead to dilatant
and contractant particle rearrangements within the shear
band, and their relative dominance ultimately governs the
fluctuations seen on the global scale (e.g., [21]).

III. FORCE CHAINS

To examine the evolution of force chains, we employ the
quantitative method for identifying force chains and their
failure by confined buckling in [6,7,36]. Here, a force chain
is considered to be a physical structure comprising a quasi-
linear chain of particles. We now summarize the essential
features of these algorithms for completeness. Particles in
force chains can be identified using their particle load vec-
tors. This vector, computed for each particle, is derived from

the tensor &;;, which is expressed as follows:

(”fij=2ﬁrﬁ (4)
c=1

where « is the number of contacting neighbors of the par-
ticle, and f; and r; denote the components of the contact
force and the unit normal vector from the center of the par-
ticle to the point of contact. The largest eigenvalue of this
tensor and its corresponding eigenvector define, respectively,
the magnitude and direction of the particle load vector. A
chain of three or more particles whose particle load vectors
align within a prescribed small tolerance angle and whose
particle load magnitudes each exceeds the global average
value is defined as a force chain. Note that this global aver-
age value varies with strain in a qualitatively similar manner
to that of the shear stress: in particular, it reaches a peak
value at the same strain state as the peak shear stress. An
example force chain from the sample at a strain state just
after the peak shear stress is shown in Figs. 1(a) and 1(b).
When a structure buckles from axial compression, the
axial load it carries decreases as its constituent elements dis-
place laterally. Accordingly, in order to identify force chains
that have buckled over a given strain interval [&*,&?], the
following three-step process of elimination is applied. First,
all particles that are not in force chains at £* are eliminated.
This leaves only force chains to be analyzed. Thus, in the
second step, a force chain whose member particles do not
individually sustain a drop in the magnitude of their particle
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FIG. 1. (Color online) (a) Contact forces on a force chain in
black arrows and (b) corresponding particle load vectors whose
direction and magnitude are indicated by the alignment and thick-
ness of the (black) solid lines. (c) The force chain buckles during
[,eP]=[0.0388,0.0392], for a buckling threshold of #*=1°; the
angle 6% is shown for segment 1-2-3. The change in the orientation
of the (blue) dashed line from center to edge of particles in (b) and
(c) indicates rotations.

load vector during [&*,£8] is eliminated. Out of the remain-
ing force chains, all contiguous three-particle segments
within each chain are analyzed in the third and final steps. In
the example force chain shown in Figs. 1(b) and 1(c), there
are three such segments, i.e., particles 1-2-3, 2-3-4, and
3-4-5, to be analyzed over the strain interval [e*,&?]
=[0.0388,0.0392]. Specifically, the change in the alignment
of each such segment in a force chain is computed via the
buckling angle 6, which is given by =(6"—-6%)/2, where 8"
and 6 are the subtended angles of the outer particles with
respect to the central particle in the segment at strain states
&4 and &5, respectively, and 0<< #° < @ <. A force chain
segment, as well as the force chain it is part of, is deemed to
have buckled if the buckling angle exceeds a prescribed
threshold 7, i.e., #°< 6. The sensitivity of the above proce-
dures to the thresholds used in these algorithms has been
studied extensively elsewhere using data from both DEM
simulations and  photoelastic disk  experiments
[6,7,12,21,22,36]; a global average particle load vector mag-
nitude for the force chain algorithm along with 6*=1° for the
buckling algorithm is a physically reasonable choice.

IV. FORCE CYCLES AND FORCE CHAINS

We construct a network or graph to examine the connec-
tivity of the entire assembly and its evolution. A vertex of the
contact network represents an individual particle, and an
edge between two vertices exists if the corresponding par-
ticles are in direct physical contact. Note that this abstraction
is solely focused on the connectivity of the physical
system—defined by the contacts between particles. The re-
sulting network is undirected and unweighted. Moreover, it
is important to keep in mind that deformation which is gov-
erned by the relative motion of the constituent particles may
or may not lead to changes in the contact network. Any
change in the network depends exclusively on the generation
of new and/or loss of existing contacts. We have studied the
evolving properties of such a contact network as the material
deforms elsewhere [37]. Here, we focus on the as yet unex-
plored minimal cycle bases of the graph at each strain state
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FIG. 2. (Color online) Evolution of the population of minimal
cycles Cy with respect to axial strain. Lines with dots in order of
upper to lower represent cycles C3 through C,3. Inset shows corre-
sponding frequency distribution. Peak shear stress for this sample
occurs at axial strain |syy|=0.034 [6]. Initial stage is indicated by
thick black solid line, final stage is indicated by (red) dashed line,
and intermediate stages go from dark to light (green) as strain
increases.

and their evolving properties throughout the different stages
of loading—particularly in the lead up to failure. A minimal
cycle basis of a graph is a set containing the shortest cycles,
i.e., cycles with minimum length or number of edges. In
what follows, we investigate how a minimal cycle basis of
the contact network evolves with increasing axial strain and
study the crucial interplay between such cycles and force
chains. There are a number of established algorithms for ob-
taining a minimal cycle basis for a complex network. We
used the algorithm of Horton [38] in conjunction with a
faster variant due to Mehlhorn and Michail [39]. In general,
the minimal cycle bases are nonunique. However, this issue
which may be particularly important in nonplanar graphs
does not affect the distribution of cycle sizes (e.g., [40]),
which is the focus of this study.

Odd cycles are structures in which relative rotations are
“frustrated” and thereby act as stabilizing agents, while even
cycles allow rolling without slipping and are more akin to
roller bearings [15,16]. We identify these structures in our
assembly by first computing the population of the various
minimal cycles in the sample and tracking their evolution
with axial strain. Figure 2 shows the populations of cycles
classified according to size or order N, i.e., the number of
vertices in the cycle. Low-order cycles, namely, 3 and 4
cycles, dominate the contact topology. Here, 3 cycles (upper-
most curve) form the clear majority throughout loading his-
tory and show the greatest rate of degradation as the system
dilates in the approach to peak shear stress and global failure.
The population of 5 cycles (third curve from the top) remains
essentially invariant, whereas higher-order cycles, i.e., Cy
(with N>5) gradually increase in numbers in the strain-
hardening regime due to dilatation. The total population of
each cycle class remains essentially invariant in the critical
state regime. The transition of low- to higher-order cycles
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FIG. 3. (Color online) Transition of low-order cycle populations
to higher-order cycles. A large rise in the number of 3 cycles
(dashed red line) and 4 cycles (solid black line) becoming higher-
order cycles due to dilatation correlates with drops in shear stress.
Conversely, the number of 4 cycles collapsing to 3 cycles (solid
gray line) is much less.

because of dilatation can be seen more clearly in Figs. 3 and
4. Over axial strain intervals that correspond to drops in
shear stress, the number of 3 cycles which open up to be-
come part of higher-order cycles dramatically increases (Fig.
3). A similar trend is seen for 4 cycles which cleave and join
others to form higher-order cycles. In contrast, the popula-
tion of 4 cycles collapsing to 3 cycles is far less. An example
of the evolution of the dominant 3/4 cycles to higher-order
cycles is shown in Fig. 4. While the growth of higher-order
cycles are associated with dilatation, we emphasize here that

(a) (b)
le. |=0.0369 le. |=0.0373
yy yy

(c) (d)
e |=0.0377 le. |=0.0385
yy yy

FIG. 4. (Color online) An example cycle evolution in a particle
cluster taken from the sample. (a) 3 and 4 cycles in a particle
cluster. These open up and combine to form (b) 6 cycles in the
lower left portion of the particle cluster and (c) 5 cycles in the upper
right portion of the cluster, ultimately leading to (d) single 9 cycles.
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FIG. 5. (Color online) (a) The unbuckled force chain (red solid
particles) shown in Fig. 1(a) and its confining neighbors (blue out-
lined particles). (b) Distribution of cycles around this force chain;
rattlers which bear only one contact, particles delineated in dashed
outline in the figure, are excluded in a minimal cycle basis. (c)
Buckled force chain configuration, as in Fig. 1(c), with confining
neighbors and cycle membership.

the size of each cycle provides only a partial indication of the
actual void area encapsulated within that cycle of contacts.
Recall that the graph from which these cycles are determined
solely depends on connectivity; no other aspect of the physi-
cal system (e.g., particle sizes) is incorporated in this analy-
sis.

At any given strain state, a force chain will be part of
contact cycles Cy of various sizes N as exemplified in Fig. 5.
In this context, force chains are distinct from cycles in that
force chains are physical structures made up of particles,
whereas cycles are made up of contacts. We first consider the
ratio of the most dominant Cy to the total number of cycles
for each force chain and then average these for all force
chains. As shown in Fig. 6(a), the fraction of 4 cycles around
force chains is essentially constant compared to that for the 3
cycles, which decreases rapidly until the strain correspond-
ing to the peak shear stress is reached, before leveling off in
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FIG. 6. (Color online) (a),(b) Strain evolution of the average
ratio of the number of Cy to the total number of cycles around force
chains. (c) shows strain evolution of the average concentration of 3
cycles in a force chain together with shear stress.
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FIG. 7. (Color online) (a) Left: ratio of 3 cycles to all cycles
during force chain lifetime classified by nonbuckling (NBFC) and
buckling (BFC). Right: concentration of 3 cycles in a force chain
(NBFC and BFC). (b) Box plot of average ratio of number of 3
cycles per force chain particle over force chain lifetime during shear
band development. Red lines inside the boxes show the median of
the data, dots are the mean, and blue line is a straight line fit to the
mean. Red crosses represent outliers [41].

the critical state regime. The same trend can be observed
inside the shear band, although the fluctuations there are
slightly larger. Qualitatively, the average fraction of odd
cycles to the total number of cycles in a force chain is the
same as that seen for 3 cycles; conversely, the average frac-
tion of even cycles increases around force chains during the
strain-hardening regime [Fig. 6(b)]. The concentration of 3
cycles in a force chain, computed as the ratio of the number
of 3 cycles to the total number of particles in a force chain, is
shown in Fig. 6(c): as the material reacts to continued load-
ing, the major load-carrying force chains are losing the sta-
bilizing benefits of 3 cycles. One may then ask if 3 cycles
really do promote the stability of force chains.

We classify force chains into two categories: those which
do not fail by buckling [nonbuckling force chain (NBFC)]
and those which do [buckling force chain (BFC)] using the
algorithm outlined in Sec. III, and we consider if the concen-
tration of 3 cycles is higher for nonbuckling than for buck-
ling force chains throughout a chains’ lifetime. The box plots
[41] of Fig. 7(a) show that (left panel) NBFCs have a higher
number of 3 cycles compared to higher-order cycles than
BFCs and (right panel) the concentration of 3 cycles in a
NBFC is higher than in a BFC [42]. It is apparent then that
force chains with a higher concentration of 3 cycles are more
stable. We can exemplify this further by showing in Fig. 7(b)
the strain evolution of the average number of 3 cycles per
force chain particle with respect to a force chain’s lifetime
during the development of the shear band; here, a force chain
lifetime is the strain interval over which the particle chain is
classified as a force chain, as defined earlier in Sec. III. Note
that during the development of the shear band, most force
chains (97%) have a lifetime of ten increments of strain or
less. A straight line fit to the mean lifetime of these chains
(Pearson’s correlation coefficient of 0.60) clearly shows
(positive coefficient) that force chains with a higher concen-
tration of 3 cycles survive longer.

To explore the role of these stabilizing cycles further, we
now introduce the concept of a “force cycle” C{V. Analogous
to force chains in which each particle load vector magnitude
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FIG. 8. (Color online) Frequency distribution of force cycles C-}i,
for various strain states through to critical state. Inset shows corre-
sponding distribution of force chains (schemes are as inset of Fig.
2).

is above the global average, a force cycle is a cycle whose
contacts each carry above the global average of the contact
force magnitudes. Note that this cycle classification is de-
cided purely on the basis of force magnitude and not direc-
tion. Keep in mind that each of these force thresholds varies
with axial strain and qualitatively exhibits the same evolu-
tion as seen for the shear stress: monotonic increase to a peak
value at the same strain state as the peak shear stress, then a
short period of decrease with strain, before leveling off to a
near steady-state value in the critical state regime.

As shown in Figs. 8 and 9, there is a distinct difference in
the evolution of the distribution of force cycles to the general
cycle membership in Fig. 2: low-order force cycles decrease
and then increase before saturating in the critical state. This
change is greatest in the three-force cycles which undergo a
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FIG. 9. (Color online) (a) Strain evolution of the population of
three-force cycles together with the shear stress. (b) Strain evolution
of the population of buckling force chains at three different thresh-
old buckling angles together with the shear stress. Vertical green
dashed line indicates the onset of buckling force chains detected
away from the boundaries.
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FIG. 10. (Color online) Strain evolution of the population of three-force cycles together with the shear stress for two systems identical

in every respect to that considered in Fig. 9 except for the following aspects: (a) the rolling resistance is higher, i.e., rolling friction

r

=0.2 [22]; (b) the loading condition is strain-controlled biaxial compression under constant volume [21]. Vertical green dashed line indicates

onset of buckling force chains detected away from the boundaries.

drop in population to as low as 8% of its initial value. The
evolution in the population distribution of force chains is by
comparison subtle, with the greatest drop in the population
seen for three-force chains and a fall to as low as 54% of its
initial value.

Figure 9(a) shows that the rapid decrease in the popula-
tion of three-force cycles is interrupted at the strain when the
first force chain buckling occurs (around |8yy|=0.030) or
when the shear band nucleates. At this point (vertical dashed
line), the trend suddenly reverses and new three-force cycles
emerge. The growth of three-force cycles continues until the
shear band is fully developed (around |e,,|=0.038) and the
critical state commences. We observed no such decisive
trend in higher-order force cycles nor in the evolution of
either the total population of force chains or force chains of
length 3.

We tested the extent to which these findings are robust to
differences in the three main aspects of this study: (i) thresh-
olds used to detect these structures, (ii) material properties,
and (iii) loading conditions. Akin to force chains, the defini-
tion of a force cycle depends on a threshold value, namely,
the global average contact force magnitude. In Fig. 9(a) we
show by plotting the population of three-force cycles for
thresholds of 25% above and below this global average value
that the same general trends are observed. That is, there is a
drop in the number of three-force cycles followed by an in-
crease at the onset of buckling toward small fluctuations
around a steady value postpeak shear stress in the critical
state regime. Therefore, analogous to thresholds in the force
chain algorithm there is some robustness across a wide range
of values and selecting the threshold to be the average global
value appears to be a reasonable choice. Similarly, the popu-
lation of buckling force chains is shown in Fig. 9(b) for
various threshold buckling angles to demonstrate the period
of commencement of buckling. We note that in this and other
tests undertaken, there are strain states in the early stages of
loading in which the buckling algorithm detects a few force
chains buckling next to the boundaries [note the small peaks
prior to green dashed line in Fig. 9(b)]; however, these
events do not appear to trigger the persistent shear band. The

green dashed vertical line in Fig. 9(a) marks the first strain
state where a buckling force chain is detected within the
sample away from the boundaries. This onset of buckling has
been examined in detail in earlier studies using other mea-
sures such as local nonaffine measures of micropolar defor-
mation, energy dissipation, volumetric strain rate, and par-
ticle rotation (e.g., [6,21,22]). In all these studies, the shear
band nucleates just before the peak shear stress with buck-
ling force chains detected in the middle of the sample.

Notice the correlation between the low- to high-order
cycle transitions in Fig. 3 and the sudden bursts in the popu-
lation of buckling events in Fig. 9(b). This feature is consis-
tent with earlier findings from experiment and DEM simula-
tion which show that confined buckling of force chains not
only induces dilatant rearrangements among its surrounding
particles—it is also an inherently dilatant mesoscopic mecha-
nism, as is evident in the growth of encapsulated void and
cycle size in the top right portion of the buckled force chain
segment 1-2-3 in Fig. 5(c) (e.g., [21,22]).

We observed the trends uncovered above for the samples
examined in earlier studies [6,12,21,22]: these not only in-
cluded assemblies of different material properties [see, for
example, Fig. 10(a)], but also different biaxial loading con-
ditions [see, for example, Fig. 10(b)]. Compared to the
sample considered in Fig. 9, the material in Fig. 10(a) is
more resistant to interparticle rolling due to its higher rolling
resistance; note that by interparticle rolling, we mean those
contacts whose contact moment I€ is at the plastic threshold,
as defined in Eq. (3) [6]. The higher rolling friction clearly
bolsters the material’s ability to resist and thus delay the
onset of failure. This is evident in the higher peak shear
stress and corresponding strain state in Fig. 10(a) versus
those seen in Fig. 9: similarly, force chain buckling, shear
banding, and sudden growth of three-force cycles all initiate
at a higher strain than that in the weaker material in Fig. 9.

V. DUAL ROLE OF FORCE CYCLES

What then is the purpose of these newly born three-force
cycles? Do these strong cycles emerge to serve as reinforce-
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FIG. 11. (Color online) Spatial distribution of three-force cycles
(gray) together with force chains that have buckled (red) during the
development of shear band.

ments to force chains during the onset of global instability?
We found that 98% of the three-force cycles that emerge
during shear band development are part of force chains and
77% of 3 cycles share this property. Furthermore Fig. 11
shows that these three-force cycles are mainly concentrated
in the shear band: the region where instability initiates. Thus,
the escalation of three-force cycles essentially occurs at the
onset of buckling, emerging in the location where force chain
buckling concentrates (Figs. 9-11). Since earlier results sug-
gest that three-force cycles enhance stability of force chains
(92% are in NBFCs), the material appears to be rearranging
itself to counter this loss of stability at both the time and
locale of greatest need.

As three-force cycles are strong 3 cycles, they provide a
dual resistance to buckling: (i) by resisting relative rotations
and (ii) by providing strong lateral support and effectively
propping up force chains as they buckle. We found that rela-
tive rotations in three-force cycles are generally lower, as
shown in Fig. 12. In this figure, the relative incremental ro-
tations of all the contacts in the region of the shear band and
during all strain stages of its development (i.e., 0.030
= |8yy| =0.038) are first computed. The relative incremental
rotation, measured in radians, is the relative value of the
contacting particles’ rotations over a single time step in the
simulation. The shear band in this system is approximately
inclined at 45° anticlockwise to the positive x axis, with the
central axis of the band extending from the lower left to the
upper right corner of the specimen [6]. We thus approxi-
mated the region where the shear band develops to be a
straight band whose boundaries lie parallel to and within ten
particle diameters from the central axis of the shear band.
The thickness of this band region is determined from the
particle rotations averaged over all particles at fixed dis-
tances from this central axis: a plot of the distribution of
these averaged particle rotations is shown in [6]: it exhibits
an essentially even symmetry with the rotation increasing
from zero at the band boundaries to a maximum in the
middle of the band. Similarly, a relatively large gradient in
the velocity profile can also be observed along these band
boundaries [6]. These kinematical patterns are consistent
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FIG. 12. (Color online) (a) Histograms of relative particle rota-
tions at contacts in three-force cycles (black bar) and all other con-
tacts (white bar) within and during the development of the shear
band. Rotations are measured in radians. Inset: the empirical cumu-
lative distribution functions. (b) Equivalent to (a) but plotted on a
log-log scale. Contacts within three-force cycles clearly exhibit
lower relative particle rotations (frustrated) than other contacts. This
is confirmed by a Kolmogorov-Smirnov test whose null hypothesis
of samples that are drawn from the same distribution can be re-
jected at the 5% level of significance.

with those deemed to be the best indicators of shear band
boundaries in earlier studies [26,27]. All the contacts in the
shear band region are then classified into two groups: those
belonging to three-force cycles and those that do not. The
empirical distributions of the relative incremental rotations
for each group are shown in Fig. 12. A Kolmogorov-Smirnov
test shows these distributions to be distinct clearly demon-
strating that three-force cycle contacts exhibit lower relative
incremental rotations than other contacts, i.e., frustrated ro-
tations.

Figure 13(a) illustrates the dual resistance to force chain
buckling imparted by three-force cycles. We further deter-
mined the two most prevalent stabilizing conformations in
which three-force cycles emerge: 80% are arranged as con-
figuration A providing strong lateral support, whereas 20%
are arranged as configuration B so helping to prop up buck-
ling force chains [Fig. 13(b)]. However, the presence of

(a) (b)

Rotation
frustrated here

-

FIG. 13. (Color online) (a) Three-force cycles provide a dual
resistance to force chain buckling: by impeding rotation which tend
to dominate during buckling and by providing strong lateral support
with above global average forces propping up the force chain. (b)
Prevalent supporting three-force-cycle configurations of force
chains. Red particles (light) form a force chain; blue particles (dark)
may or may not form another force chain.
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three-force cycles does not always prevent instability: 14%
are present in buckling force chains (6% are in both NBFC
and BFC). The increase in three-force cycles during shear
band development appears therefore to be a last ditch attempt
of the material to stabilize the system. However, due to the
continued loading of the sample under dilatation, the effec-
tiveness of these reinforcements is only momentary. In the
end, buckling “wins.” We might therefore regard the appear-
ance of these three-force cycles to be a signature of impend-
ing failure. In comparison to three-force cycles, an increase
in the number of four-force cycles is only seen after peak
shear stress ratio, i.e., once the shear band has effectively
fully developed.

VI. SUMMARY

In summary, we have examined the role of local contact
topology around columnar particle structures known as force
chains in the context of evolving contact network cycles Cy.
A study of the evolution of Cy in the lead up to force chain
buckling, and thus shear banding, reveals that three-force
cycles are a key source of stability—effectively called upon
as reinforcements at commencement of force chain buckling
or the onset of shear banding. We have shown that newly
born three-force cycles emerge during shear band develop-
ment and are spatially concentrated in shear bands, often
existing as part of a force chain. Three-force cycles thus act
to secure and reinforce force chain columns creating a com-
petition between the combined effect of increased loading

PHYSICAL REVIEW E 81, 011302 (2010)

and dilatation of the assembly and the material’s attempts to
support the load and maintain stability. This attempt to resist
buckling in the form of three-force cycles, however, ulti-
mately proves futile. Force chain buckling wins resulting in
the full development of the shear band. This study has
brought to the fore the relevance of N cycles in a complex
network, in particular three cycles, in the development of
precursory failure events such as force chain buckling and
shear banding for dense granular systems. We have taken
steps in a number of fronts including the quantitative char-
acterization of lateral contacts around force chains and un-
covered some of the underlying structural design principles
of self-organization in dense granular materials under shear,
using techniques from graph theory. As trusses proliferate
civil engineering structures to enhance stability, this paper
has highlighted that a deforming granular material also tries
to arrange itself into analogous mutually supportive struc-
tures to prevent failure. We hope that insights gained from
studies of this kind can be one day harnessed in the design
and synthesis of discrete materials with tailor made proper-
ties.
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