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For understanding the behavior of a gas close to a channel wall it is important to model the gas-wall
interactions as detailed as possible. When using molecular dynamics simulations these interactions can be
modeled explicitly, but the computations are time consuming. Replacing the explicit wall with a wall model
reduces the computational time but the same characteristics should still remain. Elaborate wall models, such as
the Maxwell-Yamamoto model or the Cercignani-Lampis model need a phenomenological parameter (the
accommodation coefficient) for the description of the gas-wall interaction as an input. Therefore, computing
these accommodation coefficients in a reliable way is very important. In this paper, two systems (platinum
walls with either argon or xenon gas confined between them) are investigated and are used for comparison of
the accommodation coefficients for the wall models and the explicit molecular dynamics simulations. Velocity
correlations between incoming and outgoing particles colliding with the wall have been used to compare
explicit simulations and wall models even further. Furthermore, based on these velocity correlations, a method
to compute the accommodation coefficients is presented, and these newly computed accommodation coeffi-

cients are used to show improved correlation behavior for the wall models.

DOLI: 10.1103/PhysRevE.81.011203

I. INTRODUCTION

For the cooling of microdevices microchannels and
nanochannels are widely recognized as an important applica-
tion. These microdevices can be cooled locally, where the
heat is produced, in a compact and efficient way by using a
gas or liquid flowing through the nanochannels. Understand-
ing the heat transfer characteristics of these nanochannels is,
therefore, important. This is especially the case close to the
gas-solid interface. However, in systems of microsize the
underlying physics is not yet fully understood, and debate is
going on whether the macroscopic laws of physics can sim-
ply be scaled down to the microscale [1]. It appears that flow
transport properties can no longer be described adequately
by a Navier-Stokes continuum approach, since this approach
requires the size of the system being not too small and the
gas not very dilute [2]. For smaller length scales, it is pos-
sible to change the governing equations of the flow model
from the Navier-Stokes equations to the Boltzmann equation.
Nonetheless, at sufficiently small length scales the particle
behavior becomes essential and, therefore, particle simula-
tion methods are necessary. An example of such is molecular
dynamics (MD) simulations. For investigation of the gas-
solid interface MD is appropriate, since this technique allows
the walls to be modeled explicitly, as well as the gas-wall
interaction.

Recently, several MD studies investigating the influence
of the gas-solid interface interactions on the heat flow in
nanochannels have been reported, in which the behavior of a
gas confined between two plates is investigated [3-5]. In
some of these studies MD simulations are compared with
different wall models to replace the explicitly modeled walls,
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since the latter restrains the simulation size, due to the huge
amount of computational cost. Different types of boundary
conditions have been suggested over the years and used for
comparison, such as replacing the explicit wall with a wall
potential [5-7], or by using stochastic wall models instead.

In this paper, the stochastic wall models are discussed
first, followed by a set of MD simulations of two different
gas-wall systems. For each of these systems interaction pa-
rameters between the gas and the wall are determined from
so-called contact angle simulations. Based on the collision
data of the MD simulations, phenomenological parameters
(the accommodation coefficients) can be computed and used
potentially as input for the stochastic wall models. These
stochastic models are then compared to the MD simulations.
One of the most promising methods of comparison is the
velocity correlations between the incoming and outgoing ve-
locities of particles colliding with the wall. Finally, a method
to compute accommodation coefficients based on the veloc-
ity correlations is presented and compared with the explicit
wall and stochastic wall models.

II. STOCHASTIC WALL MODELS

The stochastic wall models have in common that when a
gas particle collides with the solid wall; the models generate
a new velocity for the reflecting particle, where this new
velocity is based in a certain way on the incoming velocity
[8]. The most simple conditions include the reflective and
thermal wall models [9,10]. For instance, a collision is said
to be purely reflective when the solid wall is perfectly
smooth and there exists an infinite interaction potential with
the gas particle, thus, the solid wall is a hard wall. In the
event of such a collision, a particle is send back with the
same, but reverted, velocity. Hence, the perpendicular com-
ponent of the velocity of a particle impinging on the wall is
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reversed, whereas the parallel components remain un-
changed.

On the other hand the thermal wall model assumes that
when a particle hits a rough wall it undergoes a series of
collisions with the wall, and, finally, its velocity when leav-
ing the proximity of the wall is randomized and uncorrelated
with its initial velocity. The distribution of the velocities for
particles leaving the wall is completely determined by the
temperature of the wall. This so-called thermal wall model
thus results in purely diffusive reflection. Thus, after a colli-
sion with a wall modeled by the thermal wall model a par-
ticle has no recollection whatsoever of its incoming velocity.

Both these wall models have already been proposed by
Maxwell [11], but the thermal wall model has been extended
more recently [9,12-14]. Apart from the two separate mod-
els, Maxwell also proposed a linear combination of the mod-
els, considering the real reflecting surfaces as an intermediate
between a perfectly elastic smooth surface (reflective wall)
and a perfectly absorbing surface (thermal wall) [15]. The
linear combination is governed by the accommodation coef-
ficient a, which represents the weight of the diffusion in the
gas colliding with the wall, and is by definition between zero
(reflective) and one (thermal). A more detailed discussion on
accommodation coefficients is deferred until later in this pa-
per. Recently, Yamamoto et al. adapted the Maxwell model
by allowing different accommodation coefficients for the dif-
ferent components of the velocity [16]. In this model, each
impinging particle is reflected either specularly or diffusely
at the wall, where the accommodation coefficient determines
the percentage of the particles being reflected in either way.

Another phenomenological model, like the above dis-
cussed Maxwell-Yamamoto model, is the model proposed by
Cercignani and Lampis [8,17-19] and later extended by Lord
[20-22]. This model also uses two accommodation coeffi-
cients, albeit different ones than in the case of Yamamoto’s
extension of the Maxwell model. As with all discussed mod-
els, the Cercignani-Lampis model treats the velocity compo-
nents independently.

III. MOLECULAR DYNAMICS SIMULATIONS

One of the most studied nanochannel systems, both ex-
perimental and theoretical, is that of a noble gas (e.g., argon,
xenon, or helium) confined between two metal plates (e.g.,
steel, platinum) [23-28]. Recently, numerical studies using
particle models on similar systems have been reported both
for monoatomic gases [29-35], and for diatomic molecular
gases [36,37].

In order to allow for comparison with both experimental
and other numerical studies the systems that are used in the
MD simulations are either argon (Ar) or xenon (Xe) particles
trapped between two parallel platinum (Pt) plates of different
temperatures (a warm and a cold wall). In Fig. 1, a represen-
tation of such a system is depicted. Notice that in each sys-
tem only argon or xenon is present between the walls, so no
mixtures of these gases are examined.

The masses for argon, xenon and platinum in the MD
simulations are set to 39.95, 131.3, and 195.1 amu, respec-
tively, and the diameters for each of the three particle types
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FIG. 1. An orthographic representation of the system under con-
sideration for the MD simulations. In this case the argon particles
are trapped between two parallel platinum plates, which form an
FCC lattice. The central wall is the warm wall (600 K) and the
outside walls are the cold walls (300 K). The dimensions of the
system are 50X 10X 10 nm, and the total number of atoms is ap-
proximately 28 000.

are set to 0.382 nm for argon, 0.441 nm for xenon, and 0.277
nm for platinum.

In both systems only nonbonded interactions are consid-
ered, which are all modeled using Lennard-Jones potentials.
Based on the atomic diameters the characteristic lengths o;;
for each of the atoms can readily be computed, which are
0.340 nm for argon, 0.393 nm for xenon, and 0.247 nm for
platinum. Using the Lorentz-Berthelot mixing rules the char-
acteristic lengths belonging to cross-type nonbonded interac-
tions can be computed [38].

Based on computations using the Sutton-Chen potential,
which is more applicable for metals such as platinum, a
Lennard-Jones interaction strength for the platinum-platinum
interaction of 19.42 kJ/mol is reported [39]. However, be-
cause this interaction strength is only derived around atmo-
spheric conditions, using a higher interaction strength is nec-
essary for the temperature ranges that are investigated in this
paper to prevent the crystal lattice from evaporating. There-
fore, an interaction strength of ep_p,=31.36 kJ/mol is used
for this interaction [16]. Due to this strong interaction
strength the platinum particles form an FCC lattice, which
does not melt even at higher temperatures. For the gas-gas
interactions the standard interaction strengths for argon and
xenon are used, which are e,,.4,=0.996 kJ/mol and ex..x.
=1.834 kJ/mol, respectively [40].

The only nonbonded interaction parameter not yet deter-
mined is the one for the gas-wall interactions, egw. With
respect to the heat transfer capabilities of the system this is
the most important parameter, and, therefore, it is important
to derive it accurately.

Maruyama et al. performed simulations of a liquid argon
droplet in contact with a platinum surface in order to obtain
the gas-wall interaction parameter for platinum and argon
[30]. When such a liquid droplet is placed in contact with a
solid surface, some degree of wetting occurs, which is deter-
mined by a force balance between adhesive and cohesive
forces [41]. The angle at which the droplet interface meets
the solid surface is called the contact angle. Others have used
the same technique to obtain interaction parameters for
water-carbon and water-silica interactions [42,43].

From a thermodynamical point of view the existence of
such a contact angle (or better a contact line between the
liquid, vapor, and solid interface) can be understood by as-
suming that the system is in equilibrium, and, thus, that the
chemical potential should be equal in all phases [44]. In the
case of a liquid argon droplet placed on a platinum surface,
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three phases can be distinguished: a solid phase (S, the plati-
num wall), a liquid phase (L, the droplet), and a vapor phase
(V, containing evaporated particles from the liquid droplet).
For each of the three contact interfaces the free energies can
be written down, which are ygy, ys, and vy y, respectively.
In equilibrium Young showed [45] that these three energies
are related to each other through the contact angle,

YLv €08 o= Ysv = YsL» (1)

where ¢, is the equilibrium contact angle. Because the free-
energy 7ypy for the liquid-vapor interface is related to the
interaction parameter for the gas-gas interactions egg, the
two unknowns are ygy and g . However, if it is assumed
that the difference ygy— s is proportional to the gas-wall
interaction parameter, Eq. (1) gives a linear relationship be-
tween the Lennard-Jones parameter egyw and the contact
angle ¢, [30]. It follows that a low value of the contact angle
(thus, cos ¢y=1) corresponds to a high Lennard-Jones inter-
action parameter. However, it must be noted that surface
roughness, which is eliminated from this simplified model, is
known to enhance the contact angle [46]. It is debated
whether this macroscopic derivation of the contact angle is
applicable to the microscopic scale, where the particle size
becomes important, but some studies, including this one, in-
dicate that this is at least approximately correct [47-50].

Using different interaction strengths for the platinum-
argon interaction parameter ep,_,,, Maruyama et al. showed
different contact angles of the argon droplet with the plati-
num surface, which indeed formed a linear relationship
[30,31]. Based on their contact angle simulations, Maruyama
et al. decided to use a quite wettable interaction strength
between platinum and argon of 0.538 kJ/mol. In their paper
they used as characteristic length op._,, for the platinum-
argon interaction 0.309 nm, whereas according to our calcu-
lations this should be 0.294 nm. The difference arises due to
a different computation of the nearest neighbor in the plati-
num crystal lattice. Maruyama ef al. mention that in their
platinum crystal the nearest neighbors are at 0.277 nm,
which they use as Lennard-Jones parameter op.p,. However,
in a crystal lattice the nearest neighbor is found around the
distance $20p, p. Thus, computing op, », using the Lorentz-
Berthelot mixing rules leads to a different value for opy_u,-

Therefore, to re-parameterize the gas-wall interaction pa-
rameter between platinum and argon new simulations similar
to those by Maruyama et al. need to be performed. More-
over, because Maruyama et al. only investigated platinum
and argon, these simulations have to be repeated in the case
of xenon and platinum as well. For both argon and xenon the
same simulation protocol is followed.

In this protocol, first a liquid droplet of the gas is formed
by cooling down randomly placed gas atoms from 300 K to
a temperature within the range belonging to the liquid phase
(which is 85 K for argon and 163 K for xenon, respectively).
From each of these simulations the formed droplet is ex-
tracted, dismissing any gas atoms in the vapor phase sur-
rounding the droplet. In the case of argon, this leads to a
droplet consisting of 2535 atoms (with an approximate diam-
eter of 6 nm), and for xenon to a droplet with 2338 atoms
(approximately 7 nm in diameter). Each of the droplets is
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(b)

FIG. 2. Two snapshots from the contact angle simulations for an
argon droplet near a platinum wall. In this simulation the interaction
parameter epg_a, equals 0.6 kJ/mol. In (a) the system is shown as it
is around 40 ps after the start of the simulation, and in (b) the same
system but now around 300 ps. For clarity the vapor is omitted from
the snapshots.

then placed in the proximity of a platinum solid wall of
2020 nm? and 10 layers thick. In the direction perpen-
dicular to the wall, the simulation box extended for at least
10 nm ensuring that the droplet does not interact with the
periodic image of the platinum wall.

Subsequently, for each of the two gases a series of MD
simulations are performed at the same temperatures as men-
tioned previously, with different Lennard-Jones parameters
for the gas-wall interaction strength, while keeping all other
parameters fixed. In the case of argon the range for epg,,
extends from 0.20 to 0.75 kJ/mol and for xenon the range of
epi.xe 18 from 0.20 to 1.15 kJ/mol. In both cases the interac-
tion parameters are changed with steps of 0.05 kJ/mol each
time.

Depending on the interaction parameter the droplet exhib-
its different wetting behavior. In Fig. 2, two snapshots for the
argon simulation with &ep_,,=0.6 kJ/mol are shown, one
from the beginning of the simulation (around 40 ps) and the
other toward the end of the simulation (around 300 ps). The
simulations are stopped when the droplet reaches equilib-
rium, i.e., its shape does not change anymore.

From each simulation density profiles for the final con-
figuration are computed, which are constructed in the r, ¢
plane, with the axis normal to the platinum surface going
through the center of mass of the droplet. These radial den-
sity profiles allow for the contact angle to be computed by
fitting a circle through the liquid-vapor interface and to de-
termine the angle between this circle and the platinum wall,
see Fig. 3(a).

The computations of the radial density profiles are influ-
enced by the choice of an appropriate bin size, which lead to
different contact angles. In order to reduce errors due to the
choice of the bin size, six different bin sizes are used to
compute the contact angles and each of these are treated as
different and independent contact angle measurements. Thus,
for each MD simulation with a different gas-wall interaction
parameter, six contact angles are measured, which allow for
an average contact angle to be computed along with its vari-
ance.

In Fig. 3(b) the relation between the cosine of the contact
angles and the gas-wall interaction parameter is shown. For
both argon and xenon it is clear that there exists a linear
relationship, which is stressed even more by performing a
least-squares linear fit through all measured contact angles
for each gas (giving regression coefficients of 0.96 and 0.97,
respectively). The deviations from the linear fit for small
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FIG. 3. In (a) the radial density profile for an argon droplet on a
platinum surface is shown, which is used to compute the contact
angle belonging to the Lennard-Jones interaction parameter ep.p,
=0.6 kJ/mol. The horizontal line indicates the first layer of the
platinum wall and the circle approximates the argon droplet. The
contact angle is the angle between the horizontal and the tangent
line of the circle at the contact point (dashed). In (b) the relation
between the Lennard-Jones interaction parameter and the cosine of
the contact angle is shown for both argon and xenon. The bars
denote the standard deviation found for a specific contact angle (see
text). The linear least square fits including their regression coeffi-
cients are also shown.

contact angles (so cos ¢ is close to one) are caused by the
fact that determining the contact angle is difficult when the
droplet is almost flat. Thus, these simulations indicate that
Young’s relation of Eq. (1) is valid even at the nanoscale.
Although there is now a clear relationship between the
wettability character of the gas and the interaction parameter
of the Lennard-Jones potential, the choice of the parameters
is still to be made. Because experiments on the same systems
as used in the simulations are nonexisting, this choice cannot
be confirmed on an empirical basis. Maruyama et al. choose
to use a quite wettable parameter for argon in order to pre-
vent bubble nucleation at the platinum surface [31]. For the
lack of other arguments, Maruyama’s argument to prevent
bubble nucleation is used to choose the Lennard-Jones inter-
action parameters in our systems. In Maruyama’s case the
quite wettable parameter coincides with a contact angle of
approximately 41° (cos ¢,=0.75). Using this contact angle
the interaction parameters between platinum and argon or
xenon can be deduced from Fig. 3(b), which gives for
ep.Ar=0.6580 kJ/mol and for ep_x.=1.0235 kJ/mol.

A. Simulation details

As mentioned previously in the system that is investigated
gas particles are trapped between two platinum walls at dif-
ferent temperatures. Each of the platinum walls consists of
13 520 atoms equally divided across the 10 layers of the
FCC-lattice. The lattice is only sustained by the Lennard-
Jones interactions between the platinum atoms. The centers
of the walls are separated by a distance of 25 nm, and both
walls extend approximately 10 nm in the other two direc-
tions, but due to periodic boundary conditions, the plates are
in fact infinitely large. Between each of the two plates 650
gas atoms are present, resulting in a particle density of
0.26 nm™ for each of the two channels. In order to take
advantage of the periodic boundary conditions in the direc-
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tion perpendicular to the wall, always two channels are mod-
eled at once, one with the cold wall on the left side and with
the hot wall on the right side, and vice versa for the second
channel, see Fig. 1.

Based on the particle density and geometry of the system
the Knudsen number, which is a measure of the rarefaction
of the gas, can be computed. The Knudsen number is defined
as the ratio between the mean-free path A of the atoms and
the characteristic dimension L of the system. In dilute sys-
tems, the mean free path of atoms is given by A
=(\2md?n)~", where d is the particle diameter and n the
number density, which equals the ratio of the number of
particles N and the volume V. Furthermore, the volume in the
system under investigation is V=AL, where A is the surface
area of the platinum walls and L the distance between the
walls, being the characteristic dimension of the system.
Thus, the equation of the Knudsen number reduces to Kn
=A/(\2md’N). Based on the parameters and dimensions of
the two types of systems the Knudsen numbers can be com-
puted, which are 0.24 for argon and 0.18 for xenon, respec-
tively. Because the Knudsen numbers are of the order 107/,
the continuum description is obsolete, justifying the usage of
MD simulation to describe this kind of systems [1].

In the MD simulations of the nanochannels the tempera-
tures of both walls are controlled by coupling each of the
walls separately to an external heat bath, which are both
controlled by Berendsen thermostats. One wall always re-
mains at 300 K, whereas the temperature of the other wall is
chosen from 150, 300, 360, 450, 600, or 1200 K. Collisions
of gas particles with either wall heats up or cools down the
gas, thus leading to a heat flow in the gas. Initially the gas
particles are set to have an average temperature, which is
exactly in between the two wall temperatures. It should be
noted that the gas particles are not coupled to an external
heat bath, and that their temperature change is caused only
by collisions with other particles (wall or gas). The pressure
in the system is kept at 1 bar using the Berendsen barostat.

Each simulation consists of two parts. In the first part the
system is run until equilibrium is reached, whereas the sec-
ond part is used as a production run: typically over several
million time steps (with a time step size of 2 fs). For both
systems equilibrium is always achieved within 1 ns (using
the same time step size), thus the production run is started
after the first 1 ns of simulation. Because the total number of
particles in the system is about 28 000 all simulations are
performed on multiple processors, but it still takes about 15 h
to compute a 1 ns trajectory on six processors.

B. Tracking of collisions

During the production run part of the simulations, the gas
particles that collide with either wall (cold or warm) have
been traced. In the case of a hard wall, a collision is well
defined, but when the wall is modeled explicitly using inter-
action potentials, such a collision is less well defined. There-
fore, for every particle moving toward the wall which crosses
a virtual border, its three velocity components are logged.
When the particle crosses the virtual border again, this time
moving away from the wall, its velocity components are
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logged again. This event of crossing the virtual border is now
called a collision. Thus, for every particle colliding with the
wall, its incoming and outgoing velocity components are
known, and, consequently, also is the change in kinetic en-
ergy due to the collision with the wall. Due to the low den-
sity of the system, gas-gas interactions near the wall are in-
frequent, but if they occur, they are included as a gas-wall
interaction. Moreover, the residence time of the collision (the
time between the first and the last logging) is recorded as
well. The location of the virtual border is important and is
determined by two factors. First the virtual border has to be
far enough away from the wall in order to prevent particles
still to be influenced by the wall, i.e., the interaction potential
equals zero at this distance. Second, the upper limit for the
location of the virtual border is determined by the mean free
path of the gas particles.

The first restriction requests the virtual border to be lo-
cated at least at the truncation point of the Lennard-Jones
potential for the gas-wall interaction, which equals 0.734 nm
for argon and 0.916 nm for xenon. Although the mean free
path gives the average distance a gas particle can travel be-
fore it collides with another gas particle, collisions between
particles can occur after traveling a much shorter distance.
Therefore, to prevent gas-gas interactions to influence the
result of the collision, the virtual border is placed at exactly
the truncation point of the potential. The number of colli-
sions recorded at one wall depends on the temperature of the
system, but is typically around 100 000 for 10 ns of simula-
tion (production run) at the current particle density.

IV. COMPUTING ACCOMMODATION COEFFICIENTS

When gas particles collide with a surface, they exchange
heat. In other words, the velocity of the gas particle is
changed by the collision with the wall in such a way that, on
average, the temperature of the gas is closer to the tempera-
ture of the wall. A phenomenological parameter that de-
scribes the amount of adaptation to the wall temperature is
the so-called accommodation coefficient, which has been
previously introduced.

When the different stochastic wall models have been in-
troduced previously, it is mentioned that several types of
accommodation coefficients are necessary for each of these
models, which can be computed in different ways. For in-
stance one of the methods to compute the accommodation
coefficient is to look at the temperature gradient across a
nanochannel and split the contributions for particles moving
toward and away from the wall [51]. One can then deduce a
temperature for incoming and outgoing particles and, when
compared to the wall temperature, this gives an accommoda-
tion coefficient. Another approach is to look at the velocity
change upon collision, and to compute the accommodation
coefficient based on the average incoming and outgoing ve-
locities, and on the expected average velocity belonging to
the wall with a specific temperature [16]. In the latter ap-
proach it is also possible to look at energies or heat fluxes
instead of velocities only.

Accommodation coefficients are very sensitive to many
gas and surface conditions, and, consequently, the method to
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TABLE 1. Based on the equations for the thermal wall it is
possible to compute the expected values for several observables,
e.g., the velocity or the energy. As mentioned in the text the ex-
pected values for the energy are proportional to their expected val-
ues for specific velocities, apart from some constants. Therefore, in
this table, only the expected values for specific velocity types are
shown.

Direction Velocity Energy

Parallel (vy=0 (vﬁ) = %
Perpendicular (v)= %T Y % (vg) = %BT
Total <U>=3%T VMTBT <Uz>=4i_?T

compute the accommodation coefficient is very important
[34]. Regardless of either method described above, the gen-
eral form of the equation for both methods that gives the
accommodation coefficient is

_ (kp) = (ko)

= <K1> - (K1) '

where « can be any quantity, such as the velocity in the
parallel direction or the total energy. The brackets denote that
the average values for these quantities need to be computed,
and the subscripts denote whether the average value is to be
computed from the incoming (I) particles, the outgoing (O)
particles, or from the thermal wall distribution (T).

Using the recorded velocity components of the collisions
at one of the walls in the MD simulation it is possible to
compute an accommodation coefficient belonging to that
wall in that specific system. For instance, in the case of the
simulation with argon trapped between two platinum walls
(one at 300 K and the other at 600 K), the perpendicular
velocity accommodation coefficient for the wall at 300 K can
be computed using Eq. (2), where « is replaced by v..

Although the MD simulations provide values for {x;) and
(Ko), the value for (kp) needs to be computed from the ther-
mal wall distribution [52]. In Table I, several expected values
(for the velocity and energy) for the thermal wall distribution
are listed. These values can immediately be used in Eq. (2) to
compute the accommodation coefficient.

The accuracy at which the accommodation coefficient is
known depends on the accuracy at which the expected values
for specific quantities are measured. Thus, it is important to
have sufficient independent measurements to allow for an
accurate computation of the expected values. In the case of
the tracking of the collisions in the MD simulations, this
accuracy is determined by the number of collisions that are
recorded.

In order to know how many collisions allow for sufficient
statistical accuracy one MD simulation of 100 ns time span
is performed. In this simulation one wall is at 300 K and the
other at 1200 K. During these 100 ns a total of approxi-
mately 1 million collisions per wall is recorded. Using Eq.
(2) first the accommodation coefficient is computed if only
one collision is taken into account, followed by taking two
collisions into account, and so on until all collisions are

()
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TABLE II. Accommodation coefficients for different gas-wall systems (shown as blocks of two rows). The system with both walls at 300
K is omitted from this table as explained in the text. The first column indicates the temperature of the wall. The next four columns give the
accommodation coefficient for the three velocity components and the absolute velocity. The last four columns give the accommodation
coefficient for the three energy components and the total energy. Between the brackets the standard deviation for each computed value is

given.
Accommodation coefficients for Pt-Ar

T (K) @, @, a, a, ag, ag, ag. ag
150 0.71 (0.00) 0.70 (0.00) 0.47 (0.02) 0.41 (0.02) 0.34 (0.03) 0.34 (0.04)  0.50 (0.02) 0.43 (0.02)
300 0.61 (0.00) 0.60 (0.01) 0.47 (0.01) 0.40 (0.01) 0.28 (0.03) 0.28 (0.02)  0.46 (0.01) 0.37 (0.01)
300 0.55 (0.01) 0.55 (0.00) 0.45 (0.12) 0.35 (0.11) 0.21 (0.31) 0.26 (0.11) 0.46 (0.10) 0.35 (0.11)
360 0.52 (0.01) 0.53 (0.01) 0.46 (0.11) 0.36 (0.08) 0.22 (0.08) 0.21 (0.11) 0.46 (0.10) 0.35 (0.07)
300 0.53 (0.01) 0.53 (0.01) 0.43 (0.03) 0.34 (0.03) 0.24 (0.06) 0.22 (0.07)  0.45 (0.04) 0.35 (0.04)
450 0.49 (0.01) 0.49 (0.00) 0.44 (0.03) 0.34 (0.02) 0.21 (0.03) 0.19 (0.04)  0.44 (0.04) 0.32 (0.02)
300 0.50 (0.00) 0.51 (0.00) 0.40 (0.02) 0.31 (0.01) 0.21 (0.03)  0.22 (0.02)  0.44 (0.02) 0.33 (0.01)
600 0.45 (0.01) 0.44 (0.01) 0.43 (0.02) 0.32 (0.01) 0.17 (0.03) 0.19 (0.02)  0.42 (0.01) 0.30 (0.01)
300 0.46 (0.01) 0.46 (0.01) 0.36 (0.01) 0.27 (0.02) 0.19 (0.02) 0.19 (0.03)  0.42 (0.01) 0.31 (0.02)
1200 0.40 (0.00) 0.40 (0.01) 0.44 (0.01) 0.32 (0.02) 0.17 (0.02)  0.17 (0.03)  0.42 (0.01) 0.29 (0.02)

Accommodation coefficients for Pt-Xe

T (K) @, a,, @, a, ag, ag ap ag
150 0.90 (0.01) 0.90 (0.00) 0.50 (0.11) 0.50 (0.12) 0.54 (0.15) 0.55 (0.17)  0.62 (0.07) 0.59 (0.09)
300 0.67 (0.02) 0.67 (0.01) 0.61 (0.03) 0.54 (0.02) 0.40 (0.05) 0.42 (0.04)  0.60 (0.03) 0.51 (0.02)
300 0.65 (0.00) 0.65 (0.01) 0.55 (0.03) 0.45 (0.02) 0.34 (0.08) 0.33 (0.07)  0.59 (0.02) 0.47 (0.02)
450 0.56 (0.01) 0.55 (0.01) 0.54 (0.04) 0.43 (0.04) 0.27 (0.09)  0.30 (0.07)  0.55 (0.03) 0.43 (0.04)
300 0.64 (0.01) 0.64 (0.00) 0.53 (0.02) 0.44 (0.01) 0.36 (0.03) 0.34 (0.04)  0.57 (0.02) 0.46 (0.01)
600 0.49 (0.01) 0.50 (0.01) 0.56 (0.02) 0.43 (0.02) 0.27 (0.04) 0.25 (0.04)  0.56 (0.02) 0.42 (0.02)

taken into account. It is observed that when at least more
than 100 000 collisions are taken into account, the computa-
tion of the accommodation coefficients is always accurate
enough. When the accommodation coefficients are computed
for the velocity components only, the value with acceptable
accuracy is already reached when around 30 000 collisions
are taken into account. Because the MD simulations typically
span several tens of nanoseconds, enough collisions are
present to compute the accommodation coefficients accu-
rately.

To facilitate better error estimation when computing ac-
commodation coefficients, the set of recorded collisions for
one wall from a specific system is divided into several sub-
sets of equal size, and for each of these subsets the average
incoming and outgoing velocities are subsequently com-
puted. These averaged velocities are then used together to
compute the overall average velocities. Mathematically this
trick does not change the value for average velocities, but
based on the intermediate average velocities it is possible to
compute a standard deviation for that specific velocity. For
instance, if the average incoming velocity in the perpendicu-
lar direction of one subset is denoted by v, then the average
value for the entire set is given by (v):tﬁﬁé, where the
sum is over all M subsets and where i denotes a specific

subset. The standard deviation of this velocity component
Av, is then given by Av§=$2(ﬁi—(vz>)2. Having the stan-
dard deviation for all velocity and energy components « al-
lows, following the form of Eq. (2), to compute the standard
deviation for the accommodation coefficient (Aea,) as fol-
lows:

_ [{ko) = (k)| Ak + [{k) = (k)| Ako
“ (<K1> - <KT>)2

Using the above method to compute both the average and
standard deviation for the accommodation coefficients, eight
different accommodation coefficients are computed for each
wall in all platinum-argon and platinum-xenon simulations.
These eight accommodation coefficients are for the three ve-
locity components (avx, @, , and «, ), the total velocity (a,),
the three energy components (aEx, ag , and aE), and the total
energy (ag). In Table II, a complete) overview for all com-
puted accommodation coefficients can be found.

This table shows several interesting phenomena, for in-
stance, when the overall temperature of the system increases
(i.e., when the warm wall gets hotter), all of the accommo-
dation coefficients decrease. Furthermore, the colder wall in
each simulation always has a higher accommodation coeffi-

Aa

3)
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cient than the warm wall. The differences between all types
of accommodation coefficients for each wall temperature are
also consistent throughout all simulations. Thus, the accom-
modation coefficients for the parallel velocity components
are always larger than the accommodation coefficient for the
perpendicular velocity, which is again larger than the accom-
modation coefficient for the total velocity. With the energies,
the highest accommodation coefficient is always found for
the perpendicular component of energy, while the accommo-
dation coefficient of the parallel components of the energy
this time have the lowest values. The only deviations are
found for the accommodation coefficient of the perpendicu-
lar velocity with the higher temperature ranges (600 K for
xenon and 1200 K for argon). It can also be observed that on
average the accommodation coefficients based on the energy
are lower than for those based on the velocities. The overall
standard deviations for the accommodation coefficients are
low, except when the two wall temperatures are close to each
other (e.g., for argon when the warm wall is at 360 K), and
for the platinum-xenon case with the lowest wall temperature
(150 K).

The only simulations that are omitted from Table II are
the simulations where both walls have the same temperature
(300 K in this case). The main reason for this is that it is then
impossible to compute an accurate accommodation coeffi-
cient using Eq. (2), because the denominator is almost zero
when the temperature of the gas (i.e., (kp)) is close to the
thermal equilibrium (i.e., («x1)). The same phenomenon also
causes the higher standard deviations when the wall for the
platinum-argon system is at 360 K, because the denominator
is then near zero. This immediately shows that it is not pos-
sible, using Eq. (2), to compute the accommodation coeffi-
cients for a system with no heat flow, i.e., with two walls at
almost the same temperature.

The main difference between the argon and xenon accom-
modation coefficients (those of xenon being higher on aver-
age) is due to the higher interaction strength with platinum
for xenon. This allows for stronger attraction of xenon par-
ticles to the platinum wall and, thus, more energy transfer,
giving rise to higher accommodation coefficients. For the
lowest temperature (150 K) this even caused xenon atoms to
stick to the wall for a long period of time, forming a layer on
top of the platinum wall. Other xenon particles now collide
with the liquid xenon layer rather than with the wall, but are
still counted as collisions with the wall, leading to more er-
ratic reflection causing the higher standard deviations. Simu-
lations for the same system with the gas-gas interaction set to
zero (i.e., the case of free molecular flow), showed this stan-
dard deviation to return to its normal values, indicating that
the condensation of xenon indeed caused the higher standard
deviations.

V. WALL MODEL SIMULATIONS

Previously, four different stochastic wall models have
been discussed. These models can be implemented as bound-
ary conditions in the MD simulations to replace the solid
platinum wall, and new simulations can be performed. How-
ever, due to the different boundary conditions a different
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behavior for the gas is to be expected. The systems eventu-
ally will reach thermal equilibrium, but this is not necessarily
the same type of thermal equilibrium as for the same system
modeled using explicit platinum walls. Comparison of the
wall models with the explicit solid wall is then not straight-
forward.

A better method is to use the recorded incoming velocities
from the MD simulations as input for the wall models and to
compute the new outgoing velocities accordingly. The ad-
vantage in the comparison with the explicit wall simulations
is that in this case the same incoming distributions of veloci-
ties are used. Because the number of recorded collisions in
the MD simulations is large, i.e., the incoming velocity dis-
tributions are smooth, accurate outgoing velocity distribu-
tions can be computed for each wall model.

However, in order to compute the new velocities for the
Maxwell-Yamamoto model and the Cercignani-Lampis
model, some accommodation coefficients are needed as input
parameters for these models. In the case of the Maxwell-
Yamamoto model, these parameters are the accommodation
coefficient for the perpendicular velocity component «, and
the accommodation coefficient for the total energy ay. With
the Cercignani-Lampis model, the accommodation coeffi-
cient for the parallel velocity @, and for the perpendicular
component of the energy ap are needed. For each wall in
each different simulation these values can be obtained from
Table II.

Thus, for all types of systems that have been examined
using the MD simulations with the explicit platinum wall,
the new outgoing velocities have been computed for all four
stochastic wall models. Subsequently it is possible to com-
pute the accommodation coefficients using the similar proce-
dure as with the explicit platinum walls.

Obviously, the accommodation coefficients in the case of
the reflective or thermal wall are all, respectively, zero or
one, but this is not necessarily the case for the accommoda-
tion coefficients for the Maxwell-Yamamoto model and
Cercignani-Lampis model. In Table III, accommodation co-
efficients for the Maxwell-Yamamoto model and Cercignani-
Lampis model are shown for argon and platinum walls at
150, 300, and 600 K.

Comparing the results for the Maxwell-Yamamoto model
and the Cercignani-Lampis model with the results for the
explicitly modeled platinum walls shows that the accommo-
dation coefficients are not the same for the two wall models
and are also different from the computed accommodation
coefficients for the explicit walls. Only the accommodation
coefficients for the parallel velocity components computed
from the Cercignani-Lampis model and the accommodation
coefficients for the perpendicular velocity component from
the Maxwell-Yamamoto model are the same as those com-
puted from the explicit walls.

It is interesting to see whether the accommodation coef-
ficients are recovered that have been used as input param-
eters for the two models. It can be seen that whenever an
accommodation coefficient based on a parallel velocity com-
ponent is used in a model, this accommodation coefficient is
recovered. However, this is not the case for the accommoda-
tion coefficients based on energy components. Apparently,
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TABLE III. Examples of accommodation coefficients for two different platinum-argon systems with the boundaries modeled by the
Maxwell-Yamamoto model and the Cercignani-Lampis model, with the input accommodation coefficients obtained from Table II. The same

legend for the table is used as with Table II.

Accommodation coefficients for the Maxwell-Yamamoto model

T (K) @, @, @, a, ag, ag ap ag
150 0.43 (0.01)  0.43 (0.01) 046 (0.01)  0.43 (0.01) 042 (0.02)  0.41(0.03) 0.46 (0.02)  0.44 (0.01)
300 0.37 (0.00)  0.37 (0.01)  0.48 (0.02)  0.43 (0.01) 0.36 (0.03)  0.36 (0.03)  0.48 (0.02)  0.42 (0.01)
300 0.33 (0.00)  0.33 (0.00)  0.40 (0.02)  0.36 (0.01) 0.33 (0.01)  0.33 (0.01)  0.40 (0.02)  0.37 (0.01)
600 0.30 (0.01)  0.30 (0.01)  0.44 (0.01)  0.38 (0.01) 0.30 (0.03)  0.30 (0.01)  0.44 (0.01)  0.37 (0.01)

Accommodation coefficients for the Cercignani-Lampis model

T (K) a, N av\_ av, a, afp » aEV aE, afp
150 0.71 (0.00)  0.70 (0.01)  0.36 (0.02)  0.61 (0.01) 0.90 (0.01)  0.91 (0.01)  0.38 (0.02)  0.63 (0.01)
300 0.61 (0.01)  0.60 (0.01) 024 (0.02)  0.55 (0.01) 0.87 (0.02)  0.83 (0.03)  0.24 (0.02)  0.54 (0.01)
300 0.50 (0.00)  0.51 (0.00)  0.24 (0.02)  0.48 (0.01) 0.75 (0.01)  0.76 (0.01)  0.25 (0.02)  0.49 (0.01)
600 0.46 (0.01)  0.44 (0.00)  0.12 (0.03)  0.42 (0.01) 0.69 (0.02)  0.69 (0.01)  0.13 (0.02)  0.40 (0.01)

neither of the two models generates the correct distribution
for the energy components, nor does it for the perpendicular
and total velocity distributions.

VI. VELOCITY CORRELATIONS

Besides the computation of the accommodation coeffi-
cients using the recorded incoming and outgoing velocities
upon a collision with the wall, it is also possible to look at
the incoming and outgoing velocity distributions [16,53,54].
Moreover, this also allows for a new, more extensive, way of
comparison between the explicit walls and stochastic walls
models, because the same recorded velocities allow to inves-
tigate the correlation between incoming and outgoing veloci-
ties. To emphasize the power of this new comparison method
the systems with the warm walls at 150 and 300 K are used
as an example.

These correlations between incoming and outgoing ve-
locities can be depicted as a two dimensional probability
distribution profile, which gives for a specific incoming ve-
locity the distribution of outgoing velocities. Such correla-
tion profiles can be constructed for each velocity component
or for the total velocity.

In the case of the reflective wall model, a strong correla-
tion is to be expected between incoming and outgoing ve-
locities, since particles are reflected with the same velocity,
only the direction is reversed. In a correlation profile this
shows up as a diagonal line. On the other hand, because the
thermal wall model applies diffusive reflection, no correla-
tion is expected at all, which can be seen in a correlation
profile as a two-dimensional Gaussian probability density
function. Because both the reflective and the thermal wall
describe the wall reflection in the limits of pure reflective or
pure diffusive behavior, the results from other wall models as
well as explicitly modeled walls are expected to be in be-
tween these two extremes.

In Fig. 4 the velocity correlation profiles for the platinum-
argon system with the wall at 150 K are shown for all wall
models discussed in this paper. In this figure, the first column
gives the correlation for the parallel component of the veloc-
ity, the second column for the perpendicular component,
whereas the third column gives the correlation for the abso-
lute velocity. It has to be mentioned that in the case of the
perpendicular velocity components both the incoming and
outgoing velocity are given a positive value for clarity in the
figure (because the velocity is reversed upon collision, the
incoming and outgoing velocities should have an opposite
sign). In all velocity correlation profiles the dashed lines in-
dicate the cases for perfect reflection (diagonal) and perfect
diffusion (horizontal) for a wall with a temperature of 150 K.
Finally, the last column gives the distributions of the outgo-
ing velocities (both the perpendicular and parallel compo-
nent, solid lines) in comparison with the same distributions
obtained from the MD simulation (dashed). On the first row
the results from the simulation with explicit modeled walls
are shown, followed by the results for the reflective and ther-
mal wall models. Thereafter, the correlations and distribu-
tions from the Maxwell-Yamamoto model and the
Cercignani-Lampis model are given.

The MD simulation with explicit walls clearly shows a
correlation between incoming and outgoing velocities. Fur-
thermore, the correlation profile for the perpendicular veloc-
ity component is not symmetrical along the diagonal line,
indicating that the incoming gas on average leaves the wall
with a lower temperature. This is in agreement with the fact
that in the simulation with one wall at 150 K the other wall
is at 300 K, and particles approaching the cold wall just
came from the warm wall, and, thus, should be cooled down
by this wall.

The velocity correlation profiles for the reflective wall
show that there is a very high correlation between incoming
and outgoing velocities, which is to be expected due to the
nature of the reflective wall model. On the other hand the
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FIG. 4. Velocity correlation distributions for the 150 K wall in the platinum-argon system. These distributions are for incoming and
outgoing velocities for the velocity components indicated at the bottom of each column. On the x axis always is the incoming velocity and
on the y axis the outgoing velocity, both in nm/ps. The dashed lines indicate the reflective (diagonal) and thermal (horizontal) cases. In the
last column the corresponding velocity distributions (perpendicular black and parallel gray) for the reflecting particles (circles) are shown in
comparison with the distribution obtained from the explicit wall simulations (dashed), with the outgoing velocity on the x axis and the
probability on the y axis.
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thermal wall indeed shows no correlation, which can be best
observed from the correlation distribution for the parallel
direction. In this correlation profile the shape of the distribu-
tion is perfectly ellipsoid. If the wall would have had the
same temperature as the incoming gas particles on average,
the shape would be spherical. The elliptical behavior thus
indicates that the thermal wall cools down the gas.

The Maxwell-Yamamoto model shows a very different
correlation with respect to the explicit wall simulation. Re-
call from the discussion of the Maxwell-Yamamoto model
that a particle is reflected either specularly or diffusively.
Consequently, in the correlation profiles both the reflective
and thermal wall correlation distributions can be identified.

Finally, the Cercignani-Lampis model shows better com-
parison with the MD simulation. Although the shapes of the
distributions are not exactly the same, similar characteristics
are recovered, such as the diagonal orientation of the corre-
lation distribution for the parallel velocity components. Also
the shape of the distribution for the total velocity is very
similar to the distribution from the explicit wall simulation.

Turning the attention to the distribution profiles (the last
column in Fig. 4), different observations can be made. All of
the four wall models are in good agreement with the distri-
butions for the explicit wall simulation, especially the
Maxwell-Yamamoto model and Cercignani-Lampis model.

So, where the distribution profiles (the last column in the
figure) give the impression that all wall models are in good
agreement with the explicit wall simulation, it is from the
velocity correlation distribution that it can be observed that
only the Cercignani-Lampis model compares well with the
explicit wall simulation on both analysis methods.

In Fig. 5 a similar figure is shown, but this time for the
wall at 600 K. This time the comparison of correlation dis-
tributions shows a similar result as for the 150 K wall. How-
ever, the distribution for the parallel component of the
Cercignani-Lampis model is far more elliptical than the
shape for the same distribution in the explicit wall simula-
tion, which is more of a diamond shape. The velocity distri-
butions in the last column of the figure show that the reflec-
tive wall, the thermal wall, and the Cercignani-Lampis
model performs less than with the wall at 150 K. Only the
Maxwell-Yamamoto model always retains the same velocity
distribution as the explicit wall model, but has a very poor
correlation distribution comparison.

VII. VELOCITY CORRELATIONS TO COMPUTE
ACCOMMODATION COEFFICIENTS

Based on the recorded velocity components of particles
colliding with the wall, it is previously shown to be possible
to compute accommodation coefficients with good accuracy.
However, when the walls in the system both have the same
temperature and the system is in thermal equilibrium, the
accommodation coefficients can no longer be computed us-
ing the widely accepted Eq. (2), because division by almost
zero occurs. Therefore, the general method to compute the
accommodation coefficient is not always applicable.

A different method to compute the accommodation coef-
ficients is provided by the velocity correlation profiles. As
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mentioned previously, in the case of a reflective wall a very
strong correlation is to be expected, and no correlation at all
in the case of a thermal wall (diffusive collisions). Thus, if
the velocity correlation for a specific wall is close to the
velocity correlation belonging to the reflective wall the ac-
commodation coefficient is zero, whereas if the correlation is
much more such as the thermal wall correlation, the accom-
modation coefficient is close to one.

An easy method to compute the accommodation coeffi-
cient based on this observation is to compute a line that best
fits the collision data based on a least-squares approximation,
and to compare this line with the diagonal (reflective colli-
sions) and horizontal (diffusive collisions) lines from the cor-
relation distributions. If the line has the same slope as the
diagonal the accommodation coefficient is said to be zero,
and when the line has the same slope as the horizontal line
the accommodation coefficient is one. Consequently, the ac-
commodation coefficient is given by a=1- 3, where 3 is the
slope of the least-squares fitted line. In terms of the recorded
incoming and outgoing quantities «, the accommodation co-
efficient using this method can thus be written as

S (= () (y = (ko))

a.=1- - , (4)
2 (k= (p))?

i

where each sum is over all recorded collisions for that spe-
cific quantity . The subscripts indicate again whether the
quantities belong to the I or O velocities, and the brackets
indicate as usual the average values.

In Fig. 6 velocity correlation profiles for the platinum-
xenon case are shown (with either the 150 or 600 K wall)
together with the least-squares fitted line (solid). Also the
point belonging to the average incoming and outgoing veloc-
ity is depicted (circle), through which the least-squares fitted
line passes.

From this figure it can be seen that when the shape of the
velocity correlation is close to the thermal wall correlation
[compare Figs. 6(a) and 6(c) with the third row in Fig. 4], the
least-squares line is almost horizontal. Similarly, if the least-
squares line is close to the diagonal, the velocity correlation
resembles the correlation from the reflective wall better [see
Figs. 6(b) and the top leftmost correlation in Fig. 5].

In Table IV, an overview of the accommodation coeffi-
cients for some of the systems are shown as computed from
the velocity correlations. This time the system with both
walls at 300 K is included, showing that using this method, it
is possible to compute an accurate accommodation coeffi-
cient for a system in thermal equilibrium.

So far only velocity correlation profiles have been con-
structed, but based upon the recorded incoming and outgoing
velocity components it is also possible to compute energy
correlation profiles. Using a similar least square fitting pro-
cedure as with the velocity correlation profiles, also accom-
modation coefficients for the energy can be computed, which
are included in Table IV as well.

The same overall observation as with the accommodation
coefficients computed using the traditional method can be
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FIG. 5. Velocity correlation distributions for the 600 K wall in the platinum-argon system. These distributions are for incoming and
outgoing velocities for the velocity components indicated at the bottom of each column. On the x axis always is the incoming velocity and
on the y axis the outgoing velocity, both in nm/ps. The dashed lines indicate the reflective (diagonal) and thermal (horizontal) cases. In the
last column the corresponding velocity distributions (perpendicular black and parallel gray) for the reflecting particles (circles) are shown in
comparison with the distribution obtained from the explicit wall simulations (dashed), with the outgoing velocity on the x axis and the
probability on the y axis.
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FIG. 6. Velocity correlations for the platinum-xenon system with 150 K wall (a and c) and the 600 K wall (b and d), with the incoming
velocity on the x-axis and the outgoing velocity on the y axis, both in nm/ps. Both the parallel (a and b) and the perpendicular (¢ and d)
correlation profiles are shown. In all figures the mean value for the incoming and outgoing velocities is depicted by the circle, whereas the
solid line indicated the linear least square fit through all collision data.

made, e.g., the accommodation coefficient decreases when
the temperature increases. However, whereas the accommo-
dation coefficients for the parallel velocities from this table
are more or less in agreement with the previously reported
table, this is not the case for the accommodation coefficients
for the perpendicular velocity. On general they are much
higher and the decrease of the accommodation coefficient
with increasing temperature is not very profound.
Previously the accommodation coefficients computed us-
ing the traditional method have been used as input for the
Cercignani-Lampis model. However, also the newly com-
puted accommodation coefficients based on the linear least
squares can be used as input for the Cercignani-Lampis
model. In Fig. 7 the velocity correlations for the perpendicu-
lar directions are shown for the explicit wall simulations for
platinum-argon with the wall at 600 K, for the same wall
using the Cercignani-Lampis model based on the original

accommodation coefficients from Table II, and the
Cercignani-Lampis model using the accommodation coeffi-
cients computed using the linear least-squares method.
From this figure it is clear that using the newly computed
accommodation coefficients improves the velocity correla-
tions for the perpendicular velocity considerably. Whereas,
in the case of using the old accommodation coefficients the
shape of the correlation is far more elliptical, the shape of the
correlations for new accommodation coefficients is far more
in agreement with the explicit simulations. Also, the outgo-
ing velocity distribution in the perpendicular direction [see
Fig. 7(d)] aligns almost perfectly with the distribution from
the explicit wall simulation (compare with the rightmost fig-
ure on the last row of Fig. 5). Moreover, recomputing the
accommodation coefficient a_from the perpendicular veloc-
ity correlation shows that it is also in reasonable agreement
with the accommodation coefficient ez used as input (0.57

TABLE IV. An overview of different accommodation coefficients computed based on the velocity or
energy correlation distributions. The legend is the same as in Tables II and III. For the simulation with both
walls at 300 K only one row is included, because the walls are thermally equal.

Accommodation coefficients for Pt-Ar

T (K) @, ' a, y av7 a, ag X ag y ag_ ag
150 0.67 0.67 0.76 0.56 0.76 0.75 0.75 0.53
300 0.57 0.57 0.79 0.55 0.70 0.69 0.75 0.47
300 0.53 0.53 0.73 0.49 0.65 0.66 0.70 0.44
300 0.48 0.48 0.67 0.41 0.60 0.60 0.67 0.40
600 0.42 0.42 0.71 0.45 0.57 0.56 0.65 0.38

Accommodation coefficients for Pt-Xe

T (K) a, , . a, ag, aE, ag, ag
150 0.89 0.90 0.93 0.90 0.93 0.93 0.93 0.89
300 0.64 0.64 0.87 0.71 0.76 0.76 0.83 0.65
300 0.66 0.66 0.82 0.67 0.75 0.76 0.81 0.63
300 0.61 0.61 0.78 0.62 0.71 0.72 0.78 0.61
600 0.47 0.48 0.78 0.59 0.61 0.62 0.75 0.53
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FIG. 7. In (a) the velocity correlations from the explicit wall simulation for platinum-argon at the 600 K wall is shown, and in (b) the
correlations from the Cercignani-Lampis model (CL) using the accommodation coefficients computed using Eq. (2) are shown. In (c) the
same correlations but now from the Cercignani-Lampis model using as input parameters the accommodation coefficients derived using the
linear least-squares method, see Table IV, are shown. In all these three figures the incoming velocity is on the x axis and the outgoing
velocity on the y axis, both in nm/ps. In (d) the velocity distributions (perpendicular black and parallel gray) of the Cercignani-Lampis model
with the new accommodation coefficients is shown compared with the explicit wall simulations (dashed line), with the outgoing velocity on

the x axis and the probability on the y axis.

vs 0.65). Thus, this method of computing the accommoda-
tion coefficients, based on the linear least square fitting pro-
cedure, does not only give better outgoing velocity distribu-
tion, but also better velocity correlation profiles.

VIII. DISCUSSION AND CONCLUSION

To remove the computational demanding solid walls from
MD simulations stochastic wall models are often used. The
most common stochastic wall models to encounter are (in
order of complexity) the reflective wall model, the thermal
wall model, the Maxwell-Yamamoto model, and the
Cercignani-Lampis model. In this paper these stochastic
models are compared with MD simulations using an explic-
itly modeled solid wall.

The two systems that have been examined with either the
explicit or the stochastic walls are those of a gas (argon or
xenon) trapped between two platinum walls of different tem-
perature. In order to be able to perform the simulations a set
of appropriate parameters is needed. For the gas-gas and
wall-wall interactions consistent parameters are found
throughout literature. However, in the case of the gas-wall
interactions this is not the case. For the platinum-argon in-
teraction, Maruyama ef al. performed so-called contact angle
simulations to use the wettability character of argon to deter-
mine an appropriate Lennard-Jones interaction parameter.
Unfortunately, Maruyama made a mistake in computing the
characteristic length o belonging to the platinum-argon inter-
action, which leads to a different wettability behavior. Thus,
to compute the interaction parameters, Maruyama’s simula-
tions are repeated with the correct characteristic length. Us-
ing the same wettability argument, Lennard-Jones interaction
parameters for the platinum-argon and platinum-xenon inter-
action are derived. Many other researchers have used
Maruyama’s parameters [29,55-59], but because the differ-
ence between the current and Maruyama’s platinum-argon
interaction parameter is significant (0.658 kJ/mol versus
0.538 kJ/mol respectively, both based on the same wettability
argument of a 41° contact angle), the results of their simula-
tions are debatable. Although the contact angle simulations

allowed to compute new Lennard-Jones interaction param-
eters for both platinum-argon and platinum-xenon, the lack
of experimental data of similar contact angles makes it hard
to justify the choice of the parameters.

It is not uncommon to encounter, as a different model to
describe gas-wall interactions, a modified version of the
Lennard-Jones potential, which independently scales the in-
teraction parameter & for the repulsive and for the attractive
part of the potential [60-62]. A straightforward, but very
questionable, approach to model the gas-wall interactions
that is used sometimes is to get the interaction parameter &
from the Lorentz-Berthelot mixing rules [63]. Both of these
different Lennard-Jones models and parameters are almost
exclusively used for the platinum-argon case; different types
of systems are rarely reported.

In the MD simulations with explicitly modeled platinum
walls, the collisions of the gas particles with either platinum
wall (which are at different temperatures) are recorded.
Based on this collision data it is shown to be possible to
compute the accommodation coefficients for each wall tem-
perature in each system using the traditional relationship as
given by Eq. (2). In Table II these accommodation coeffi-
cients are presented.

In their work, Yamamoto et al. report several different
accommodation coefficients for the platinum-xenon systems
[16]. Comparing their accommodation coefficients (for the
same Knudsen number and temperature) with the ones from
Table II shows poor agreement for all temperatures and types
of accommodation coefficients. The differences are most
probably due to the use of the different potential (Morse vs
Lennard-Jones) with the choice of parameters discussed pre-
viously. Comparison with experimental result is difficult, be-
cause such results are almost nonexisting. Sharipov et al.
report experimental accommodation coefficients for rarefied
gas flows (including xenon and argon) in a glass tube with
accommodation coefficients close to unity [64], but differ-
ences between the systems in the experiments and the simu-
lations (glass vs platinum) make a good comparison almost
impossible. Therefore, it would be very useful for the devel-
opment of these models if new experiments on the systems
used in this paper are performed. Moreover, from both the
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experimental and the simulation side it should be tried to find
a way to allow for a good comparison to measure or compute
the same physical property.

Using the recorded incoming velocities from the explicit
MD simulations, outgoing velocities for each of the four dis-
cussed stochastic wall models have been computed. Using
the same method to compute the accommodation coefficient,
it is shown that all models exert a different behavior with
respect to the accommodation coefficients, and are (except
for some components with the Maxwell-Yamamoto model
and the Cercignani-Lampis model) also different from the
explicit wall simulations. Moreover, accommodation coeffi-
cients that have been used as input in the Maxwell-
Yamamoto model and the Cercignani-Lampis model are only
recovered when they are based on the velocity. Thus, both
models do not generate the same outgoing velocity distribu-
tions as are obtained from the explicit wall simulations.

To investigate the differences between the stochastic wall
models and the explicit wall simulations, correlation profiles
between incoming and outgoing velocity components are ex-
amined. From these correlation profiles it is observed that
only the Cercignani-Lampis model behaves more or less
similar to the explicit wall simulations. The Maxwell-
Yamamoto model, which recovers the outgoing velocity dis-
tribution of the explicit wall simulations almost exactly, is on
the level of the velocity correlation in strong disagreement
with the explicit wall simulations. So far, many researchers
only looked at the velocity distributions but not at the veloc-
ity correlations, but the results of the simulations presented
in this paper, show that, in order to resemble explicit simu-
lations best, the correlations should be taken into account
when judging stochastic models on their applicability.

Because neither of the stochastic wall models matched the
data from the explicit wall simulations perfectly, it has to be

PHYSICAL REVIEW E 81, 011203 (2010)

considered whether more elaborate models to describe the
gas-wall interaction are in place. Moreover, none of the mod-
els reproduce the details of scattering revealed by molecular
beam studies [54]. For instance, all of the discussed models
lack the interplay between the velocity components, which
could be important from the point of view of equipartition to
be included. This interplay between the velocity components
is most likely introduced by the roughness of the wall.

Based on the velocity correlation profiles a new method,
using linear least-squares fitting, to compute accommodation
coefficients has been presented. It has been shown that this
accommodation coefficient corresponds in the case of the
parallel velocity component to the accommodation coeffi-
cient computed using the traditional method. This correspon-
dence can be explained due to the additive property of
Gaussian distributions. Nonetheless, the new method gives
different accommodation coefficients for the perpendicular
velocity component as well as for the accommodation coef-
ficients based on the energy. The method approaches the
computation of the accommodation coefficient from a differ-
ent perspective, and, in contrast to the traditional method, is
capable of computing accommodation coefficients in the
cases where both walls are at the same temperature and the
system is in thermal equilibrium.

Furthermore, if the accommodation coefficients computed
from the linear least-squares approach are used as input in
the Cercignani-Lampis model, the velocity correlations of
this model are in even better agreement with the explicit wall
simulations than before. Moreover, in the new method of
computing the accommodation coefficient no longer average
velocities from the thermal wall case are necessary as input.
This all indicates that this method of computing the accom-
modation coefficients is promising.
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