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We present a simple model of a free-energy transducer made of allosterically coupled two ratchet sub-
systems. Each of the subsystems transports particles from one particle reservoir to another. The coupling of the
subsystems imposes correlated transitions of the potential profiles of the two subsystems. As a result, a
downhill flux in one subsystem with higher chemical-potential difference drives an uphill flux in the other
subsystem with lower chemical-potential difference. The direction of the driven flux inverts depending on the
direction of the driving flux. The ratio between the fluxes conveyed by the two subsystems is variable and
nonstoichiometric. By selecting appropriate parameters, the maximum ratio of the driven flux to driving flux
and maximum free-energy transducing efficiency reaches some 90 and 40%, respectively. At a stalled state, the
driven flux vanishes while the driving flux remains finite. The allosteric model enables explicit analysis of the
timing between binding-unbinding of particles and transitions of potential profile. The behavior of the model is
similar to but different from that of the alternate access model, which is a biochemical model for active
transport proteins. Our model works also as a regulatory system. We suggest that the correlated transitions of
the subsystems �subunits or domains� through allosteric interaction are the origin of the diverse functions of the
protein machineries.

DOI: 10.1103/PhysRevE.81.011137 PACS number�s�: 05.40.�a, 82.37.�j, 87.16.Uv, 87.15.A�

I. INTRODUCTION

The studies of biological molecular machines urged the
development of thermal ratchet model �1–10�, and it has
been applied to actual ion pumps �11–16� and motor proteins
�8,17–19�. The main interest in the ratchet model was to
induce an active transport through the off-equilibrium
change of potential-energy profiles for the transported object.
In real molecular machines, it is allosteric conformational
changes that change the potential-energy profiles. A driving
system, such as adenosine triphosphate �ATP� hydrolysis
cycle or transmembrane ionic current induces those allosteric
conformational changes. In the present study, we show a
model for the ion pump.

The model construction principle is simple: we couple
two ratchet subsystems so that their potential-energy profiles
are strongly correlated. When one ratchet subsystem works
as a passive channel, the passive flux causes the change of
the potential profile of this subsystem. The coupling to the
second ratchet system causes the change of the potential pro-
files of the latter subsystem. This change in turn causes the
active transport by the second ratchet subsystem. Figures
1�A� and 1�B� schematize this idea. The resulting model has
eight states and is very similar to the alternate access model
proposed by biologists �20,21�.

This paper is organized as follows. In Sec. II we describe
the basic assumptions of our model and present mathemati-
cal formulation to analyze it. We draw attention to the sym-
metry of the model. In Sec. III we describe the behavior of
the model: in particular we will see that the direction of

active transport can be inverted not only by the inversion of
the passive flux but also by the mere change of intrinsic time
constant of the allosteric transition. Sec. IV is the discussion
of the results. The biological implications of our model are
also discussed.

II. MODEL

Two ratchet subsystems �Fig. 1�A�� are coupled via cor-
related transitions �Fig. 1�B��. These subsystems may con-
cern to different subunits or domains of a transport protein in
biological membranes. On the left �L� and right �R� sides of
each subsystem are particle reservoirs �Fig. 1�A��. We denote
by �XI,L� and �XI,R�, respectively, the concentrations of par-
ticles in the left and right reservoirs of subsystem I. Like-
wise, we denote by �XII,L� and �XII,R� their counterparts for
subsystem II. Two transports XI,L↔XI,R and XII,L↔XII,R oc-
cur, respectively, through the subsystem I or the subsystem
II. The transport from the left reservoir to the right reservoir
will be referred to as forward transport.

In the following, we will describe our model in detail
together with the accompanying assumptions. We will intro-
duce the reduced probability of the system to discuss the
steady state and associated fluxes.

A. System and its states

We assume that each subsystem can have two switchable
potential profiles around unique particle binding site �Fig.
1�A��. We require that, at a time, at most one particle can be
bound to the binding site. We use a Boolean variables xI �for
subsystem I� and xII �for subsystem II� to describe the occu-
pancy of the binding sites: for example, xI=1 implies that the
binding site of the subsystem I is occupied. Or, xII=0 means
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that the binding site of the subsystem II is vacant. The two
potential profiles are called the energized conformational
state �+� and the relaxed conformational state �−�. The es-
sential assumption of our model is that the conformational
states of the subsystems I and II are tightly correlated �Fig.
1�B��: we introduce another Boolean variable a to distin-
guish the two coupled conformational states of the sub-

systems: when a=0 the subsystem I is in the state �−� and
subsystem II is in the state �+� �When convenient, we will
denote this state also as I−II+�. Inversely, a=1 denotes the
subsystem I in the state �+� and subsystem II in the state �−�
�ibid. as I+II−�. While we admit the allosteric transition be-
tween I−II+ and I+II−, we exclude the combinations I−II− or
I+II+. In Sec. III B we will relax this constraint.

The states of the whole system can then be represented by
the three Boolean variables introduced above, �xI ;xII ;a�, to-
gether with the number of particles n� in the �th reservoirs.
The first set of three variables �xI ;xII ;a� defines the reduced
state of the pump. There are 23=8 reduced states, corre-
sponding to the three Boolean variables, �xI ;xII ;a�. Figure
1�C� summarizes the topology of these reduced states. The
indices such as IR or IIL attached to the dashed curves indi-
cate which reservoir exchanges most probably a particle with
a subsystem. For example, the dashed curve with IR from the
reduced state �1;1;1� to �0;1;1� indicates that, upon the tran-
sition �1;1 ;1�↔ �0;1 ;1�, the migration of a particle of the
species I is more likely to occur with its right reservoir. Note
that in our model the allosteric transition is not tightly
coupled to the displacements of particles. This feature, which
is shared by another model of autonomous free-energy trans-
ducer �22�, is in contrast with the classical models of allos-
teric transitions in which ligand binding and conformational
change of a protein are tightly coupled �23�.

B. Assignment of transition rates

Our approach is the standard one �24–26�: we will indi-
cate by i or j the state of the whole system �i.e., the system
plus the particle reservoirs�, which are specified by the
above-defined �xI ;xII ;a� and the independent numbers �n��
of particles in the reservoirs, such as nIL and nIIL. We then
define the transition rate wi→j such that, during the infinitesi-
mal time lapse, dt, the probability Pi to find the whole sys-
tem in the state i decreases by Piwi→jdt due to this transition
to the state j. We assume the relation of the detailed balance
between a state transition i→ j and its reverse j→ i,

wi→j = wj→i exp�−
Ej − Ei

kBT
� , �1�

where T is the temperature and Ei and Ej are the Gibbs free
energies of the whole system at the states indicated. The
transition rate wi→j is then written as

wi→j =
1

�0
exp�−

�i,j − Ei

kBT
� , �2�

where �0 is a global time constant and �i,j�=� j,i� is the height
of the “saddle” point between the states i and j. The Gibbs
energy Ei may have the form of �Ui+����n�i�, consisting of
the free energy of the �main� system Ui and the Gibbs free
energy of the reservoirs, ����n�,i, where �� is the chemical
potential of the reservoir with the index � running over res-
ervoirs, IL, IR, IIL, and IIR. Once we obtain the concrete
expressions for the activation barriers ��i,j −Ei�, we extend
them to use under nonequilibrium conditions, i.e.,
�I,L��I,R and/or �II,L��II,R. Note that the concentrations
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FIG. 1. �A� The potential profiles of the subsystem which sche-
matically represent the energetic and kinetic parameters adopted in
the model. The central well of the potential profile represents the
particle binding site. Solid line indicates the potential profile of the
relaxed conformational state �−�. Broken line indicates the potential
profile around the site B in its energized conformational state �+�.
�B� Allowed conformational states. Through an allosteric coupling,
the two conformational states, a=0 �I−II+� or a=1 �I+II−�, are real-
ized in a seesawlike manner. �C� The topology of the allowed tran-
sitions among the eight reduced states. The vertexes and edges cor-
respond, respectively, to the reduced states �xI ;xII ;a� and the
allowed transitions among these states. The reduced state at each
vertex is represented by the Boolean indexes as well as by the
symbols, where the upper �lower� squares represent subsystem I
�II�, respectively. The indices such as IR or IIL attached to the
dashed curves from edges indicate which subsystem exchanges a
particle and with which reservoir the particle is predominantly
exchanged.
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of particles �XI,L� and �XII,R� etc. appear only through the
chemical potentials. The free energy of the system �Ui� is
simply assumed to be the sum of the energies of the bound
particles in the subsystems I and II, which we denote by
�I�a� and �II�a�, respectively. These energies depend on the
conformational state through the variable, a. The sub-
system�s� binding no particles, therefore, do not contribute to
Ui.

The following three examples will tell how Ej −Ei
is calculated upon the transition i→ j. When a particle
comes into the binding site of the subsystem I from
the left reservoir �chemical potential: �I,L�, we assign
Ej −Ei=�I�a�−�I,L. When a particle in the subsystem II
leaves from the binding site to the right reservoir, we
assign Ej −Ei=−�II�a�+�II,R. A conformational transition
from a=0�I−II+� to 1 �I+II−� accompanies the change,
Ej −Ei=xI��I�1�−�I�0��+xII��II�1�−�II�0��.

We further introduce a simplifying assumption on the en-
ergy at the binding sites,

�I�1� = �II�0�,�I�0� = �II�1� , �3�

therefore, �I�1�+�II�1�=�I�0�=�II�0�. We will call �Eq. �3�
and Fig. 1�B�� the “seesawlike” symmetry. Due to this sym-
metry, the transition back and forth between a=0 and 1 are
equally frequent when the binding sites are both occupied or
both vacant.

C. Probabilities and probability fluxes at the steady state

We shall denote by i� the reduced state �xI ;xII ;a� when
the state of the whole system is i. When i�= j� the two states
i and j of the whole system differ with each other only by the
numbers of particles in the reservoirs. We denote by pi�

� the
probability of the reduced state i� and by Ji�→j�

� �=−Jj�→i�
� � the

reduced probability flux, being the net probability flux from
a reduced state i� to another reduced state j�. In binding a
particle from the reservoirs, the transition rate depends on the
density rather than the number of the particles in the reser-
voirs. Therefore, while the macroscopic concentrations of the
particles in the reservoirs remain quasiconstant, the transition
rate wi→j defined in Eq. �2� depends simply on the reduced
states, or the variables �xI ;xII ;a�. We can therefore identify
wi�→j� with wi→j. Then the reduced probability flux writes in
terms of the transition rate, wi→j etc and the reduced prob-
abilities,

Ji�→j�
� = − Jj�→i�

� = pi�
� wi→j − pj�

� wj→i. �4�

The stationary state of the reduced description is defined by
the vanishing of the sum of reduced fluxes at each reduced
state, i�, that is, 	 j�

�all�Jj�→i�
� =0 for all i�. Here the sum is

taken for all the reduced states. These conditions supple-
mented by the normalization condition, 	i�

�all�pi�
� =1, deter-

mine all the reduced probabilities and their fluxes in the
steady state. We have used the MATHEMATICA® to solve
these coupled linear equations. Since the symbolic treatment
of the inversion of 8	8 matrix generates too many terms,
we did the calculation only numerically.

D. Steady state particle fluxes

We denote by 
L→R
K the net particle flux through the sub-

system K �K=I or II� from its left reservoir �L� to its right
reservoir �R�. This net particle flux can be related to the
reduced probability fluxes in different ways. We will choose
the following definition:


L→R
K 
 	

i�→j�

�L→R�

Ji�→j�
� . �5�

“L→R”on top of the summation signs in Eq. �5� indicates to
sum over all those transitions, i�→ j�, through which one
particle in the left reservoir is bound to the binding site of the
subsystem K during the transition. Upon such transition the
number of the particle in the left reservoir of the subsystem
K, i.e., nK L should undergo the change, nK L,i→nK L,i−1
=nK L,j, where i→ j corresponds to i�→ j� in the reduced
representation.

E. Symmetry of the model

We summarize the symmetries built in our model. Firstly
the model lacks the left-right symmetry �L vs R�, which is an
ingredient that enables the directional transport. On the other
hand we assumed that the ratchet subsystems I and II are
identical and interchangeable; The net particle fluxes 
L→R

I

and 
L→R
II in these subsystems are interchanged if we ex-

change the pair of the chemical potentials ��I,L ,�I,R� with
the pair ��II,L ,�II,R� This symmetry implies that in
our model the roles of driving subsystem and driven sub-
system are attributed solely by the relative magnitudes of
��I
�I,L−�I,R and ��II
�II,L−�II,R. While this symmetry
simplifies certain physical arguments, it may also exclude or
disfavors some functions of more generic model. The last
point is briefly discussed in comparison with an existing bio-
logical model in Sec. IV.

F. Linear nonequilibrium relation

Near equilibrium, i.e., for infinitesimally small ��I and
��II, the Onsager coefficients are defined through the fol-
lowing linear relationship:

�
L→R
I


L→R
II � = �LI L�

L� LII
����I

��II
� . �6�

Qualitatively, the cross coupling L� in Eq. �6� can give the
pumping act while LI and LII represent the passive leak or
dissipation. These Onsager coefficients give essentially the
correlation functions of the equilibrium fluctuating fluxes

which we denote by 
̂L→R
I , etc.,

LK � ��
̂L→R
K �2�eq, L� � �
̂L→R

I 
̂L→R
II �eq. �7�

Here K=I or II and � · �eq denotes the average in equilibrium,

��I=��II=0 �hence �
̂L→R
I �eq= �
̂L→R

II �eq=0�. We should
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not expect generally LI=LII because the Onsager coefficients
depend on �XI� or �XII� and, therefore, on �I or �II See Sec.
III C for one of the consequence of this fact.

III. RESULTS

A. Direction of the particle fluxes and the coupling ratio

In order to identify the directions of the active particle
transport, we imposed nonequilibrium among the reservoirs
of the subsystem I ��I,L��I,R or �XI,L�� �XI,R�� while keep-
ing in equilibrium among the reservoirs of the subsystem II;
��II,L=�II,R or �XII,L�= �XII,R��. With the values of parameters
given in Table I, we found that a rightward particle flux in
subsystem I induces a leftward particle flux in subsystem II,
and vice versa �Fig. 2�.

We shall call driving subsystem the subsystem whose two
reservoirs have larger chemical-potential difference than the
other subsystem. The latter subsystem is called driven sub-
system. The coupling of the fluxes is characterized by the

coupling ratio q,

q = −
�particle flux�Driven subsystem

�particle flux�Driving subsystem
, �8�

where the minus sign in Eq. �8� was introduced to render the
ratio q positive. Near the equilibrium, in particular, this ratio
is given by the Eqs. �6� and �7�,

q 
 −
L�

LI
= −

�
̂L→R
I 
̂L→R

II �eq

��
̂L→R
I �2�eq

�near equilibrium� �9�

Here again, the minus sign was introduced to render the ratio
q positive.

Two remarks are in order: first we can identify q by
−L� /LI only in the linear regime. In general the
magnigude of q should change if we change the sign
of ��I �or that of log��XI,L� / �XI,R��� due to the lack
of left-right symmetry in the model. In other words,
the difference of the values of q upon the exchange
of the sign of ��I gives a measure of how far the
system is from equilibrium. For example, the
concentration gradient of ��XI,L� , �XI,R��= �1,0.01� yielded
q=93.51%, while for the gradient of ��XI,L� , �XI,R��
= �0.01,1� yielded q=93.49%. Secondly, it is evident that the
coupling ratio is not a stoichiometric number. In this sense
the present model is a loose-coupling model.

Within the framework of linear nonequilibrium thermody-
namics, it is not surprising that the change of the sign of ��I
changes the sign of the driven particle flux, 
L→R

II =L� ��I.
Intuitively, however, it might not be evident how a single
allosteric degree of freedom can control the direction of ac-
tive transport. A key is that the variation of a�t� is not a
predetermined function of time, but a part of system’s re-
sponse. We will discuss this point in Sec. IV A.

B. Effect of the looseness of the allosteric coupling

Only in this subsection we relax the coupling condition of
the potential profiles of the two ratchet subsystems: we allow
also the states I+II+ and I−II− in addition to I−II+ �a=0� and

TABLE I. The parameters for the potential profiles. The suffixes
to indicate subsystem I and II are omitted in the table because the
potential profiles are the same for the two subsystems. �0 is the
global time constant in Eq. �2�. �L

0 and �R
0 are the standard chemical

potential of the transported particle in the left and right reservoirs.
The chemical potential is related to the standard chemical potential
as follows:�L�R�=�L�R�

0 +kBT ln�X�L�R�,where the �X�L�R� are the
macroscopic concentration of the particles in the left �right� reser-
voirs. �L and �R are the height of the “saddle point” associated to
the binding and unbinding of a particle to the left or right reservoir,
respectively. �xI,xII

AT denotes the height of the “saddle point” for al-
losteric transition with an occupancy state �xI ,xII�. The parameters �
are the energies attributed to a particle on the binding site in Eq. �3�.
In order to fix the parameter values, we first arbitrarily fixed the
global time constant ��0� as 10−11 s, �0,0

AT as 6 kBT ln 10 and �L
0

and �R
0 as 0. Then, we searched for the values of �L, �R, �xI,xII

AT , and
� which achieve high coupling ratio under the given concentrations
��XI,L� , �XI,R� , �XII,L� , �XII,R��= �1,0.01,1 ,1� and under a given “to-
tal time” of the allosteric transitions defined as1 / w�xI,xII,0�→�xI,xII,1�

+ 1 / w�xI,xII,1�→�xI,xII,0� =2	10−5 s. Those values in the table is what we
found within the following ranges: kBT ln 10��L�R�-�L�R�

0

�6 kBT ln 10, kBT ln 10��L�R�-��6 kBT ln 10. Apart from these
basic setting, we fixed all �xI,xII

AT ’s to be 6 kBT ln 10 in Fig. 3, for
simplicity. Also in Fig. 5, we added 
AT to �xI,xII

AT to change the
characteristic time of the allosteric transitions.

Relaxed state Energized state

�0 10−11

�L
0 0 0

�L 8 kBT ln 10 13 kBT ln 10

� −3 kBT ln 10 2 kBT ln 10

�R 10 kBT ln 10 10 kBT ln 10

�R
0 0 0

�0,0
AT 6 kBT ln 10

�0,1
AT 6 kBT ln 10-kBT ln 500

�1,0
AT 6 kBT ln 10-kBT ln 500

�1,1
AT 5 kBT ln 10
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FIG. 2. Examples of the coupled particle fluxes in the subsystem
I �
L→R

I : vertically striped bars� and in the subsystem II �
L→R
II :

horizontally striped bars�. The concentration in the reservoirs ��XI,L�
�XI,R�; �XII,L�, and �XII,R�� are �1, 0.01; 1, 1� in �A�, �0.01, 1; 1, 1� in
�B�, and �1, 1; 0.01, 0.01�, i.e. equilibrium, in �C�.
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I+II− �a=1� conformations. We impose an equal energetic
penalty to the additional two states I+II+ and I−II−, with re-
spect to the “seesaw” states I−II+ and I+II−. The driven flux
will vanish in the absence of the penalty, while the infinitely
high penalty should achieve the maximal coupling ratio. In
Fig. 3, we show how this penalty affects the Onsager coef-
ficients −LI and L, which corresponds, respectively, to the
driving flux 
L→R

I and the driven flux �−
L→R
II � under a fixed

driving chemical-potential gradient, ��I �and ��II=0�. We
notice that these two fluxes responds differently to the ener-
getic penalty on the states I+II+ and I−II−. In the figure the
coupling ratio q= �L�� /LI is also plotted.

C. Regulatory point of view of the driven subsystem

There is one aspect which a formal Onsager’s force-flux
relation does not capture. This is the dependence of the On-
sager coefficients on the �average� level of chemical poten-
tials. For example, in the situation studied above, ��II=0,

the driving flux 
L→R
I in the driving subsystem is found to

depend strongly on the chemical potentials �II,L=�II,R, or, on
the particle concentrations �XII,L�= �XII,R�, in the reservoirs of
the subsystem II. The condition corresponds to a single res-
ervoir for the subsystem II. See Fig. 4. At a certain concen-
tration of the particle in subsystem II, the flux in the sub-
system I is maximized by an order of magnitude. In
biochemical terms, this result can be interpreted as a catalytic
reaction in the subsystem I which is regulated by the concen-
tration of the allosteric cofactor, i.e. the particle in subsystem
II. Although direct mechanistic relevance is not clear, such a
dual effect by a single species of ligand is observed in real
biological systems �27–29�. A flux circulating between the
subsystem II and its single reservoir is induced by the con-
centration gradient in the subsystem I simultaneously. The
flux shows a bell-shaped dependency on the particle concen-
tration of the subsystem II and this concentration correlates
with �XI,L� and �XI,R� �data not shown�. Viewed from another
side, the subsystem II can also function as sensor of particle
concentration range in the subsystem I.

The dependence of 
L→R
I on the chemical-potential dif-

ference ��I is also modified by �II,L�=�II,R� �data not
shown�.
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Onsager coefficient −LI is plotted against �II,L=�II,R. The coeffi-
cient was determined as in Fig. 3.
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D. Flux inversion controlled by the time constants of the
allosteric transition

Our model shows an intriguing phenomenon with regard
to the time constant of the allosteric transition. When the
activation �free� energy barrier related to the allosteric tran-
sition ��xI,xII

AT , Table I� and hence the characteristic time of the
allosteric transitions is changed �see Eq. �2�� by adding 
AT,
the coupling ratio changes its sign, i.e., the subsystem II is
driven in the opposite direction. Figure 5�A� shows the On-
sager coefficients LI and −L�, which corresponds, respec-
tively, to the driving flux 
L→R

I and the driven flux 
L→R
II in

the linear regime. Figure 5�B� shows the coupling ratio q

against the same control parameter. While the decrease in the
transport fluxes seems to be natural with the increase the
time constant of allosteric transition, the direction inversion
of the driven flux implies nontrivial change of the timing, or
the pathway, of transport process using only a simple switch-
ing between a=0 and 1. In Sec. IV A we will discuss on this
point in the context of the rate-limiting steps.

E. Free-energy transduction efficiency

When the subsystems I �II� are the driving �driven�
systems, respectively, the free-energy transduction
efficiency �energy efficiency for short�, �, is defined as
follows:

� 
 −
�chemical potential difference� 	 �particle flux�Driven subsystem

�chemical potential difference� 	 �particle flux�Driving subsystem

=−
��II
L→R

II

��I
L→R
I ���I � ��II�=−

��I
L→R
I

��II
L→R
II ���II � ��I� . �10�

In particular, in the linear nonequilibrium regime �Eq. �6��,
the energy efficiency is represented by the Onsager
coefficients and the ratio, X
��II /��I, as
�=−X�LIIX+L�� / �LI+L�X� Fig. 6 shows an example of the
energy efficiency as function of ��I−��II�0, beyond lin-
ear nonequilibrium regime. In the linear nonequilibrium re-
gime, and where the energy efficiency � or the driven flux

II vanishes, the relation, �L����I=LII�II, is satisfied accord-
ing to �Eq. �6��.

A remark is in order here: the function of the energy ef-
ficiency vs X�=��II /��I� is singular at equilibrium
��II=��I=0. However, this singularity has no physical sig-
nificance at the microscopic level since, in the very vicinity

of the equilibrium, the fluctuating fluxes in 
̂L→R
I , etc., domi-

nate over the systematic fluxes �see Eq. �7� also�. The cou-
pling between two fluctuating fluxes at equilibrium was re-
cently reported by Komatsu and Nakagawa in the context of
the Feynman’s ratchet �30�.

IV. DISCUSSION

A. How the inversion of driven flux is realized

We first discuss how the direction of driven particle flux
can be inverted by the inversion of the source flux ��I �Fig.
2�. Then we discuss the flux inversion by the change of the
time constant of allosteric transition �Fig. 5�.

Inversion of driven flux by the inversion of driving flux: if
we agitate randomly a coffee spoon immersed in water, the
water will be heated up by the “Joule” heat. The allosteric
transition in our model occurs also randomly. But the latter
random motion can decrease the entropy of the driven sub-
system against a chemical-potential gradient. The key differ-
ence from the former case is that the allosteric transition is
correlated to the state of the driven subsystem, while the
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FIG. 6. �A� Individual particle flux 
L→R
I and 
L→R

II vs �XII,R�.
The other concentrations are ��XI,L� , �XI,R� , �XII,L��= �1,0.5,1�. The
particle flux of driving and driven subsystem is shown by solid and
broken line, respectively. �: the points where ��I and ��II bal-
ance; �: the points where driven flux vanishes while the driving
flux remains finite �stall state or static head�. �B� coupling ratio �q,
solid curves� and free-energy transduction Efficiency �energy effi-
ciency, broken curves� vs �XII,R�. The relative magnitudes of ��I

and ��II are indicated within the figure.

EIRO MUNEYUKI AND KEN SEKIMOTO PHYSICAL REVIEW E 81, 011137 �2010�

011137-6



spoon does not respond to the motion of water molecules.
Scrutiny of the probability fluxes shows that, as far as the
allosteric degree of freedom is flexible enough �i.e., with
small time constant�, allosteric transitions should mostly oc-
cur when both subsystems are occupied or none is occupied,
that is between the reduced state �0,0,0� and �0,0,1� and be-
tween �1,1,0� and �1,1,1� on the cubic diagram of Fig. 1�C�.
Besides, there are the reduced states, �1,0,0� and �0,1,1�,
where the system spends most of time. The closed circuit on
the cubic diagram which is representative of the process
�dominant pathway, for short� is then found as shown in Fig.
7�A� ���I�0� and Fig. 7�B� ���I�0�. Although the domi-
nant pathway is unchanged for these cases, the rate-limiting
steps are located at different states on this pathway: while for
��I�0 the driving subsystem I at �0,1,1� or at �1,0,0� waits
for a process in the driven subsystem II, the situation is in-
versed for ��I�0. It is this difference that causes the inver-
sion of particle flux.

Inversion of driven flux through the timing control: the
increase in the time constant of allosteric transition makes
the allosteric transition itself be the rate-limiting steps and,
therefore, favors the local equilibration under a given confor-
mational state a. It then causes the change of the dominant
pathway, with allosteric transitions now occurring between
�0,1,0� and �0,1,1� and between �1,0,0� and �1,0,1�, see Fig.
7�C� for ��I�0 and Fig. 7�D� for ��I�0. Again the domi-
nant pathway is the same for ��I�0 and ��I�0 except

that transition from �1,0,0� to �0,1,0� via �0,0,0� is not promi-
nent in the latter case. In summary the flux inversion through
the time constant of the allosteric transition is associated to
the change of dominant pathway.

B. Relevance to other models and biological systems.

Comparison with the existing Brownian ratchet models:
many attempts have been made in the context of energetics
of the Brownian ratchet models. Zhou and Chen bound the
chemical reaction to mechanical motion �31�. Astumian and
Bier �7� considered the AT�D�P binding which invokes the
shape transition of the ratchet. Parmeggiani et al. bound the
chemical reaction to the change of transition rate of ratchet
model �32�. In all these works there lacks explicit mecha-
nisms of driving subsystem.

Our model is closer to the reality in this sense. Moreover,
the symmetry of our model permits to study trivially the
consequences when the roles of driving and driven systems
are exchanged. The maximal energy transducing efficiency,
being some 40% in our study, is a matter of parameter tuning
�22�.

Comparison with existing biological models: we have
concretized the biochemical concept of conformational cou-
pling for energy transduction proposed by Boyer �33�
through an allosteric degree of freedom. The dominant path-
way �Fig. 7�A�� of our model is represented as the schema

(1;0;1)

(1;1;1)(0;1;1)

(0;0;1)

(1;0;0)(0;0;0)

(0;1;0) (1;1;0)

I  R

I  L

I  L

I  R

I I  R

I I  L

I I  R

I I  L

(1;0;1)

(1;1;1)(0;1;1)

(0;0;1)

(1;0;0)(0;0;0)

(0;1;0) (1;1;0)

I  R

I  L

I  L

I  R

I I  R

I I  L

I I  R

I I  L

(1;0;1)

(1;1;1)(0;1;1)

(0;0;1)

(1;0;0)(0;0;0)

(0;1;0) (1;1;0)

I  R

I  L

I  L

I  R

I I  R

I I  L

I I  R

I I  L

(1;0;1)

(1;1;1)(0;1;1)

(0;0;1)

(1;0;0)(0;0;0)

(0;1;0) (1;1;0)

I  R

I  L

I  L

I  R

I I  R

I I  L

I I  R

I I  L

(b)

(a) (c)

(d)

FIG. 7. The dominant pathway
of coupled particle flux under the
condition of Figs. 2 and 5. Eight
reduced states and possible transi-
tions are shown as in Fig. 1�C�.
The dominant pathway is indi-
cated by thick arrows. �A� and �B�
correspond to Figs. 2�A� and 2�B�,
respectively. �C� corresponds to
Fig. 5 with the characteristic time
of the transitions of ca. 6 s. �D� is
the same as �C� except that the
driving force is inverted.
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�Fig. 8�A��. There is a prevailing model of transporter pro-
tein on biological membranes, called alternate access model
�20�. This model was supported strongly from the recent

structural study of transport proteins �21� �schema Fig. 8�B��.
If we compare these schemas, we find that the transition
between I+II− and I−II+ conformational states of the system
corresponds to the transition between inward-binding and
outward-binding conformation of the transporter of the alter-
nate access model. The timing of the energy state transition
has also something in common; it occurs mainly when the
binding sites of the two subsystems are simultaneously oc-
cupied or empty in our model �Fig. 8�A�� and both binding
sites for the different solutes are occupied or empty in the
alternate access model �Fig. 8�B��. It is, therefore, an inter-
esting question if the inversion of active transport can be
induced in the system described by the alternate access
model through the slowing down the conformational transi-
tions. However, the pathway corresponding to the latter
model is asymmetric with respect to the exchange of sub-
systems I and II. Therefore it is less likely to be a dominant
pathway in our present model. We have presented a basic
model here, but taken into the account of the effect of the
asymmetry of subsystems or other features, our model will
be more generic and gain a great variety of complex func-
tions.

In summary, we have presented a simple model contain-
ing two ratchet subsystems coupled via an allosteric degree
of freedom. The model can achieve the coupling of the fluxes
conveyed by the subsystems. We found the inversion of ac-
tive transport flux by the change of the time constant of the
allosteric transition. The optimization of the rate constants to
achieve high coupling ratio leads to a similar scheme to the
actual transport protein. Model was also discussed from the
regulatory point of view. We suggest that the coupled fluc-
tuation of the subsystems �subunits or domains� through al-
losteric interaction is the origin of the diverse functions of
the protein machineries.
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