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We consider different Markovian embedding schemes of non-Markovian stochastic processes that are de-
scribed by generalized Langevin equations and obey thermal detailed balance under equilibrium conditions. At
thermal equilibrium, superdiffusive behavior can emerge if the total integral of the memory kernel vanishes.
Such a situation of vanishing static friction is caused by a super-Ohmic thermal bath. One of the simplest
models of ballistic superdiffusion is determined by a biexponential memory kernel that was proposed by [Bao
J. Stat. Phys. 114, 503 (2004)]. We show that this non-Markovian model has infinitely many different four-
dimensional Markovian embeddings. Implementing numerically the simplest one, we demonstrate that (i) the
presence of a periodic potential with arbitrarily low barriers changes the asymptotic large-time behavior from
free ballistic superdiffusion into normal diffusion; (ii) an additional biasing force renders the asymptotic
dynamics superdiffusive again. The development of transients that display a qualitatively different behavior
compared to the true large-time asymptotics presents a general feature of this non-Markovian dynamics. These
transients though may be extremely long. As a consequence, they can be even mistaken as the true asymptotics.
We find that such intermediate asymptotics exhibit a giant enhancement of superdiffusion in tilted washboard
potentials and it is accompanied by a giant transient superballistic current growing proportional to r“ff with an
exponent a,g that can exceed the ballistic value of 2.
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I. INTRODUCTION

The subject of anomalous diffusion has become increas-
ingly popular and important in the last years with a number
of papers growing faster than linearly in time with almost
500 papers published last year. There also is a large number
of theoretical models that lead to anomalous diffusion such
as continuous time-random walks [1-4], including Levy
flights and Levy walks [3,5], related fractional Fokker-
Planck equations [5,6] and (ordinary) Langevin equations in
random subordinated time [7,8], as well as (ordinary) Lange-
vin equations with additive non-Gaussian Levy white noises
[9,10]. Moreover, nonlinear Brownian motion with multipli-
cative Gaussian white noise [11,12], as well as linear Boltz-
mann equation with scattering events being distributed in
time according to a power law distribution [13,14] may dis-
play anomalous diffusion. This list by far is not complete.
Yet, the quest for minimal and fundamental physical models
has become ever more important. One of the fundamental
approaches to anomalous diffusion [15-18] is provided by
the generalized Langevin equation (GLE) [19-22] with a
frictional memory kernel y(¢), reading

(x 7)

m)'é+mfry(t—t)x(t)dt +——=1), (1)

where x(f) denotes the position of a particle of mass m. Here,
{(¢) is a Gaussian zero-mean fluctuating force that at tem-
perature T is related to the memory kernel by the fluctuation-
dissipation relation [19]

DLy =kgTmy|t=1')). (2)

Remarkably, this model can be derived from a Hamiltonian
dynamics of a particle that bilinearly couples with coupling
constants ¢; to a thermal bath of harmonic oscillators with
masses m; and  frequencies w;,  Hp(p;,q;.X)
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=(1/2)24p? /mj+m;w?[q;—cx/ (m;w}) ). The total effect of
the bath oscillators, which are initially canonically distrib-
uted with Hp,, at temperature 7" and fixed x=x(0), is char-
acterized by the bath spectral density

2

Hw) =23 80— w,). (3)

277 mw;

It is related to the power spectral density of the fluctuating
force

S(w) =f (L(NE0))edr (4)

via S(w)=2kzTJ(w)/® [19,22]. This in general leads to a
non-Markovian process of the particle dynamics with linear
memory friction and Gaussian fluctuating force. Moreover,
due to the fluctuation-dissipation relation (2) it is compatible
with thermal equilibrium in confining, time-independent po-
tentials and encompasses a whole set of physically meaning-
ful models characterized by different bath spectral densities
J(w).

In the absence of any potential, the variance of the parti-
cle’s position will grow with time. The law according to
which the variance grows characterizes the nature of the re-
sulting diffusion process as being subdiffusive if the growth
of the variance is slower than linear. This happens if the
static friction y=[{¥(t')dt’ diverges. Normal diffusion cor-
responds to a linear growth. It occurs if v is finite. Finally, if
v vanishes the variance grows faster than linear and one
speaks of superdiffusion. The presence of a nonlinear time-
dependent force f(x,f)=—dV(x,r)/dx modifies this simple
picture in a complicated way depending on further details of
the memory kernel and also on temperature. The qualitative
behavior of the variance of the position is determined by the
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variance of the velocity, (Av*(f)). The mean square displace-
ment of position spreads according to normal diffusion, if the
integral of the velocity variance over all times is finite. On
the other hand, if this integral is zero, then the motion is
antipersistent and subdiffusive. If this integral diverges, the
spread of the position variance is superdiffusive. For free
motion in the absence of a potential, these criteria are
equivalent to those for the memory kernel which in general
fail in the presence of a potential. Since general analytical
results are scarce and most likely nonexistent for nonlinear
and time-dependent forcing, the reliability of numerical
simulations has become a key issue. Numerically tractable
models can be obtained by approximating the given memory
kernel by a finite sum of exponential functions. The accord-
ing non-Markovian particle dynamics can then be obtained
as the projection of a high-dimensional Markovian process
onto the phase space of the particle spanned by the particle’s
coordinate and momentum p=mx. The dimensionality of the
Markovian process is D=N+2, where N is the number of
exponentials in the sum approximating the memory kernel.
The key point is that the corresponding Markovian dynamics
can be propagated locally in time for very long time intervals
by means of very reliable algorithms with a well controlled
numerical precision. Moreover, this way of thinking allows
one to identify the simplest models for the superdiffusive
GLEs with minimal embedding dimensions D=3 and D=4.
The case D=4 corresponds to approximating the memory
kernel by a difference of two exponentials,

(1) = ¥ exp(— k1) — v, exp(= kyt), (5)

such that y,/k;=y,/k, implying to vanishing static friction y
and ;> vy,. The latter condition amounts to the fact that the
memory kernel is proportional to the autocorrelation function
of the fluctuating force ¢ and hence must be non-negative
semidefinite. This biexponential model was proposed by Bao
[23]. It corresponds to a super-Ohmic spectral density of
thermal bath oscillators, J(w)*w® at low frequencies and
describes the coupling of a particle to three-dimensional lat-
tice phonons. It therefore models the diffusion of an impurity
in a crystal. We will demonstrate that this model can be
embedded in infinitely many ways. In the following, we will
study one of the simplest embeddings, which is different
from those used by Bao [23-25]. In the absence of any force
f(x,1), the spreading of the particle’s position distribution is
ballistic, (Ax*(f))=D,*, and hence superdiffusive. Here and
in the following, the expectation (...) refers to an ensemble
average with respect to the fluctuating force {(¢) and an ini-
tial distribution of position and momentum, x(0) and p(0),
respectively. The velocity process is nonergodic [26]. As a
consequence, the ballistic superdiffusion coefficient D, turns
out to depend on the initial velocity distribution. However, as
we shall see below this nonergodic feature disappears in pe-
riodic potentials. Moreover, our numerics reveals that the
ballistic diffusion in tilted periodic potentials does neither
depend on the initial velocity distribution, nor on the initially
nonequilibrium noise preparation. For this reason, we pre-
sume that the velocity process of the particle then becomes
ergodic.
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The minimal, three-dimensional Markovian embedding of
the GLE superdiffusion is achieved in the limit y; —% and
ki — o so that y,="y,/k,=const=,/k,. In this limit, the first
exponential becomes a delta function 27,48(z). This case will
be studied elsewhere.

Unfortunately, a non-Markovian Fokker-Planck-type
equation (NMFPE) that corresponds to a GLE with a gen-
eral, nontrivial potential is not known in spite of many years
of search. The only exceptions are provided by (strictly) lin-
ear and parabolic potentials, where the corresponding NMF-
PEs were derived by Adelman [27] and Hinggi and co-
workers [28-30] for stable non-Markovian Brownian motion
and, as well, for unstable non-Markovian dynamics [31]; i.e.,
the Kramers problem of escape over a parabolic barrier [22].
Using the fact that [x(z),x=v(r)] is a two-component Gauss-
ian process, which is obtained by a linear integral transfor-
mation of the Gaussian noise process {(¢) the resulting NM-
FPE assumes the form of a time-dependent FPE. This FPE
structure of time evolution for the single-time event prob-
ability of the non-Markovian process should then not be mis-
taken as an effective Markovian dynamics [28-30]. Notwith-
standing these known exceptional cases of non-Markovian
Gaussian dynamics, this lack of a generally closed NMFPE
for nonlinear forces lends even more importance to the Mar-
kovian embedding approach.

This paper is structured as follows. In Sec. II and Appen-
dix A, we detail the Markovian embedding procedure in a
slightly more general way than has been used so far. The
general results are illustrated with two different embeddings
of one and the same superdiffusive GLE dynamics. In Sec.
III, we present and discuss the results of stochastic simula-
tions of superdiffusion under a constant bias and in a wash-
board potential for one of these embeddings. The issue of
ergodicity of mean square displacement is discussed in Sec.
IV. Conclusions are drawn in Sec. V.

II. METHOD

The idea that we pursue here is to represent the non-
Markovian stochastic dynamics of a single particle with
(x,p) phase space as a projection of a multidimensional Mar-
kovian dynamics. It is well-known that any GLE can be de-
rived from the (Markovian) Hamiltonian dynamics of a par-
ticle coupled to a thermal bath of harmonic oscillators. This
Hamiltonian embedding though requires a large number of
auxiliary degrees of freedom representing the thermal bath.
Here, we look for an embedding with a minimal number N of
auxiliary variables which all together constitute a continuous
Markovian process. A low embedding dimension is crucial
for running numerical simulations which can become exten-
sively time consuming for a large N.

We first rewrite the GLE (1) in terms of the phase space
coordinates x and p=mx as

€)=l

1

p(0) =f(x.1) = f Yt —t")p(t")dt" + {(1). (6)

0

The embedding involves a yet to be determined number N of
auxiliary dynamical variables collected into a vector #(f) in
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terms of which the dynamics takes the following general
form:

€)= p(0),

p(1) = fx,0) + g i),

ii(r) = = p(r)F = Aii(r) + C&(r), (7)

where ¢ and 7 denote constant vectors of dimension N, and A
and C are constant N X N matrices. The upper index 7T de-
notes the transpose of a vector or a matrix. Furthermore, E(t)
is a vector of uncorrelated Gaussian white noises,

(&ME ) =8t-1")0;, (8)

with N components. Integrating the equation for the auxiliary
vector () and substituting the result in the equation for the
momentum p(z) one recovers the original GLE (6) only un-
der special conditions, see Appendix A for details of the
derivation. First, the memory kernel () must satisfy

Y1) =g'e R, )
Since the right hand side can in general be represented as a
sum of N exponential functions exp(—\;7), i=1,...,N with

the eigenvalues A; of the matrix A, the embedding can be
exact only if the memory kernel is of the same type [32]. But
also other memory kernels such as algebraically decaying
functions can be approximated by a finite sum of exponential
functions, even with a relatively small extra dimension N,
and hence are amenable to Markovian embedding.

Furthermore, the fluctuation-dissipation relation (2) im-
poses restrictions on the matrices A, C, and the vectors ¢ and
7. These restrictions are met if the embedding parameters
satisfy the following two relations:

G& = mk,TF, (10)

CCT=AG +GA", (11)

which defines the constant N X N matrix G.

However, for arbitrary initial values of the auxiliary vari-
ables i(0), the fluctuation-dissipation relation will be obeyed
only asymptotically. This means that the noise () in Eq. (6)
is initially nonstationary and becomes only gradually station-
ary in the course of time, see Appendix A, Eq. (A8). In order
to guarantee the Gaussian nature of the random force (),
the vector #(0) must also be Gaussian distributed, see Eq.
(A3). Because the vector #(0) is independent of the vector of
Gaussian white noises {?(t) and its first moment must vanish,
it is sufficient to specify its covariance matrix

(i#(0) ® i'(0)) =G. (12)

It must coincide with G in Eq. (10), in order to have the
fluctuation-dissipation relation (2) obeyed for all times, see
Eq. (A8).

Yet the conditions (9)—(11) do not uniquely determine the
enlarged process and actually leave room for an infinite va-
riety of different processes leading to the same generalized
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Langevin equation upon reduction. Since some of the en-
larged processes allow faster and more reliable numerical
simulations than others there is a great interest in identifying
computationally optimal embeddings. We further note that
the relations (9)—(11) are sufficient but not necessary condi-
tions. The resulting embedding is more general than previous
ones such as those proposed in Refs. [33,34], which assume
F=g.

Before discussing a particular example, we would like to
emphasize that the stationarity of the fluctuating force and
the fluctuation-dissipation relation (2) are exactly imple-
mented.

A. Minimal model

We now consider the simple class of models specified by
the biexponential memory kernel (5). Under the condition of
vanishing static friction, i.e., y;k,= ¥k}, this memory kernel
is specified by three independent parameters that can be writ-
ten as

K= Yi— Y, V=kitk,

Note that « is always a real parameter due to the positivity
constraint ;> vy,. In terms of this parameterization, the
Laplace transform 9(s) of the memory kernel becomes

and  wj=kiky. (13)

2

Ws) = f e y(t)dt = 5. (14)
0

s+ vs +
One can now easily calculate the power spectral density, see
Eq. (4), by connecting it to the friction kernel via the
fluctuation-dissipation relation, see Eq. (2),

o

S(w) =2kg Tmf v(t)cos(wr)dt
0

=2k Tm Re[ Hiw)]
2kp Tm K> vw?
T (?- wg)2 + V0
It is interesting to note that the power spectral density has a
maximum at the frequency w.
There are several possibilities to realize Markovian em-

bedding of this non-Markovian model. In the following, we
shall discuss two of them.

(15)

1. First embedding
A simple embedding is obtained by choosing

A:< 14 (.'.)0)3
) 0
§'=7"=(k,0),
10
c- o) °)

(ui(0)u;(0)) = mkpT ;. (16)

This choice leads to the following equations:
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x(t) = ip(t),

) =— &%V(x,r) + (1),

1(2) == kp(t) — vu, (1) — wou(t) + \2mkgTvé(r),

(1) = wou, (1), (17)

where &(f) is scalar Gaussian white noise. Moreover, this
embedding also allows for complex parameters k;=k,, pro-
viding the possibility to model oscillating real valued kernels

wt) = Kze'”/z[cos(tw w(z) —H4)

- ———sin(Wwp— 7/4) |. (18)
Vdwy— 17

This model corresponds to sharply peaked power spectral
density S(w), and bath spectral density J(w).

2. Second embedding

An alternative way is to start with a diagonal matrix A. It
would be tempting to also choose diagonal matrices C and
G. This choice though always yields a linear combination of
exponential functions with positive coefficients for the
memory kernel (5) [35] and hence does not allow vanishing
static friction. However, this goal can be achieved by means
of the following choice of parameters involving nondiagonal
matrices C and G:

(o 2]
A= ,
0 k,

3 ki +ky
8125 71,2k1_k2,

—-C
>, (19)

where 0<c=2vkk,/(k;+k,)<1 is the correlation coeffi-
cient of the covariance matrix G and k;=k,(7y,/ y,) > k,. This
choice is similar to the one in [23]. We note that the second
embedding requires that the parameters k; and k, must be
real. Therefore, it is not possible to model an oscillating ker-
nel by this method. Our first embedding in Eq. (17) is, how-
ever, simpler and numerically more convenient since its nu-
merical simulation requires fewer operations. For instance,
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only one stochastic variable has to be generated in the first
embedding scheme, see Eq. (16), in contrary to two, needed
in the second embedding scheme, see. Eq. (19). All this
makes our first embedding scheme preferential.

B. Dimensionless units

For further studies, we transform Eq. (17) into dimension-
less units Maling momentum in terms of thermal momen-
tum py=\VmkgT, expressing the distance in terms of a typical
length scale some arbitrary length x,, which becomes the
spatial period for periodic potentials (see below) and time in
units of 7y=xy/v7. The auxiliary variables u; and u, are
scaled in units of uy=mx,/(k75). The energy is scaled in
units of kzT. This yields the equations of motion

X=0,
- Jd ~ . _
U=- V(%D +i,
0x

~ D e ~ e o~ [A=
i, = — R0 — Dl — @il + R\N2TE,

ity = @it , (20)

which were used in our simulations. Here, K=k, @,
=wyTy, and U=v7,. All results in the following figures are
given in these dimensionless units.

III. RESULTS

The numerical results presented below were obtained us-
ing the standard stochastic Euler method [36]. A Mersenne
Twister pseudorandom number generator was used to pro-
duce uniformly distributed random numbers which were
transformed into Gaussian variables using Box-Muller algo-
rithm [37]. Typically, an ensemble of n=10* particles (or
trajectories) was propagated in time with a fixed time step
between Ar=10"* and 107> in most simulations to achieve
(weak) convergence of ensemble averaged results. The use of
double precision thus cannot be avoided and reliable numer-
ics are very time consuming. All the particles were initially
localized at x(0)=0 with the initial velocities sampled from
some probability distribution. In most simulations, we as-
sumed this distribution to be sharply peaked at zero and as-
cribed zero initial velocities to all the particles, although the
thermal Maxwellian distribution was also used. The auxiliary
variables u;(0) were (mostly) sampled from the correspond-
ing Gaussian distributions to achieve at the exact equiva-
lence of the simulated Markovian dynamics to that of GLE,
as described in Sec. II. Sometimes, we used also a different
initial distribution of «;(0) (all equal zero) in order to clarify
the influence of the initially nonequilibrium noise prepara-
tion on the stochastic dynamics. In all cases, we denote the
corresponding ensemble averages as (...) and specify the
initial distributions if not obvious.

Of central interest are the first moment (Ax(¢)) and the
variance (Ax%(¢)) of the displacement
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Ax(#) = x(#) = x(0) = J(:dt’v(t’)- (21)
Accordingly, we have
(Ax(1)) = Jot dt'(u(t")) (22)
and

(Ax*(1) = ([Ax(1) = (Ax(1))]) = f f didi,C,(11.1),
0J0

(23)

where C,(1,,t,) denotes the velocity fluctuation autocorrela-
tion function

Cy(t1,1) ={(v(t) = E)) (1) = (). (24)

These quantities were estimated on the basis of averages
over the ensemble of simulated particle trajectories.

Of particular interest will turn out the question under
which conditions the process of velocity fluctuations defined
as the deviation of velocity from its mean value constitutes
an ergodic process [38,39]. The definition and main proper-
ties of an ergodic process are collected in Appendix B.

A. Superdiffusion in presence of a constant bias

First, we consider the Langevin dynamics (1) with an ar-
bitrary memory kernel under a constant biasing force F, i.e.,
with V(x,t)=—Fx. This special biased problem is analytically
solvable, cf. [15-17,34], and therefore provides a suitable
test of our numerical simulations. The mean square displace-
ment in this case does not depend on the external bias F' and
is given by (Ax?(¢))=(x*(¢))—(x(¢))>. This becomes

t

<Ax2(t)>=2vzrf H(t")d1' +[(0*(0)) - v7]H (1), (25)
0

where we denote the thermal average of initial velocities by
v7.=(0%(0))7=kgT/m and

H(r) = JI K,(ndt (26)
0

is the integral of the (normalized) equilibrium autocorrela-
tion function of the velocity fluctuations, which is defined as

K,(7) = Cy(7,0)/v7. (27)
It has the Laplace-transform
. 1
K,(s) = —. (28)
s+ ¥(s)

We note that the velocity fluctuations present a wide sense
ergodic process if and only if the time average of K,(r) van-
ishes, i.e.,

lim lH(t) =0, (29)

[—> t

see also Appendix B. For the mean displacement, one obtains

PHYSICAL REVIEW E 81, 011136 (2010)

(Ax(1)) = ’%f H(t')dt'. (30)
0

If one chooses thermally distributed initial velocities,
<v2(0)>=va, then the first and second moments of the dis-
placement are connected by the fluctuation-dissipation theo-
rem (FDT)

F
2kyT

(Ax(1)) = (Ax*(1)), (31)
for any memory kernel. Notice that the mass of the particle is
not involved in Eq. (31). Provided that the velocity process is
ergodic in the wide sense, the second term on the right hand
side of Eq. (25) can be neglected compared to the first term
if time goes to infinity. Hence, for an ergodic velocity pro-
cess, the spreading of the particle position becomes indepen-
dent of the initial velocity distribution. In contrast, for a non-
ergodic process, the second term can become comparable in
magnitude or even dominant for large times. Then, the influ-
ence of the initial velocity distribution on the second moment
of the position survives. This actually happens if the Laplace
transform of the memory kernel 9(s) approaches zero for s
— 0 proportionally to s or faster. In this case, the FDT (31) is
not valid for (v%(0)) # v2, even asymptotically.

As an example we consider the minimal model (5). Its
Laplace transform indeed vanishes linearly with s—0, see
Eq. (14). For the Laplace transform of the velocity correla-
tion coefficient, one obtains from Eq. (28)

s2+ vs + 0}

K,(s) = . 32
ol8) s(s2+vs+w§+l<2) (32)

Inverting the Laplace transform, one obtains for the velocity
correlation coefficient

% R m
P

K,(7) = +

2
a%)+ K

R
V2 = 4w(2) — 457
X | coshl —————
2

R —
v \r’v2—4w(2)—41<2
+——sinh| ———— 7

——
V12— 4w} - 4K° 2

2 2
W)+ K

(33)

Note that with lim, .., K,(7)=w{/(wi+«?), the equilibrium
autocorrelation function of velocity fluctuations as well as its
time average attain positive values. This confirms that the
velocity process of the minimal model is nonergodic in the
case of linear potentials.

The mean square displacement of the position can be ex-
actly evaluated by means of Eq. (25). We refrain from pre-
senting the resulting lengthy expression and only compare
the such derived exact result with the mean square displace-
ment obtained from a simulation of the Markovian model via
the first embedding for a particular set of parameters, see Fig.
1. The agreement between the analytical result and the simu-
lation is very good.
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FIG. 1. (Color online) The mean square displacement of the
position (being independent of the bias F) as a function of time
changes from a ¢ law at small times to a ballistic 7> law. Compari-
son of the analytical solution according to Eq. (25) (solid line) and
results from numerical simulations of the first embedding (square
symbols) exhibit good agreement. A strongly deviating result is
obtained if the auxiliary variables of the first embedding initially
assume vanishing values (dashed line). The other parameters k=2,
v=3, wy=1, and v(0)=0 are the same for the displayed curves. The
estimate of the mean square displacement is obtained by an average
over an ensemble of 10* simulated trajectories.

For short times, the spreading of the mean square dis-
placement of the position becomes

(Ax*(1)) = (02(0))* + K[3v7— 42012 + O(F).
(34)

For a strictly vanishing initial velocity, the contribution pro-
portional to ¢ disappears and the diffusion initially becomes
superballistic with (Ax*(r))<#*, see Fig. 1. Otherwise, the
diffusion initially is ballistic. For large times, ballistic diffu-
sion results with {Ax*()) ~ D,t>. Due to the nonergodicity of
the velocity process, the ballistic superdiffusion coefficient
D, depends on the initial distribution of velocities,

% ©*0)) %}
D2=U2TTOK2|:1+( L —1) — 2]. (35)

Wy U7 wy+ K

Figure 1 also displays simulation results of the first em-
bedding for vanishing initial values of the auxiliary variable,
i.e., u;(0)=u,(0)=0, and also for initial values from a Gauss-
ian distribution with variance (ui(O)uj(O))=K25,-J-. We recall
that the latter choice guarantees that the fluctuating forces are
stationary and that they satisfy the fluctuation-dissipation re-
lation (2). The mean square displacement resulting from zero
initial auxiliary variables is remarkably different from that
with the correct Gaussian distributed initial auxiliary vari-
ables not only at short times but also for large times where it
approaches normal instead of ballistic diffusion. The strong
influence of the initial conditions even at large times is an-
other consequence of the nonergodicity of the velocity. In
contrast, for an ergodic velocity process, the long time be-
havior of the position mean square displacement has lost any
memory on initial conditions.
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FIG. 2. (Color online) Unbiased superdiffusion in a washboard
potential. The mean square displacement of a particle that spreads
ballistically in the absence of a bias F, see Fig. 1, eventually
changes its behavior from superdiffusive to normal diffusive behav-
ior under the influence of a periodic potential of strength V. From
bottom right hand side to top, we use V;=0.5,0.2,0.1,0.05,
0.02,0. The time of the turn-over shifts to later times with decreas-
ing potential strength. For the simulation of the displayed data, the
first embedding was used with k=2, v=3, wy=1, and v(0)=0.

B. Superdiffusion in a washboard potential

Next, we consider the diffusion in a periodic washboard
potential V(x,t)=-V, cos(2mx/x,) of spatial period x,. Here,
no analytical results are available, instead we performed nu-
merical simulations of the first embedding. In Fig. 2, we
compare the simulated mean square displacement as a func-
tion of time for different heights of the potential barriers
separating neighboring periods of the potential. After a short
initial period of fast growth, the diffusion turns over in an
intermediate ballistic behavior which eventually changes into
normal diffusion. As far as one can say from the numerical
simulations of finite duration, normal diffusion always deter-
mines the asymptotic behavior. The onset time of normal
diffusion though crucially depends on the magnitude of the
potential barrier 2V,. The larger this barrier is, the earlier
normal diffusion sets in. On the other hand, for small barri-
ers, the ballistic regime extends over a large time before the
asymptotic normal diffusion takes over.

C. Superdiffusion in a biased washboard potential

The modification of the dynamics by a tilt of the wash-
board potential, V(x,7)=-V,, cos(2mx/xy)—Fx, provides an
intriguing question. In particular, one may ask whether the
spreading will again become superdiffusive and whether a
supercurrent will emerge that steadily grows with time. The
numerical simulations displayed in Figs. 3 and 4 indicate that
the answer to both questions is yes. Both the mean square
displacement as well as the average displacement become
proportional to a ballistic law 2. The time at which this
presumably asymptotic behavior sets in becomes increas-
ingly larger the smaller the bias force F' is. For the stronger
forces F=0.7,1.5, the ballistic regime has settled within the
total time of 7=10*, which requires a week of computational
time on a Pentium PC with 3 GHz tact-frequency. For small
forces F'=0.1,0.2, an approach to a ballistic behavior is not
yet visible. We expect it to occur at a later time.
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FIG. 3. (Color online) Biased superdiffusion. After diffusion has
become normal in the presence of a periodic potential, see Fig. 2, it
is again changing to ballistic diffusion under the influence of an
additional finite bias F. Long transients exhibiting hyperdiffusion
emerge before the ballistic diffusion regime is approached. A fixed
barrier height V=1 was used for the simulations and the tilt F' is
variable. The other parameters are again k=2, v=3, wy=1, and
v(0)=0.

Another interesting feature is the occurrence of very long
superdiffusive transient episodes with a mean square dis-
placement growing faster than ballistic as 7%ff with an expo-
nent a.>?2 up to approximately 5. We call these episodes
“hyperdiffusive”. Their occurrence depends on the dimen-
sionless barrier height V)/ kT and the biasing force F,,. With
a larger barrier, the total transient time before the asymptotic
ballistic behavior sets in becomes larger. For small biasing
forces after a short initial period, first, a regime of normal
diffusion is observed, which turns over into the hyperdiffu-
sive regime at a time that is the later the smaller the biasing
force is. For example, for V,/kzT=1 and F=0.2, the normal
diffusion regime extends approximately over one decade
from t=10 to =100, and then rapidly turns around =2
X 10? into hyperdiffusion with a,.;=5.1, cf. Figure 3. This
behavior continues until the end of the simulation at r=10%
Until then, the root mean square displacement increases by
an amount of 10°~10* periods of length x,. The turnover to
the expected ballistic diffusion can only be observed if the
biasing force is larger, but then also the normal diffusion
regime disappears.

109
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FIG. 4. (Color online) Anomalous drift behavior. A finite bias F
induces anomalous drift. From bottom right hand side to top, we
use F'=0.1,0.2,0.4,1.5. Ballistic currents appear asymptotically
(Ax(f)y ~¢*. Like in Fig. 3, transient regimes appear with enhanced
particle transport stronger than ballistic. The used parameters are:
Vo=1, k=2, v=3, wy=1, and v(0)=0.
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A similar effect of hyperdiffusive motion was reported by
Lii and Bao [40] for a Brownian particle moving in a biased
periodic potential under the influence of a super-Ohmic
model with a spectral density J(w)>*w'? for w—0. The
question whether the hyperdiffusion observed in Ref. [40] is
indeed asymptotic or whether it is also a transient phenom-
enon must still be clarified.

From the different curves displayed in Fig. 3, one can
infer that for large times the mean square displacement
grows the faster the smaller the biasing forces is, in other
words, the ballistic diffusion constant increases with decreas-
ing biasing force and, in particular, is larger than the ballistic
diffusion constant of free motion reached for Fx,> V. This
phenomenon is akin to the effect of giant enhancement of
normal diffusion in periodic potentials [42,43].

The mean displacement (Ax(z)) exhibits a qualitatively
similar behavior as the mean square displacement. After a
first transient period whose nature strongly depends on the
initial velocity distribution, a monotonous growth sets in that
changes from linear to quadratic, possibly interrupted by an
episode of rapid growth proportional to % with 8>2, cf.
Figure 4. The transitions between the different regimes occur
at the same times at which the mean square displacement
changes from normal diffusion into the hyperdiffusion and
finally to ballistic diffusion. The exponent 8 though is much
smaller than the hyperdiffusive exponent a.g. This indicates
that the transport in this intermediate regime is strongly er-
ratic. While both periods of normal and ballistic diffusion
can be characterized by a time-independent Peclet number
Pe=x,(Ax(1))/{Ax*(t)) [41] the difference of the exponents
a.ir and B does not allow the definition of a Peclet number in
the hyperdiffusive regime. However, both in the normal and
the asymptotic ballistic regime a time-independent Peclet
number can be defined. For F=0.1, the FDT (31) holds with
a good accuracy and Pe = Fx,/(2kgT) in the normal diffusion
transport regime, see Figs. 3 and 4. Beyond the linear re-
sponse regime, the FDT (31) is generally violated. Such a
wealth of different transport regimes with normal and
anomalous features, revealed by a simple model, is really
surprising.

IV. ERGODICITY

We next comment on the ergodic properties of the veloc-
ity fluctuations in relation to ballistic diffusion. In the case of
free ballistic diffusion, the velocity fluctuations are clearly
nonergodic. As already mentioned above, this rigorously fol-
lows from the fact that the velocity fluctuation correlation
coefficient K,(¢) given by Eq. (33) converges to a constant
value different from zero. Also the strong dependence of the
position mean square displacement on the initial distribution
of the auxiliary variables u; and u, in the limit of large times,
see Fig. 1, provides a clear indication of nonergodicity. In the
case of ballistic diffusion in a tilted periodic potential, ana-
lytic results for the velocity fluctuation autocorrelations are
not available and we therefore have to rely on our numerical
findings. In Fig. 5, the mean square deviations of position for
different distributions of the initial velocities are compared
with each other. Apart from minor deviations, these initial
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FIG. 5. (Color online) Mean square displacement of position for
different initially distributed velocities. The solid lines mark ther-
mally distributed initial velocities (v2(0)>=v2T, whereas dashed lines
mark initially zero velocity v(0)=0. The differences in time evolu-
tion vanish in the asymptotic long time limit in the presence of a
biased periodic washboard potential with potential height V,, and
bias F, implying wide sense ergodicity for the mean square dis-
placement. However, in case of free ballistic diffusion, see lines
labeled by V=0, F=0, a constant deviation remains according to
Eq. (35). Parameters are chosen as k=2, v=3, and wy=1.

preparations do not seem to have any influence in the pres-
ence of a tilted periodic potential. Therefore, one might sup-
pose that in this case the process of the velocity fluctuations
is wide sense ergodic. This result though cannot be consid-
ered conclusive because also in the absence of any potential
the choice of the initial distribution of velocities has only
little impact on the mean square displacement, see lines la-
beled by V(=0 and F=0 in Fig. 5. A more convincing argu-
ment results from the comparison of the effect of different
initial distributions of the auxiliary variables u; and u,, see
Fig. 6. While the influence of this distribution on the position
mean square deviation is very large and even increases with
growing time, see Fig. 1, only small deviations at early and

T T T T T
108 b R
F=15
= g0t L S ]
5
100 b R
F=0.2

10t .

d vl vl ol ol L
107! 10° 10! 10? 10° 10*

t

FIG. 6. (Color online) Role of deviation from stationary
fluctuation-dissipation relation in Egs. (2) and (A9) on the time
evolution of the mean square displacement {Ax*(z)). In contrast to
the choice with a stationary fluctuation-dissipation relation, see
solid lines marking <u,~(0)uj(0))=;<2(‘)‘,~,j, the initial choice u;(0)
=u,(0)=0, see dashed lines, yields a Gaussian noise {(¢) that ini-
tially is nonstationary, see Eq. (A8). The noise {(¢) assumes, how-
ever, stationary noise at asymptotic long times. The initial velocity
was set to zero, i.e., v(0)=0, the potential strength to V=1, and the
remaining parameters are chosen as in Fig. 5, k=2, v=3, and w,
=1.
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intermediate times are visible in the case of a tilted periodic
potential. Hence, numerical evidence seems to indicate that
the velocity fluctuations of a ballistically diffusing particle in
a tilted washboard potential indeed is wide sense ergodic.

This raises the question whether it is possible that the
velocity fluctuations of a superdiffusive process may be wide
sense ergodic in one case and nonergodic in another. The
strict answer to this question is that the velocity fluctuations
of any truly ballistic diffusion with (Ax?(#))=D,t* constitute
a nonergodic process. This follows from Eq. (23) by means
of differentiation with respect to time, yielding

1 t
D, = lim~ f dr'K,(t"). (36)

t— 0

Therefore, the time average of the autocorrelation function of
the velocity fluctuations does not vanish and consequently
the velocity fluctuations are nonergodic, see Appendix B.

However, one must keep in mind that the ballistic diffu-
sion presents a marginal case. Any increase of (Ax%(f))
slower than #2, such as =€ with any small, positive €, or
#2/1n t, will lead to a vanishing time average of the velocity
fluctuation autocorrelation function by the same argument as
above. From the numerical point of view, there is always a
limitation of how accurate the scaling exponent of (Ax*(7))
can be determined. Logarithmic corrections are almost im-
possible to identify. We therefore suppose that the observed
ballistic diffusion in a tilted washboard potential might
strictly speaking be marginally sub-ballistic and the velocity
fluctuations wide sense ergodic.

V. SUMMARY

In this work, we considered one of the simplest models
for the superdiffusive motion of a particle described by a
GLE. It corresponds to a biexponential memory kernel with
zero integral. The according spectral density J(w) of thermal
bath oscillators sets in with a cubic law. It describes, for
example, the diffusion of an impurity in a crystal.

We considered a large family of Markovian embedding
schemes, i.e., higher dimensional Markovian processes that
generate the considered non-Markovian process upon projec-
tion onto the subspace spanned by position and momentum
of the particle. Out of the whole class, we identified a simple
four-dimensional embedding that can be numerically treated
in an efficient way.

We confirm that ballistic superdiffusion is nonergodic,
which is concordant with the findings in [26,25]. As an
amazing manifestation of nonergodicity, we found that a
nonequilibrium initial noise preparation can change the law
of diffusion, see in Fig. 1.

Further on, our numerical findings indicate that the free
ballistic diffusion, being present in the absence of any poten-
tial, changes into normal diffusion in the presence of a peri-
odic potential. We concluded that the process of the velocity
fluctuations is nonergodic in the absence of a periodic poten-
tial but wide sense ergodic in the presence of a periodic
potential. Apparently, the transition to the ergodic motion
does not require a minimal potential strength. Rather, the
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time to reach the asymptotic regime of normal diffusion di-
verges with vanishing potential strength V.

An additional biasing force leads to ballistic motion in a
periodic potential, i.e., both the mean value and the variance
of the position displacement grow proportional to a 7> law. In
this case, however, we found strong indications that the ve-
locity fluctuations remain wide sense ergodic. This paradoxi-
cally looking scenario—nonergodic for free ballistic diffu-
sion versus ergodic for ballistic diffusion in a potential—is
possible because the ballistic diffusion presents a marginal
situation. Although for ballistic diffusion following a strict ¢>
law, the velocity fluctuations are nonergodic any modifica-
tion of the > law with a weakly decaying function such as
1/1n t leads to wide sense ergodic velocity fluctuations. For a
subcritical bias F<Fy=2mV,/x, the ballistic diffusion co-
efficient D, is substantially enhanced compared to the diffu-
sion coefficient for free ballistic diffusion. This effect is the
analog to giant enhancement of normal diffusion in tilted
washboard potentials.

Depending on the potential and the bias strengths the time
before the asymptotic ballistic motion sets in may be ex-
tremely large. Within this long transient period a normal and
even a hyperdiffusion regime may exist, where a,; exceeds
the ballistic value of 2. The presence of such long transients
presents a general feature of the studied non-Markovian dy-
namics.

This work was supported by the German Excellence Ini-
tiative via the Nanosystems Initiative Munich (NIM).

APPENDIX A: CONDITIONS FOR EMBEDDING

The solution of the last equation in Eq. (7) is

t t
i(t) = - f e p(t)idt' + J e AICE Y dr
(

0 )
e Mii(0), (A1)
which, inserted into Eq. (7), yields
. K T
p(O)=—| —V(x,r) - g"ii(1)
ox
=——V(xt) f e A zp (1 ) dt!
f e A CE ) dt + gTeMiE(0).  (A2)
0

The comparison of Eq. (A2) with Eq. (6) gives Eq. (9) and
O f eAEOCE N dr + §TeMi(0). (A3)

Assuming (u;(0)€;(1))=0, this enables one to calculate the
noise correlation function
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LOLs))
= (@ Ma0)g e i(0))

<f dtf dS,_)T —A(+-1") Cf(l‘)-;r —A(s— 3/)C§(S/)>.

(Ad)

Taking into account Eq. (8) for >s (the case r<<s can be
treated alike), the second term reduces to

s
f gTe—A(t—s')CcTe—AT(s—s')g—>dsr
0

s
=§T8_AIJ 6,AS'C(:TeATs'dS e -AT sg, (AS)
0

and the first term is

(e Ma(0)gTe Ma(0)) = g A((0) @ 7" (0))e A g

(A6)
Altogether, with the following definition:

@(0) ® @' (0)), (A7)

this yields
() (s))y=g" A’lU+J eA"/CCTeAT‘*/ds’]e‘ATSg.
0

Making an Ansatz as in Eq. (11) enables one to separate the
noise correlation function into a stationary and a nonstation-
ary part:

DLs)y=g" A{U + f S A (AG + GAT)eATS’ds'}
0

T
Xe_A Sg->
T T
=g e At[(]_l_eAs Ge A's | _0 €_A sg

=gTeAMU-GleA g+ §TeAGg. (A9

The first term of Eq. (A8) represents the nonstationary part
and is vanishing asymptotically in the limit of long times,
i.e., t,s —0. Both the relaxation spectrum defining the cor-
responding time scales and the spectrum of autocorrelation
times is given by the eigenvalues of matrix A. Moreover, the
fluctuation-dissipation relation of Eq. (2) is always asymp-
totically fulfilled, if one chooses Gg=mkgTF, which yields
Eq. (10). However, in order to obey the fluctuation-
dissipation relation for all times, one has to set U= G, which
implies Eq. (12), and we end with

(LD L(s)) = mkpTg e A7 = mkgTy(t—5).  (A9)
APPENDIX B: WIDE SENSE ERGODICITY

According to its definition, a stationary process y(r) is
ergodic in the wide sense if its time average converges in the
mean square sense toward the ensemble average [44]. This

011136-9



SIEGLE et al.

definition implies that a process y(7) is wide sense ergodic if
and only if the time average of the autocorrelation function
of its fluctuations vanishes, i.e., if

lim~ f dr [ - WO - =0  (BI)

PHYSICAL REVIEW E 81, 011136 (2010)

holds [44]. Hence, the decay of the autocorrelation function
of the fluctuations toward zero provides a sufficient condi-
tion for a wide sense ergodic process. On the other hand, the
considered process is nonergodic if the autocorrelation func-
tion of its fluctuations approaches a constant value different
from zero.
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