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We develop a systematic coarse-graining procedure which establishes the connection between models of
mixtures of immiscible fluids at different length and time scales. We start from the Cahn-Hilliard model of
spinodal decomposition in a binary fluid mixture under flow from which we derive the coarse-grained descrip-
tion. The crucial step in this procedure is to identify the relevant coarse-grained variables and find the appro-
priate mapping which expresses them in terms of the more microscopic variables. In order to capture the
physics of the Doi-Ohta level, we introduce the interfacial width as an additional variable at that level. In this
way, we account for the stretching of the interface under flow and derive analytically the convective behavior
of the relevant coarse-grained variables, which in the long wavelength limit recovers the familiar phenomeno-
logical Doi-Ohta model. In addition, we obtain the expression for the interfacial tension in terms of the
Cahn-Hilliard parameters as a direct result of the developed coarse-graining procedure. Finally, by analyzing
the numerical results obtained from the simulations on the Cahn-Hilliard level, we discuss that dissipative
processes at the Doi-Ohta level are of the same origin as in the Cahn-Hilliard model. The way to estimate the
interface relaxation times of the Doi-Ohta model from the underlying morphology dynamics simulated at the

Cahn-Hilliard level is established.

DOLI: 10.1103/PhysRevE.81.011131

I. INTRODUCTION

The problem of coarse graining in terms of bridging time
and length scales between microscopic and macroscopic lev-
els of description is a crucial issue in the physics of complex
fluids, like polymer melts, colloids, liquid crystals, and emul-
sions, out of equilibrium. The wide span of length and time
scales is particularly evident in these systems, due to their
internal structure leading to additional mesoscopic levels of
description, intermediate between microscopic and macro-
scopic [1]. Many of the practical applications of these fluids
crucially depend on the evolution of their complex, multi-
phase morphologies developed through equilibrium self-
assembling or during nonequilibrium processing of these
systems. Some examples of such applications are food pro-
cessing, membrane technology, encapsulation systems, drug
delivery, coating, production of paint and cosmetics etc.
[1-4]. Therefore, the goal of connecting different levels of
description of complex fluids is of great importance. In the
present work, this problem is approached by considering the
phase separation of binary fluid mixtures subjected to a shear
flow.

When a binary (AB) fluid mixture is quenched from a
high temperature homogeneous phase to an unstable region
below the coexistence curve, it becomes unstable with re-
spect to long-wavelength fluctuations in the composition and
starts to phase separate [5]. The interface between the A- and
B-rich domains is initially very diffuse, but sharpens with
time. In the later stages of phase separation, local equilib-
rium is achieved within each domain and the effects of in-
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terfacial energy become important. The domain pattern fur-
ther coarsens in time, while the dynamics is governed by the
minimization of the excess interfacial energy of the system.
The kinetics of these nonequilibrium phenomena is an area
of extensive research [5]. Especially the effects of a shear
flow on the deformation and kinetics of domain growth, and
the corresponding rheological behavior, are challenging and
technologically important topics [6]. The complexity of the
problem lies in the presence of a complex interface and its
motions due to coagulation, rupture, and deformation of do-
mains, which significantly influences the macroscopic prop-
erties of a mixture. Although numerous experimental [7—11],
numerical [12-24], and analytical [14-17,24-28], studies
have been done in order to understand the flow effects on the
morphology and the dynamics in this system, many ques-
tions still remain open, like the possibility of achieving a
nonequilibrium steady state [20-24].

Due to the complex morphology of this system, even in
the case of two simple Newtonian fluids, one can identify
several length and time scales requiring different theoretical
approaches and simulation methods. The standard mesos-
copic model for understanding the dynamics of spinodal de-
composition is based on the formulation of Cahn and Hilliard
[29]. Tt describes the Kinetics of the system in terms of the
convective-diffusion equation for the order parameter—
composition ¢, and the Navier-Stokes equation for the fluid
velocity v (so-called “model H,” see, e.g., [30]),

d
v (Vo) =MVu,,

Py (1.1a)

Jd
p(a—‘;+ (v- V)v) =V -Vp+pu, Ve, (11D

where M is the mobility coefficient, p the pressure,
p the mass density, and 7 the viscosity. The chemical poten-
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tial w. is given as wu.=6F[c]/bc, with the free
energy functional of the Ginzburg-Landau form
Flc]=[d*r[—(al2)c?+(b/4)c*+(k/2)|Vc|*], (a,b>0),

where the square brackets emphasize the occurrence of func-
tional integrations. During the late stages of phase separa-
tion, the time evolution can be described by the change of
the size and shapes of the domains. Due to the dynamical
scaling hypothesis, the system is described by a characteris-
tic length scale L(r), which is related to the average domain
size. By using dimensional arguments, one can estimate the
size of the contributions from the specific terms in the
Egs. (1.1), which leads to the distinction of the three
growth regimes [5,31,32]: diffusive L(t) ~ (Mot)"3, viscous
hydrodynamics L(¢) ~ ot/ 7, and inertial hydrodynamics
L(t)~ (01?/p)'3, where o is the interfacial tension. Under
shear flow the situation becomes more complex since the
domains elongate along the flow direction and the system
becomes anisotropic and cannot be described by a single
length scale (see [14-17,19,20] and references therein).

On the other hand, for understanding the rheological
properties of multiphase systems, like polymer blends, under
shear flow, Doi and Ohta suggested that the average infor-
mation about the interface between the two phases is suffi-
cient. Hence, their phenomenological model [28] focus on
the interface, which is considered as a zero-width surface
embedded in the fluid. The presence of the interface is then
represented through two state variables that describe the in-
terfacial area per unit volume, Q, and its anisotropy, q, in a
given flow field. They are defined in terms of the interface
orientational distribution function f(n), where n is a unit
vector normal to the interface. This is a probability density of
finding the amount of interface with the orientation n, so that
the integral over all orientations gives the total amount of
interface per unit volume. Therefore, for the state variables Q
and q one can write the following definitions:

0= f fm)d*n, (1.2a)

q=f<nn—%1)f(n)d2n=ﬁ—%Ql, (1.2b)

where 1 is the unit tensor, and [ d*n denotes an integration
over the unit sphere. Introduction of the distribution function
and further averaging over all possible orientations imply the
loss of information of the detailed morphology of the system.
This coarse-grained model keeps only the information about
the average amount of interfacial area per unit volume and its
orientation. However, the detailed information about the
morphology, i.e., the explicit interfacial position and orienta-
tion, is lost.

The time evolution of the new configurational variables O
and q is determined by two factors: the external flow field
which orients and enlarges the interface, and the interfacial
tension which has the opposite effect and governs the relax-
ation of the interface. Therefore, the time evolution can be
separated into two parts,
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Q — @ @ (1 33)
ot dat convection dat relaxation’

Jd J J

Aa_ A ;A (1.3b)
Jt Jt convection dt relaxation

The convective part of the time evolution can be found by
considering the convection behavior of the unit vector n nor-
mal to the interface under affine deformations and volume
preservation assumptions. Then, the convection of the state
variables is derived using the above definitions [Eq. (1.2)]

1% 2
% — V- (QV) - (VW)iq + 201V,
at convection 3
(1.4a)
1% 1
= =~ (VV)-q-q- (VW)= ~0y-v-Vq
Jt convection 3

+ il(Vv):q + [q + éQl]Tr(VV)

+nnnn:(Vv)7. (1.4b)

where ¥=Vv+(Vv)T is the symmetrized velocity gradient
tensor [33]. In the equation for the interfacial shape [Eq.
(1.4b)], the fourth moment of the interface normal n appears,
which must be expressed in terms of the state variables
through an appropriate closure approximation in order to ob-
tain a self-contained set of time evolution equations. Doi and
Ohta postulated the following closure approximation

nnnn:(Vv)' = éﬁ E:(VV)T (1.5)

and verified its accuracy. Using definition (1.2b), the convec-

tive time evolution of the anisotropy q takes the form

9
it

1
=—(VV)~q—q-(VV)T—§Q7'/—V-Vq

convection

+ %I(Vv):q + {q + %QI]TI(VV)

1 1 1
+ §<q+ §Q1>(q+ EQI):(VV)- (1.6)

As for the relaxation in the Doi-Ohta model, the relaxation of
the state variables can be written in a generalized form

1% 1

%Q =——0, (1.72)
dt relaxation Tdo,1

1% 1

A ———q. (1.7b)
dat relaxation Tdo,2

In order to specify the empirical interface relaxation times
Tgo.1 and 74,5, assumptions on the appropriate interface re-
laxation mechanisms must be made. Finally, the full set of
time evolution equations for the configurational variables O
and q, together with the equations for the hydrodynamic
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variables p, g, and € has been formulated within the GE-
NERIC formalism [33], which for the stress tensor gives

2=—T—0’(Q—§Q1)—p1, (1.8)
where 7 is the viscous stress tensor.

Although very crude, the ability of the Doi-Ohta model to
connect the morphology of the system to its macroscopic
behavior, through the above given set of rheological consti-
tutive equations, is very appealing for different theoretical
and technological purposes. The model and its variants have
been used to analyze multiphase flow of polymers, as well as
simple fluids undergoing spinodal decomposition [7,33—40].
However, the need for explicit assumptions of the interfacial
relaxation mechanisms and the appropriate relaxation times,
which depend in an unknown manner on the underlying mor-
phology, makes it difficult for wide and easy use. Therefore,
in this paper we concentrate on relating the macroscopic
Doi-Ohta model to the underlying morphology, described by
the more detailed Cahn-Hilliard model. The goal is to estab-
lish a systematic, thermodynamically guided method which
determines the coarse-grained Doi-Ohta model of a phase
separating binary fluid from the more detailed Cahn-Hilliard
model, in the region where the considered system can be
described with both approaches. To connect these two differ-
ent levels of description, the general equation for the non-
equilibrium reversible-irreversible coupling (GENERIC)
framework is used [41-43]. This approach allows to specify
the mathematical structure which should be left invariant in
the coarse-graining procedure and hence assures thermody-
namically consistent results.

In the following, we first describe the GENERIC structure
and formulate the Cahn-Hilliard model within this frame-
work. The coarse-graining procedure which derives the more
macroscopic Doi-Ohta model is then presented. In particular,
we present some mathematical challenges which occur
within the coarse-graining procedure, as well as the efficient
way to extract the interface relaxation times of the Doi-Ohta
level from the underlying morphology.

II. GENERIC FORMALISM

The main points of the GENERIC framework of nonequi-
librium thermodynamics [41-43] can be summarized in the
following way. In analogy to equilibrium thermodynamics,
one needs to choose a complete set of variables x, which
describes the situation of interest to the desired detail. For a
system out of equilibrium the time evolution of all the rel-
evant state variables can be divided into the reversible and
the irreversible contributions

X=X (2.1)

|rev + X|irreV'

These two contributions are obtained by considering sepa-
rately the energy E and the entropy S—the two generators of
reversible and irreversible dynamics, respectively. This can
be explained by using the analogy with the classical
Hamiltonian mechanics as following. Using the classical
Hamiltonian mechanics, the reversible contribution of the
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time evolution, X|., is related to the energy gradient by
way of a Poisson operator L, so that it is X|,.,=L-(5E/ &x).
The Poisson bracket associated to L, given by
{A,B}=(6A/6x,L- 8B/ 8x) with appropriate scalar product
(.,.), must be antisymmetric and satisfy Lebniz’ rule and the
Jacobi identity, which are both features that capture the na-
ture of reversibility. The motivation for formulating the irre-
versible part of the dynamics comes from the reversible part.
For the reversible dynamics, the energy plays a distinct
role—it is a conserved quantity for closed systems and it
drives the reversible dynamics. Therefore, for the irreversible
dynamics the entropy presents an important quantity—it
does not decrease for closed systems. For the GENERIC
formulation, it is then assumed that the irreversible contribu-
tion to the time evolution, X |, is driven by the entropy
gradient, i.e., that it is of the form X|e,=M-(85/x), with
M a generalized friction matrix. This friction matrix contains
transport coefficients and relaxation times associated to the
corresponding dissipative effects. It is required for M to be
(Onsager-Casimir) symmetric and the condition that it is

positive semidefinite ensures that $=0 is fulfilled.

From the above illustration, one concludes that the time
evolution of x can be expressed in terms of four “building
blocks” E, S, L, and M as

SOE(x) .

OS(x)
X X

x=L(x) - M(x) (2.2)
The two different contributions to the time evolution, revers-
ible and irreversible, are not independent. They are related

by the two complementary degeneracy requirements
S(x) B OE(x)

=0, M(x)-
ox ®) Ox

L(x) - =0. (2.3)
The first requirement expresses the reversible nature of the LL
contribution to the dynamics, demonstrating the fact that the
reversible dynamics captured in L. does not affect the entropy
functional. The second one expresses the conservation of the
total energy of an isolated system by the irreversible contri-
bution to the system dynamics captured in M.

The presented GENERIC form of the time evolution
equations for the state variables x represents a mathematical
structure which guarantees that the chosen model is thermo-
dynamically consistent. Moreover, by concentrating on the
thermodynamics building blocks E, S, L, and M rather than
on the time evolution equations in systematic coarse-graining
procedures, the obtained coarse-grained equations are guar-
anteed to be also thermodynamically admissible.

GENERIC formulation of the Cahn-Hilliard model

In order to develop a systematic coarse-graining proce-
dure which relates the more detailed Cahn-Hilliard level to
the more macroscopic Doi-Ohta level, we must formulate the
first one in the GENERIC structure. As a first step, we need
to identify the list of independent variables x which fully
describe the considered thermodynamic system. In addition
to the hydrodynamic fields, the mass density p, the momen-
tum density g, and the internal energy density €, we use the
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composition c—the mass fraction of one component—in or-
der to describe the configuration of the system.

Taking into account the Cahn-Hilliard free energy of a
phase separating binary system, we assume the total energy
and entropy of the system, in terms of the variables
x=(p,g,€,c), to be

(1) s (1 g 1 2
EVx)= | &r| ==+ e+ —xg|Ve|]*), (2.4a)
v 2p 2

SW(x) = f &rs(p,ec), (2.4b)
\4

where V is the total volume of the system. For simplicity, the
gradient-squared term, which describes the contribution due
to the presence of the interface, is included only in the en-
ergy functional (2.4a), although it can be separated between
both, energy and entropy [44,45]. The actual functional form
of the entropy density s(p, €,¢) is not needed for the deriva-
tion of the Cahn-Hilliard time evolution equations in the GE-
NERIC form. However, we use the assumption of local equi-
librium, i.e., s(p, €,¢) has the same form as an equilibrium
system at the corresponding state point. In the numerical
simulations reported in this paper, we have used the popular
¢* structure for the uniform part of the entropy density, i.e.,
s(p,€e,c)=sy(p,€)—ac?/2+bc*/4, which presents the en-
tropic contribution to the bulk free energy density
[14,15,19,20,22-24]. Other possible functional forms include
the one for the van der Waals systems, for example Eq. (4) in
[44]. The functional derivatives of the above energy and en-
tropy functionals with respect to the independent variables x
are given with

SEW 1 r
. —EVZ,V,I,—KEVZC , (2.5a)
X
s [ as(p,e, 1 as(p,e,c)\"
= s(pec), T s(p.€c) , (2.5b)
X ap T dc

where we omitted the position dependence for simplicity.

The Poisson operator L) determines the reversible con-
tributions to the full evolution equations of the variables x,
and hence models the convective behavior. For our particular
choice of variables and in view of the functional derivatives
(2.5) one arrives at the following expression for the Poisson
operator:

do
0 pr)— 0 0
ar
a6
LOrr)=| - —p0) Ly Ly - (Ve@)o |,
0 L) 0 0
0 —(Ve(®)s 0 0
(2.6a)
with
a6 9o
(1 " — nN_= _ 2=
ng(r»r )_g(r )ar, - ﬁrg(r)’ (26b)
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a6

- a—E(r) -—p(r’),

o (2.6¢)

L(])(r r')=

LY)(rx") = e(r’)— + p(r) (2.6d)

ar'’
where 6=48(r—r’) is Dirac’s & function. In addition to the
usual hydrodynamic part of the Poisson matrix for the vari-
ables p, g, €, element L dictates the convection of the
configurational variable ¢, which is a scalar, so the entry in
the Poisson operator is as expected by [41]. The antisymme-
try of the Poisson matrix (2.6) and the degeneracy require-
ment are satisfied by construction, and the Jacobi identity
holds. At this point we mention that, in general, the symbol
“.” in Eq. (2.2) implies not only summation over discrete
indices. If field variables are involved the operators L. and M
are written in terms of two space arguments (r,r’), and an
integration over r’ must be performed when multiplied with
a function of r’ from the right. However, in the case of the
field equations being local, one can express L and M in
terms of a single variable r only [41], and no integration is
implied when these operators are multiplied from the right.
Such single variable notation is used below for the friction
matrix M(1)

The irreversible effects in the Cahn-Hilliard model for a
binary fluid under flow arise due to viscosity and heat con-
duction, as well as diffusion. Thus, to incorporate them
through the friction matrix MW, one can write it as the sum
of two matrices M) =M (D-hyd f M(DIf yhere MDY g the
usual hydrodynamic friction matrix, and M4 contains all
the transport coefficients related to diffusion of mass [41,46].
The hydrodynamic part of the friction matrix is given in the
r notation as

0 0 0 0
MDohyd g r(1),hyd
M(l),hyd(r) — glg o 8€ hvd , (2.7a)
0 MM M0
0 0 0 0
with
MM ) =~ (VT V+1V - 9TV) = VATV ,
(2.7b)
M (1), hyd(r) V. yTy+ V—Tr v, (2.7¢)
(Dbyd ) KT . .
Mg™ ) == Ty V- "TryV,  (2.7d)
1) hyd(r) y 7+ —(Tr Y-V N2V,
(2.7¢)

with all derivative operators acting on everything to the
right, i.e., also on functions multiplied to the right side of the
operator M, and with the transport coefficient x, being a
combination of the dilatational viscosity « and the viscosity
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7, ;?:K—%n, and \9 the thermal conductivity [41].
If M(r) is a position dependent mobility coefficient, the
diffusion part of the friction matrix in the r notation is

00 0 0
00 0 0
0 0 M(sle),dlf M(Ei),dlf i

00 MEIE),dif MEIC),dif

M) = (2.8a)

where the cc element is describing the diffusion of ¢, so that
M) = - V. MTV, (2.8b)

and the other three elements are obtained from the symmetry
and the degeneracy conditions

MDE(r) = — V. MTV k(Ve), (2.8¢)
MO (r) = - kx(V2)V - MTV | (2.8d)
M) == kp(V2e) V- MTV ie(Vie).  (2.8¢)

Here again are all variables functions of r, and all derivative
operators VE% acting on everything to the right, except
when they are in brackets and bounded to act on c¢. The
symmetry and the degeneracy requirement for the matrix
MDA are satisfied by construction.

Finally, by inserting the above building blocks E, S, L,
and M into the GENERIC equation (2.2), the full set of time
evolution equations takes the form

J
LoV (pv),

(2.9a)
t

%:-V-(vg)—V-(H+T), (2.9b)

J
—E=—V'(ev)—pV v-71:(VV)T-V.j

ot
&‘ RS
+ kp(V2e) V - {MTV (- 9slp.&c) @v%ﬂ,
dc T

(2.9¢)

d as(p, €,
—C=—v-(Vc)+V-[MTV(—M—EV%)},
ot dc T

(2.94)

where H=(p—%KE|VC|2)1+KE(VC)(VC) is the pressure ten-
sor, T=7y—-k(V-v)1 is the viscous stress tensor, and
j9=—N9IVT represents the conductive flow of internal energy.
For an isothermal, incompressible flow, these time evolution
equations take the form of the standard Cahn-Hilliard model.
Similar set of hydrodynamic equations for phase separating
fluid mixtures has been derived from an underlying micro-
scopic dynamics [46].
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III. COARSE GRAINING FROM CAHN-HILLIARD
TO DOI-OHTA LEVEL

A specific feature of the GENERIC formalism is that it is
applicable at different levels of description associated with
different length and time scales. Each level of description is
described by an appropriate set of state variables and build-
ing blocks. The mathematical structure of GENERIC offers a
possibility to perform coarse graining by focusing not on the
time evolution equations, but on the building blocks E, S, LL
and M, see [47]. The transition between a more detailed
(Cahn-Hilliard) level 1 to a less detailed (Doi-Ohta) level 2,
which involve the derivation of the building blocks from
level 1 to level 2, can then be performed by systematic pro-
cedures [48]. The possibility to perform coarse graining by
focusing on the basic building blocks guarantees that the
thermodynamic structure of the problem will be preserved.

A systematic coarse-graining procedure is based on the
idea of the separation of time scales. In this way, it is as-
sumed that there exists a division of the “fast” and “slow”
degrees of freedom at the more microscopic level 1 accord-
ing to their relaxation times. By means of the projection-
operator technique, one can then eliminate these “fast” de-
grees of freedom from the time evolution equations for the
“slow” variables. The latter are then associated to the mac-
roscopic variables at level 2. The crucial steps in this general
procedure are to identify the proper mapping of the variables
of one level to another, I1(x):x—y, which average in a
nonequilibrium ensemble p,(x) is the new coarse-grained
variable y

y =), = f Dap, (). (3.1)

A. Mappings and ensemble

For coarse graining from Cahn-Hilliard level, the relevant
set of variables at the coarse-grained level y=(p,g,€,0,q) is
motivated by the phenomenological Doi-Ohta model [28,33].
We assume that the hydrodynamic fields p, g, and € are
smooth on the more microscopic Cahn-Hilliard length scale.
Then the mappings II,, Il and II,, simply pick out the
hydrodynamic fields, while we need to determine the rela-
tionship of mappings 11, and Il to the underlying configu-
ration. We do this by following the physical meaning rather
than the exact definitions (1.2) of the Doi-Ohta variables.
This is because, first, the interface orientational distribution
function f(n) is not given at the Cahn-Hilliard level, and,
second, due to the difference in modeling of the interface.
While in the Doi-Ohta model the interface is assumed to be
sharp, in the diffuse-interface theories, like Cahn-Hilliard
one, the interface is given through continuous variations of
the composition c¢. Therefore, for determining the average
interfacial area per unit volume Q and its orientation ¢ one
must use the appropriate combination of the gradients of the
composition Ve(r), and perform ensemble averaging which
incorporates “‘smoothing” over a certain volume. We intro-
duce a smoothing function y(r—r’), which averages the ob-
servable over a certain volume v(r) around position r, and
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satisfies the normalization condition [,d' x(r-r’)=1. To
obtain the variables which would correspond to the Doi-Ohta
averaged interfacial area and its orientation, volume v(r)
must comprise many droplets for good statistics. That means

that the length scale of the smoothing volume
v(r)—smoothing length a—must satisfy
E<L(t)<a<A, (3.2)

where £ is a length of the size of the interfacial width, L(z) is
the growing characteristic domain size, and A is the size of
the system. The first part of the inequality (3.2), £<<L(z),
denotes an important fact that we perform the coarse-
graining procedure only during the late stages of phase sepa-
ration, i.e., when the well defined domains are formed and
the coarsening can be described by the growth laws given in
Sec. L.

Although one can express the coarse-grained variables O
and q using gradient of the composition Ve(r) and average
the expression as discussed above, there are still some ques-
tions which are not solved. As already mentioned, contrary to
the phenomenological Doi-Ohta model, in the coarse-grained
model, the interface not only has a finite width, but it does
not behave like a zero-width mathematical surface. Rather it
deforms under the applied flow and its stretching must be
captured by the new variables, which is not the case in the
phenomenological Doi-Ohta model. There are different ways
to solve these problems. One way would be that instead of
using the Cahn-Hilliard Poisson operator L"), Eq. (2.6), one
needs to use its modification with the appropriate constraint
which would account for the stretching of the interface. An-
other possibility would be to make certain modifications to
the original Cahn-Hilliard model in such a way to make the
interfacial width, as well as interfacial tension, fixed. How-
ever, maybe the most straightforward way to solve the pre-
sented problems is to account for the finite interfacial width
and its stretching by introducing an additional variable into
our coarse-grained Doi-Ohta model. This additional variable
would be the average interfacial width /. This means that for
the configurational variables of the coarse-grained Doi-Ohta
model we use new variables {P,p,[}, which are obtained as
ensemble averages of the suitable mappings I1p, I1, and II,.
The original Doi-Ohta model and the appropriate convective
behavior of its variables are obtained by transformation of
the  configurational  variables  {P(r),p(r),/(r)} to

{0(r),q(r),/(r)} as

Q(r) =IU(r)P(r), q(r)=I(r)p(r). (3.3)

We choose the appropriate mappings for the new vari-
ables, having in mind that the variables Q and q, obtained
from {P,p,l} as Eq. (3.3), should represent the average
amount of interface per unit volume and its orientation, both
of dimension m~'. Then, for suitable mappings for the new
variables we propose

HP[C](r):J Br Ve Pxr-r),  (3.4a)
%4
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l'[p[c](r)=J d3r’((Vc(r’))(Vc(r’))—§|Vc(r’)|21>
v

Xx(r-r'), (3.4Db)
Jyd’r' V(') | x(r - ')
Jvdr'|Ve(e")Px(r-x")’

The next step in the coarse-graining procedure is the
choice of the nonequilibrium ensemble. The natural choice is
for it to be of the mixed ensemble due to the choice of the
macroscopic variables [41]. Since the hydrodynamic fields
are simply mapped from the Cahn-Hilliard to the Doi-Ohta
level, the appropriate probability distribution function is of
the generalized microcanonical type. For the configurational
variables, on the other hand, we choose a generalized canoni-
cal ensemble with the corresponding Lagrange multipliers
No. Ay and \;. The total probability measure p,[x] then takes
the form

pylx]= &1L, - p) (1L, - g) ALl - €)pg glc]. (3.5a)

Ifc](r) = (3.4¢)

Q,(x)
Pio.q(c) = —Nl(yx) expl— f Vd3rh(r):ﬂ(6)(r)},
(3.5b)
where the normalization factor N[y] is
N(y)=f’Dch[x]exp{—f d3rh(r):ﬂ(c)(r):|,
v
(3.5¢)

and Q,[x]=exp(S"V(x)/kg). The projection operators I1,,
II, and II; are, for simplicity, denoted by II in the above
equations. The Lagrange multipliers Ay, Aq, and A;, denoted
by A, are determined by the values of the slow variables
y=(x) where the average is performed according to Eq. (3.1).
Their interpretation and the identification of the proper val-
ues for the situation of interest is difficult and requires dy-
namic material information [48,49]. However, for the results
presented in this paper, the exact form of the nonequilibrium
ensemble will not be needed.

B. Energy

The energy of the coarse-grained Doi-Ohta level is ob-
tained by averaging the energy of the more detailed Cahn-
Hilliard level,

ED(y) = f d3rJ Dxpy[x]J &Er'x(r-r’)
v v

1g(r')? 1 )
X| ===+ €r') + —kg|[Ve(®))*]. (3.6

(2 o) T Vel ) 36
Since we assume that the hydrodynamic fields p, g, and € are

smooth on the more microscopic Cahn-Hilliard length scale,
the energy expression takes the form
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e L )
14

where in the last term on the right-hand side of the equation,
we have recognized the new variables Q(r) and I(r), deter-
mined by the mapping (3.4a) and (3.4¢). The last term on the
right-hand side of the above equation describes the energy
density due to the presence of the interface which is propor-
tional to the interfacial tension o. We therefore obtain the
following well-known expression for the interfacial tension

(3.7)

olr)= =,

)’ (3.8)

which here follows directly as the first result of the per-
formed coarse-graining procedure.

C. Entropy

The coarse-grained entropy for the case of the generalized
mixed ensemble p[x] is obtained from

5(2)(}’)=fDCP(Q,q)[C][S(l)(x)—kB In pg glcll, (3.9)

where S")(x) is given by Eq. (2.4b). The additional entropy
in the coarse-grained expression, beside a simple ensemble
average of the entropy from the more detailed level 1, is
associated with the passage from the more microscopic con-
figurational variable c, to the more macroscopic variables Q,
q, and /, while the hydrodynamic variables are taken to the
coarser level without affecting the entropy. The additional
entropy takes into account all the microstates with the com-
position ¢(r) consistent with the more coarse-grained state
given with Q(r), q(r), and I(r). The functional derivative of
the coarse-grained entropy is

85(y) B (o"s(p, €,C)
Oy B

1 T
Py ,0, m )\Q(r),)\q(r),)\,(r)> .

(3.10)

As discussed above, there exists a systematic procedure to
obtain the Lagrange multipliers from the thermodynamically
guided simulations [48]. However, their determination is a
difficult task and for the calculation of the time friction ma-
trix elements in Sec. IIl E we will assume A=0.

D. Poisson operator

The general expression for the coarse-grained Poisson op-
erator is given by

u%w=<<§gﬁ) m()<ﬂg?)>. 3.11)
)

which for coarse graining from the Cahn-Hilliard to the Doi-
Ohta level takes the form
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Lf’.?)(rl’h):fpxﬂv[x]f dSV{f d’ryx(r;—r])x(r,—r})
% %

< n)

L)
ox(ry)

SIT{x](r))

L(l) ,
Tantry TR

(3.12)

where the mappings Il are given by Eq. (3.4), and the ele-
ments of the Poisson operator L") by Eq. (2.6). To under-
stand the above expression, note that the integrations over r;
and r, come from the contraction of the operator L with
oI/ &x, which includes both matrix multiplication and inte-
gration over the position label. The obtained quantity must
then be averaged in order to obtain the expression at the
Doi-Ohta level. Therefore, the integrations over rj and r,
come from the spatial smoothing of this quantity, since the
ensemble averaging also implies smoothing in space, as
noted in the previous subsection.

From the elements of L") in Eq. (2.6) and the mappings
II in Eq. (3.4), we conclude that the Poisson operator L2
has the following form:

0o LY 0 0 0 0
@ ;@ O [ (@ ;@
Lgp L:(;g) Lee Lgp Ly Lg
0 L2 0o 0o 0 0
L(r;,ry) = 0 (65)
Ly 00 0 0
0 Ly 0 0 0 0
0o LY 0 0 0 0

(3.13)

In the analytical derivation of the coarse-grained Poisson
operator, several approximations that are related to the dif-
ference in length scales [Eq. (3.2)] are used. The crossover in
length scale from the more microscopic Cahn-Hilliard level
to the more macroscopic Doi-Ohta level is performed
through the smoothing function x(r;—r,). While the details
of the derivation for some of the elements of L) are given in
the Appendix A, here we give their final expressions

th)mw— (3.14a)
dr,

Uhu»gmz—hwo (3.14b)

L( )(rl’rz) = 6(1'2) +P( 1)_ (3.14c¢)

1% 1
Lg’g ﬁ(rl’r2) = E[ <2paﬁ(r2) - EP(rZ) 5{1[3) X:|

J
+ P(rz)&—X, (3.14d)

r2/3
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J 1
L;?,aﬂy(rlarZ) = [ (P,By(rz) + gp(rz) 5,3y>X]

2a
J 1
+ Fw{(pay(lb) + gP(r2) 5&7>X:|
2 J 1
- 5511,80.'72”|: (Pyy(l'z) + EP(rZ) 6v‘y)X:|
( % e )) (3.14¢)
- — r , 14e
arzypaﬁ 2) | X
I(r) dx 1 dx dlr))
L? JIy)=——_ — =—lr)——-—x,
Zg,ﬁ(rl r;) P(rl)paﬁ(rl)&rhy 3 (rl)&rw or g X
(3.14f)

where y=yx(r,-r,). With this, we obtained all the elements
of the coarse-grained Poisson operator L), since the ele-
ments L(gzlz, L(gzg, and L(ZZ) are obtained from the antisymmetry
condition for L®. We note the occurrence of the smoothing
function x(r;—r,) in the Poisson operator L®. Indeed, when
looking at the elements of L which involve only the hy-
drodynamic fields p, g, and €, we see that they differ from
the appropriate elements of L") in Eq. (2.6) only in locality,
i.e., instead of the Dirac delta function, we rather have a
smoothing function x(r,-r,). While the original Cahn-
Hilliard model is local in space, the coarse-grained model,
instead, takes into account the whole volume element v(r)
of the smoothing function x(r;-r,). By assumption of the
length scales comparison [Eq. (3.2)], this smoothing function
behaves simply as a delta function on the Doi-Ohta level due
to the difference in length scales. Alternatively, the expres-
sions for the elements of the Poisson matrix (3.14d), (3.14e),
and (3.14f) could be also obtained based only on the math-
ematical character of the variables P, p, and /. Similar to the
original Doi-Ohta derivation, one would consider the trans-
formation properties of the vector V¢ and the mappings
(3.4), in order to infer the convective behavior.

The Poisson operator L determines the convective be-
havior of the state variables, which can then be compared to
the original Doi-Ohta model. The reversible time evolution
equations for the variables {p,g,€,P,p,l} are obtained as

dy(ry) 5E(2)()’)
5Yj(l'2) '

ot
under the previously discussed assumption that the smooth-
ing function x(r;-r,) is acting as a Dirac delta function
&(r;-r,) at the Doi-Ohta level of description. Then, by
transformation of the variables, the full set of the reversible
time evolution equations for the set of state variables
{p.g.€,0.q,[} takes the form

= f &*roL(r),15) (3.15)
rev \4

J

a—f rev:—V-(pv), (3.16a)
g 2
" =-V-(vg)-Vp-V.T q-301)-QVT,

(3.16b)
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Je ==V-(ev)-p(V-v), (3.16c¢)
(9[ rev
L N Ty
a| = V- (Qv) - (Vv) -q+3Q(V V),
(3.16d)
1 S B I
ol = (Vv)-q-q-(Vv) ;Y- Vq+31(VV)-q
Lo1v.v) l( 1 1)( 11>.(V)
+3Q -V +Qq+3Q q+3Q :(Vv),
(3.16¢)
Il __v. L
ol = \% (lv)+Qq.(Vv) +3l(V v). (3.16f)

These equations correspond to the convective part of the
time evolution equations of the Doi-Ohta model expressed in
the GENERIC formalism [33]. Indeed, when the closure ap-
proximation (1.5) for the fourth moment of the interfacial
normal vector nnnn is used, one obtains the same equations
as above [see Egs. (1.4a) and (1.6)]. Furthermore, since the
Jacobi identity of the starting L) operator is fulfilled and the
closure approximation we used corresponds to the one made
by Doi and Ohta [28], and examined in [33], we assume that
the Jacobi identity of the derived Poisson operator L? is
valid. However, this assumption might be questioned due to
the approximations used in its derivation and which take into
account different length scales (see Appendix A).

E. Irreversible dynamics

In this section we turn to the dynamic material properties
which are contained in a friction matrix. There are two
contributions to the coarse-grained friction operator,
M@= £ M@" The first contribution, M(2)’, is obtained
directly by averaging the elements of the friction matrix
MW, in the same way as for the Poisson operator in Eq.
(3.11). This direct contribution describes dissipative effects
that are carried on from a more microscopic level of descrip-
tion. A second contribution to the coarse-grained friction op-
erator, M (2)”, results from the processes that are slower than
the characteristic time scale of the Cahn-Hilliard level (given
by the diffusion time 7p) but are fast compared to the pro-
cesses at the Doi-Ohta level of description (with the time
scale of the interface relaxation time 74, ,). This contribu-
tion presents an important feature of the coarse-graining pro-
cedure, since it captures the additional dissipation arising
from the additional processes which can be treated as fluc-
tuations on the time scale of the Doi-Ohta level. It can be
evaluated from the Green-Kubo formula

M2 ()= | oo,

(3.17)
ks Jo

where 7, separates the times scales between the fast and slow
variables, II' is the rapidly fluctuating part of the time de-
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FIG. 1. (Color online) Time evolution of the coarse-grained
Doi-Ohta variables for a binary mixture with ¢=0.3, subjected to
the shear flow at time 7y=200rp after the beginning of a phase
separating process: interfacial width [ (upper left), average amount
of interface per unit volume Q (lower left), and shear viscosity,
7=—q,,/ ¥ as a function of strain y=1r (right). The results for the
shear rates yrp=0.05 and y1p=0.06 are presented.

rivative of the microscopic expressions for the slow variables
v, and the average is over the atomistic trajectories consistent
with the coarse-grained state y at =0 and evolved according
to the microscopic dynamics to the time ¢ [41].

In order to identify the main dissipative contribution at
the coarse-grained level and its origin, one has to understand
all the processes occurring in a phase separation of a binary
fluid under shear flow. In particular, through numerical simu-
lations we tried to understand if there exist any processes in
this system that can be considered as fast compared to the
time scale of the Doi-Ohta level, and to estimate their con-
tribution to dissipation at the Doi-Ohta level through the
Green-Kubo part of the friction matrix M @" Eq. (3.17). We
performed simulations of the Cahn-Hilliard Eq. (2.9d) for a
binary mixture of volume fraction ¢=0.3 which was sub-
jected to a shear flow at time #,=200¢, after the start of a
phase separating process (when the well-defined droplets
were formed). We have used the c*-structure for the entropy
density s, as given in Sec. II. We used a one-dimensional
equilibrium profile between the two coexisting bulk phases,
with the composition field c(x)= Valb tanh(x/2¢), in order to
define the length and time scale using é=vkg/a and
tp=&/Ma. Hydrodynamic interaction was not included and,
therefore, coarsening of domains proceeded governed by the
diffusion process, i.e., through the evaporation-condensation
mechanism and the growth law L(¢) ~ "3 [5,31,32]. Once the
well defined interfaces were formed, we looked for the fast
processes permanently at work (like deformation of interface
shapes through fast coagulation and breakup, etc.), which
would give rise to new irreversible dynamics, going beyond
the diffusion and hydrodynamic ones.

The time evolution of the coarse-grained Doi-Ohta vari-
ables in Fig. 1 is computed by a simple use of mappings
(3.4). The shear viscosity, which arises from excess shear
stress due to the domain interfaces, is related to the aniso-
tropy element ¢,, through 7»=-¢,,/y. From the time evolu-
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FIG. 2. Configurations of a binary fluid with volume fraction
$=0.3, simulated on a 128 X 128 lattice during phase separation
under shear flow at different values of strain y=yt. Shear flow was
applied after initial time of 7y,=200rp, with the shear rate
ytp=0.05. The snapshots were taken until the maximum strain
y=12. The grayscale is used in order to capture the processes of
interface deformation.

tion of the average interfacial width /, one can see that this
new structural variable relaxes very quickly and is afterward
only affected by the flow through the convective behavior,
Eq. (3.16f). This numerical analysis shows that the coarse-
grained Doi-Ohta variables fluctuate in time (with the time
scale of ~1/7) around their average values due to the com-
petition between the flow field and the ordering mechanisms,
see Fig. 1. This can be also seen in the time evolution of the
morphology. The snapshots of the morphology, presented in
Fig. 2, show that at first domains are elongated due to the
shear flow, which tends to orient them toward the shear di-
rection. The elongation is then followed by coagulation,
breakup, shape relaxation, as well as the evaporation-
condensation of the droplets, which are exactly the mecha-
nisms of interfacial relaxation proposed by Doi and Ohta
[28], and Lee and Park [34]. Similar interfacial relaxation
processes have been identified in other works which report
simulations of the Cahn-Hilliard model with and without hy-
drodynamic interaction [12,14-18,20-24]. The morphology
time evolution shows no new processes that are fast com-
pared to the Doi-Ohta level of description, and which would
emerge as dissipation on the coarse-grained level through the
Green-Kubo formula (3.17). Moreover, the time evolution
curves of the Doi-Ohta variables in Fig. 1 are smooth with-
out the presence of thermal fluctuations (which were not in-
corporated into our analysis). Since the above described
mechanisms of interfaces relaxation are also the ones consid-
ered for the analysis of different growth regimes in the late
stage kinetics of phase separation (see Sec. I), we conclude
that the main dissipative contribution at the coarse-grained
level arises through the averaging of the already present dis-
sipative terms at the Cahn-Hilliard level, M (2),.

The  relaxation of the  Doi-Ohta  variable
y={p.g,€,P,p,l} could be expressed from the irreversible
part of the GENERIC time evolution equation (2.2) as

8S?(y)
oy j(l'z) .

In order to derive the coarse-grained friction matrix
M@’ we note that the Cahn-Hilliard friction matrix MV
consists of a hydrodynamic and a diffusive part,
MWD =pWDhyd  pr(Ddif - oiven in Sec. II. Therefore M will
also comprise the hydrodynamic part and a part arising from
the diffusion. Since the hydrodynamic variables are simply

dy(ry)

o (3.18)

= J d3r2M§Jz),(r1,l‘2)
irrev |4
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taken over from the Cahn-Hilliard level, the appropriate hy-
drodynamic elements of the new friction matrix are the same
as in Eq. (2.7). The diffusive part, on the other hand, is
related to the configurational variable ¢, and the ensemble
averaging must be performed in a similar way as for the
Poisson operator in Sec. III D. For the analytical derivation
of the coarse-grained friction matrix M @)"dif jp analogy to
Eq. (3.11), one starts from

T
M(z)”dif(y) — (5]_[_()6)) ~M(1)’dif(x) . (51_[_()6)> ,
Ox Ox y
(3.19)
and then employs similar procedure and approximations as
in the derivation of the elements of the Poisson matrix L®?
(see Appendix A). For example, the relaxation of the Doi-

Ohta variable Q could be expressed as an irreversible part of
the GENERIC time evolution Eq. (3.18) as

d0(r,)
ot

- 1
=I(r )f dProM @) (e ) —
1 y 207 p 1-%2 T(I‘z)

(3.20)

where we have used the approximation (JQ(r)/df) ey
~1(r)(IP(r)/ ) |isrey» since the interfacial width / does not
change much, compared to the other two configurational
variables. Using the entropy functional derivative (3.10) with
A=0, results in the matrix element Mg,zg)/’dif being the only
relevant term for the variable P which is left after the aver-
aging Eq. (3.19). Then, putting the Eq. (3.20) in the Doi-
Ohta equation (1.7a) for the relaxation of Q in a homoge-
neous case gives the following expression for the relaxation

time
1 2KEle f \ { P (dzc(r)ﬂ2
— D & = :
Too1 VO cpioale] v "Lor\ or

(3.21)

where V is the volume of the system. Details of the calcula-
tion are given in Appendix B. Similar expression could be
obtained for the relaxation time 7,,,. The above formula,
gives the expression for the Doi-Ohta relaxation time 7y, ;
calculated from the transformation of the element of the fric-
tion matrix M4 containing the relaxation parameters of
the Cahn-Hilliard level at any time ¢. This is the result of the
presented systematic coarse-graining procedure developed
within the GENERIC formalism which shows in which way
the Doi-Ohta relaxation times can be obtained from the more
detailed level of description. However, the above relation is
difficult to express analytically in form of the variables of the
Doi-Ohta level, due to the diffusive terms coming from the
Cahn-Hilliard level. On the other hand, the above expression
could, in principle, be calculated numerically using short
time simulations at the Cahn-Hilliard level. However, the
problems concerning the third order derivatives of the com-
position field ¢ make this task rather complicated, as well as
the need for determination of the Lagrange multipliers in
order to employ the full GENERIC procedure developed in
this paper.
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IV. CONCLUSIONS AND PERSPECTIVES

In this paper, we have developed a systematic, thermody-
namically guided method which establishes the coarse-
grained Doi-Ohta model, used for rheological behavior, from
the more detailed Cahn-Hilliard model of a phase separating
binary fluid. The main contributions of the present work can
be summarized as: (1) the introduction of the average inter-
facial width / as an additional structural variable; (2) the
derivation of the coarse-grained Poisson operator L®, Eq.
(3.11), from its finer level analog; (3) no new dissipative
processes arise during level jumping apart from the known
hydrodynamic and diffusive dissipation; (4) the derivation of
an expression (3.21) for the Doi-Ohta relaxation times as a
function of the elements of the friction matrix describing
relaxation at the finer Cahn-Hilliard level.

The crucial step in the coarse-graining procedure was to
identify the relevant coarse-grained variables and find the
appropriate mapping which expresses them in terms of the
more microscopic variables. In order to capture the physics
of the Doi-Ohta level, we introduced the interfacial width
[(r,1) as an additional variable in the new model. In that way
we could account for the stretching of the interface under
flow and derive analytically the reversible (convective) be-
havior of the variables Q(r, ) and q(r,7), which recovers the
already established phenomenological Doi-Ohta model. In-
troduction of the interfacial width / and its time evolution
equation, as an addition to Q and q of the original Doi-Ohta
model with zero-width interface, offers new possibilities for
modeling of the rheological behavior of multiphase flows. In
addition, the expression for the interfacial tension [Eq. (3.8)]
in terms of the Cahn-Hilliard parameters follows as the direct
result of the developed systematic coarse-graining procedure.

Considering the irreversible dynamics on the Doi-Ohta
level, it has been shown that the dissipative processes at this
coarse-grained level are carried on from the more micro-
scopic Cahn-Hilliard level. Although their analytical deriva-
tion is too complex and rich in structure, the way to connect
the interface relaxation times of the Doi-Ohta model and the
underlying morphology dynamics simulated at the Cahn-
Hilliard level is established. Analysis of the numerical inves-
tigation of phase separation under shear in the diffusive re-
gime revealed no new physical process that occur at the time
scale which is slow compared to the Cahn-Hilliard level and
fast from the perspective of the Doi-Ohta level. Therefore,
there are no new dissipative effects arising in the performed
coarse-graining step through the Green-Kubo-type formula,
i.e., no new physics appear. That leads us to the conclusion
that all the dissipation has been introduced into the model by
coarse graining from the reversible atomistic level to the
Cahn-Hilliard level. This coarse-graining step has been done
in the derivation of the hydrodynamic equations of a phase
separating fluid mixture from the underlying microscopic dy-
namics [46]. Furthermore, Espanol and Vdzquez showed in
[50] that all dissipation is introduced already at the very first
coarse-graining step, going from the atomistic to the Fokker-
Planck level. From there then follows the conclusion that the
Cahn-Hilliard level is not so fundamental considering that
the same dissipation mechanisms occur even at the finer lev-
els, and are afterward transmitted to an even more coarse-
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grained Doi-Ohta level, with no new dissipative processes
arising.

The presented results could be used to deal with several
interesting open problems. First, possible extension of the
procedure to more complicated phase separating systems
with the addition of surfactants or block copolymers would
be very interesting for wider use. Second, the nature of the
dissipative processes in a phase separating binary mixture is
still far from clear. While during the diffusive regime, in the
absence of thermal noise, we do not recognize any further
fast processes that could be considered as fluctuations at the
Doi-Ohta level, this becomes far from evident during the late
stages of coarsening when inertia becomes important. The
nature of the domain coarsening in the inertial hydrodynam-
ics regime is still unknown, as well as the asymptotic behav-
ior of a phase separating system under shear. Furthermore,
recent studies showed that a nonequilibrium steady state can
be reached at high Reynolds numbers (low shear rates) only
in the mixed viscous-inertial regime, i.e., with any nonzero
amount of inertia [21-24]. The fact that no steady state could
be formed without presence of inertia, no matter how small,
suggests that inertia plays the role of a singular perturbation
in this problem [24]. The formed steady state, arising from a
cyclic occurrence of elongation of domains followed by their
breakup, coagulation and shape relaxation, is characterized
by irregular fluctuations around the attained steady state val-
ues. It would be interesting to understand the nonequilibrium
steady state and the origin of these fluctuations, using the
presented coarse-graining procedure. However, the phenom-
enological Doi-Ohta theory assumes low Reynolds number,
i.e., neglects inertia. Deeper insight into the mixed viscous-
inertial regime is therefore crucial in order to develop the
connection between the two levels and to understand the role
of inertia in this problem.

APPENDIX A

We present a derivation of the elements L (rl,rz) and
L(2 (r;,r,) of the coarse grained Poisson operator L? in de-
tall For the element L (rl ,T) the general expression (3.12)
gives

LO(rprs) = j Dip,[x] j &, J rix(r, - F)x(2 1)
\%4 \%4

fonf o

ollL,[g](r))

og(ry) '

which after substitution of the appropriate functional deriva-
tives, LE_L,) element, and the integration over r; and r, be-
comes

Sl p[c](ry)

() — L ()

(A1)

ng)(r1,r2)=fDCP(Q,q)[C]f d3r{f &Erix(r;—r)x(r, —r5)
v v

dc J dc
><——< ,x(n r£)>-

(A2)
Jr, dr, or,

For further calculations, we use the difference between the
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Cahn-Hilliard and Doi-Ohta length scales [Eq. (3.2)], so that
Jvdrix(r,—r]) x(r;—r}) =~ x(r,—1}) (see [45]). Then the last
equation, after integration over r{, becomes

Li(r,ry) = f Depig glc] f d*ryx(r, =13
v

2. ( ac/)((l'l - r2)> (A3)
ary

ary or;,
After integration by parts, in which surface terms vanish,
using approximation y(r;—r;)x(r,—r;)= x(r;—r,)x(r,—r5)
valid due to the fact that the smoothing length is much
smaller than the Doi-Ohta length scale, Eq. (3.2), and the
identity dx(r—r’)/dr'==dx(r—r')/dr, we come to the ex-
pression

&c r?c

J
2
Lfgg),ﬁ(rl,rz)=fDcp(Q’q)[c]>< . jvd% 'y p arm
(o3

2a

Xx(r; —ry)x(ry —r3)

(9 i ! i
- d3V2|VC(I'2)|2)((I'1 —1'2))((1'2—1'2)
(9}’15 Vv

19 ! ! I
- d3r2|Vc(r2)|2X(r1 -1y x(r;—r5)
(9}‘2[; Vv
(A4)

Finally, with the help of the mappings [Eq. (3.4)], we can
recognize the appropriate terms in the last equation, so that
their ensemble average gives

LE"Zg),B(rlarZ) = |: (2paﬁ(r2) P(r2) ,B)X(rl - r2):|

2a

dx(r;—r)

r2’3

+ P(rz) (AS)

The Poisson operator element ngz)(r, ,I,) is obtained un-
der similar approximations as above, but also the following
approximations:

f Eri®c)r)x(r, = r)x(r] - r3) = [c](r)x(r ~13),
Vv

(A6)

which holds under the assumption of the difference in length
scales [Eq. (3.2)], and the assumption

(TpLe] )" [c](r)) = (I1pLc](r)) T [c](r)),
(A7)

for n=* 1. For the element Lgé)(rl ,I»), we then obtain
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1 dc
L2 y(rp,ry) = f e e X - 1)
1%

P(r)) ar 8
% dx(r;—r,) B 31(1‘1)
arza ﬁrlﬁ
2 Jd -
~ i) x(r;—ry)
3 &rzﬁ
l(rl)p (r)r?x(rl—rz)
pay T o,

In order to express the previous equation in terms of the
coarse-grained Doi-Ohta variables {P,p, [}, we must use the
following closure approximation for the first term on the
right-hand side

X(r;—ry)

(A8)

dc dc
d3'——Vr’1r—r’
fv 7 T e =)

a

zCfdr
v

X J'dSr’|Vc(r’)|)((r1—r’) ,
v

dc dc

— o X(r

_r,
arl, arg )

(A9)

where C is chosen in such a way that the previous expression
is valid when its trace is taken. By putting a=p into the

above equation, we find
-1
C= f &Ar'|Ve()x(r; =) (A10)
14

Using the above expressions, element Lg)(rl,rz) takes the
final form

I(r,) dx(ry—r ) dx(r|—r,)
L2y(ry,r) =~ 1
lg,,g(l'l r;) P(r])paﬁ(rl) Irae r)——— dr2p
al(ry)
- ——x(r -1y, (A1)
5;’1,3
APPENDIX B

We present the derivation of the expression (3.21) for the
time relaxation 7y, ;. Substitution of the Eq. (3.20) for the
irreversible time evolution of the configurational variable Q
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into the Doi-Ohta relaxation equation (1.7a) gives
1 l(rl) [
-  =— " d3r2M(28) ’dlf(rl,rz)
Tdo,l Q(rl) \%4 P

Ty BV

Under the assumption of a homogeneous system, integration

over the whole system size of the above expression gives
1
Tdo,1

l ! i
=— ﬁ‘f d3r1f dSVzMgg d f(r],rz). (B2)
Vv \4

The general expression (3.19) for the coarse-grained friction

. ! 1 .
matrix M@ 4 gives

Mgs)/’dif(rl,rz)=fDxpy[x]f d3r{f a’rh
v v

XX(rl—ri)X(rz—ré)f d3r3f &ry
v v

ST [ €](r5)
Oe(ry) '
(B3)

| ALL(r)

M(_l)vdlf .
&(r3) ce ( 3 4)

which after substitution of the appropriate functional deriva-
tives, M9 element, and the integration over r,, r{, and r}
becomes

» , 9
M) N, r,) = f Depg.glc] f d’r'2xeM T
1% @

e
X|:((5' ,2))((1'2—1")]

7 {£< - )]
(?r&rﬁo?BXl '

(B4)

where we have used the assumption of a homogeneous
(M =const) and isothermal system, as well as the approxima-
tions based on a difference between the Cahn-Hilliard and
Doi-Ohta length scales, as in Appendix A. Substitution of the
friction matrix element [Eq. (B4)] into Eq. (B2), gives after
using the normalization condition [,d°r’ x(r—r')=1, the fi-
nal formula for the Doi-Ohta time relaxation

1 2kpMl azc(r)ﬂ
Taor VO fDCp(Qq)[C]f dr[&r( ar? ’

(B5)

[1]R. G. Larson, The Structure and Rheology of Complex Fluids
(Oxford University Press, New York, 1999).

[2] S. T. Hyde and G. E. Schroder, Curr. Opin. Colloid Interface
Sci. 8, 5 (2003).

[3] C. J. Drummond and C. Fong, Curr. Opin. Colloid Interface
Sci. 4, 449 (1999).

[4] M. Caffrey, Curr. Opin. Struct. Biol. 10, 486 (2000).

[5] A. J. Bray, Adv. Phys. 43, 357 (1994).

[6] A. Onuki, J. Phys.: Condens. Matter 9, 6119 (1997).

[7] A. H. Krall, J. V. Sengers, and K. Hamano, Phys. Rev. Lett.
69, 1963 (1992).

[8] J. Liuger, C. Laubner, and W. Gronski, Phys. Rev. Lett. 75,
3576 (1995).

[9] K. Matsuzaka, T. Koga, and T. Hashimoto, Phys. Rev. Lett.
80, 5441 (1998).

[10] D. Derks, D. G. A. Aarts, D. Bonn, and A. Imhof, J. Phys.:

011131-12



BRIDGING LENGTH AND TIME SCALES IN SHEARED ...

Condens. Matter 20, 404208 (2008).

[11] D. G. A. Aarts, R. P. A. Dullens, and H. N. W. Lekkerkerker,
New J. Phys. 7, 40 (2005).

[12] T. Ohta, H. Nozaki, and M. Doi, J. Chem. Phys. 93, 2664
(1990).

[13] P. Padilla and S. Toxvaerd, J. Chem. Phys. 106, 2342 (1997).

[14] E. Corberi, G. Gonnella, and A. Lamura, Phys. Rev. Lett. 81,
3852 (1998).

[15] F. Corberi, G. Gonnella, and A. Lamura, Phys. Rev. Lett. 83,
4057 (1999).

[16] F. Corberi, G. Gonnella, and A. Lamura, Phys. Rev. E 61,
6621 (2000).

[17] F. Corberi, G. Gonnella, and A. Lamura, Phys. Rev. E 62,
8064 (2000).

[18] Z. L. Zhang, H. D. Zhang, and Y. L. Yang, J. Chem. Phys. 113,
8348 (2000).

[19] L. Berthier, Phys. Rev. E 63, 051503 (2001).

[20] Z. Y. Shou and A. Chakrabarti, Phys. Rev. E 61, R2200
(2000).

[21]7 A. J. Wagner and J. M. Yeomans, Phys. Rev. E 59, 4366
(1999).

[22] P. Stansell, K. Stratford, J. C. Desplat, R. Adhikari, and M. E.
Cates, Phys. Rev. Lett. 96, 085701 (2006).

[23] K. Stratford, J. C. Desplat, P. Stansell, and M. E. Cates, Phys.
Rev. E 76, 030501(R) (2007).

[24] S. M. Fielding, Phys. Rev. E 77, 021504 (2008).

[25] A. Onuki, Phys. Rev. A 35, 5149 (1987).

[26] N. P. Rapapa and A. J. Bray, Phys. Rev. Lett. 83, 3856 (1999).

[27] N. P. Rapapa, Phys. Rev. E 61, 247 (2000).

[28] M. Doi and T. Ohta, J. Chem. Phys. 95, 1242 (1991).

[29]J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 (1958).

[30] P. C. Hohenberg and B. 1. Halperin, Rev. Mod. Phys. 49, 435

PHYSICAL REVIEW E 81, 011131 (2010)

(1977).

[31] E. D. Siggia, Phys. Rev. A 20, 595 (1979).

[32] H. Furukawa, Adv. Phys. 34, 703 (1985).

[33] N. J. Wagner, H. C. Ottinger, and B. J. Edwards, AIChE J. 45,
1169 (1999).

[34] H. M. Lee and O. O. Park, J. Rheol. 38, 1405 (1994).

[35] M. Grmela and A. Ait-Kadi, J. Non-Newtonian Fluid Mech.
77, 191 (1998).

[36] M. Grmela, A. Ait-Kadi, and L. A. Utracki, J. Non-Newtonian
Fluid Mech. 77, 253 (1998).

[37] C. Lacroix, M. Grmela, and P. J. Carreau, J. Rheol. 42, 41
(1998).

[38] M. Bousmina, M. Aouina, B. Chaudhry, R. Guenette, and R. E.
S. Bretas, Rheol. Acta 40, 538 (2001).

[39] I. Vinckier and H. M. Laun, J. Rheol. 45, 1373 (2001).

[40]J. E. Gu and Miroslav Grmela, Phys. Rev. E 78, 056302
(2008).

[41] H. C. Ottinger, Beyond Equilibrium Thermodynamics (Wiley,
Hoboken, N.J., 2005).

[42] M. Grmela and H. C. Ottinger, Phys. Rev. E 56, 6620 (1997).

[43] H. C. Ottinger and M. Grmela, Phys. Rev. E 56, 6633 (1997).

[44] A. Onuki, Phys. Rev. Lett. 94, 054501 (2005).

[45] A. Jeli¢, Ph.D. thesis, ETH Zurich, 2009.

[46] P. Espaiiol and C. Thieulot, J. Chem. Phys. 118, 9109 (2003).

[47] H. C. Ottinger, MRS Bull. 32, 936 (2007).

[48] P. Ilg, H. C. Ottinger, and M. Kroger, Phys. Rev. E 79, 011802
(2009).

[49] V. G. Mavrantzas and H. C. Ottinger, Macromolecules 35, 960
(2002).

[50] P. Espafiol and F. Védzquez, Philos. Trans. R. Soc. London, Ser.
A 360, 383 (2002).

011131-13



