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The validity of modified finite-size scaling above the upper critical dimension is demonstrated for the
quantum phase transition whose dynamical critical exponent is z=2. We consider the N-component Bose-
Hubbard model, which is exactly solvable and exhibits mean-field type critical phenomena in the large-N limit.
The modified finite-size scaling holds exactly in that limit. However, the usual procedure, taking the large
system-size limit with fixed temperature, does not lead to the expected �and correct� mean-field critical behav-
ior because of the limited range of applicability of the finite-size scaling form. By quantum Monte Carlo
simulation, it is shown that the modified finite-size scaling holds in the case of N=1.
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I. INTRODUCTION

Since the quantum phase transition to the Mott insulator
from a superfluid was observed in the optical lattice system
�1�, this quantum critical phenomenon has been a hot topic
�2�. This system is effectively described by the Bose-
Hubbard �BH� Hamiltonian �3�. The zero-temperature phase
diagram of the BH model has been well investigated �4–6�.
There are phase transition points called multicritical points
with the dynamical critical exponent of z=1 and a line of the
other type of phase transition called generic transition, the
dynamical critical exponent of which is z=2 on the zero-
temperature phase diagram. In this paper, we consider the
generic transition �i.e., z=2� in three-dimensional systems.
Three dimensions �d=3� are above the upper critical dimen-
sion du=2. Therefore, this phase transition is exactly classi-
fied and its critical exponents should be identical to those of
the mean-field theory. To estimate the locations of critical
points quantitatively, we frequently apply finite-size scaling
to the data of finite-size systems calculated by the quantum
Monte Carlo �QMC� method.

Above the upper critical dimension, a finite-size scaling
�FSS� should be modified because of a dangerous irrelevant
variable �7�. In contrast to the conventional FSS below du,
the modified finite-size scaling �MFSS� �8� is not justified by
renormalization group or scaling theories. However, its va-
lidity has been demonstrated for the five-dimensional Ising
model �7,9,10�, the O�n� model �11�, and the �4 model in a
large-N limit �9,12�. For the quantum phase transition with
z=1, below the upper critical dimension, a simple applica-
tion of the FSS is trivially possible by identifying the inverse
temperature � as merely an additional dimension. Actually,
to estimate the multicritical point quantitatively, Šmakov and
Sørensen �13� applied the FSS with the additional argument
� /L to the multicritical point in the d=2 case where the
system is below the upper critical dimension because d+z
�4. For the quantum phase transition with z�1, below the
upper critical dimension, the application of FSS is also pos-
sible with the additional argument � /Lz instead of � /L on

the ground where the ratio between the correlation time ��

and the correlation length � to the zth power is �� /�z=O�1�
�4�. Zhao et al. applied the FSS to the case of z=2 and d
=2, which is just the upper critical dimension, and succeeded
in estimating the phase boundary on the zero-temperature
phase diagram of their model �14�. The purpose of the
present paper is to demonstrate the validity of the MFSS in
the case where d�du and z�1, both by Monte Carlo simu-
lation and by exact solutions. We consider the case of z=2
and d=3, i.e., above the upper critical dimension. It seems a
natural extension to add the argument � /L2 to the scaling
function of MFSS �15�. Namely, we assume that the singular
part of the free energy Fs has the scaling form

Fs�r,�,�,L� � ỸF��L�d+2�/2,�L3�d+2�/4,�/L2� �1�

with a universal scaling function ỸF, where the definition of
the free energy is F�−ln 	 with the partition function 	, r
indicates the coefficient of the term including the square of
the order parameter in the Hamiltonian �e.g., the chemical
potential 
 or the hopping amplitude t in model �2� described
below�, � indicates the difference from the quantum critical
point �e.g., �=r−rc�, and � is the field inducing the order
parameter.

The critical exponents for the finite-temperature behavior
at the quantum critical point should be identical to those of
the mean-field theory, e.g., ��T−3/2 where � is susceptibil-
ity. However, as shown in Sec. III, the exponents derived by
the limit L→� of the scaling form �e.g., ��T−5/4� are dif-
ferent from those of the mean-field theory. The reason for
this apparent contradiction is that scaling form �1� is valid
only when � /L2=O�1�. That is, we cannot infinitize L in Eq.
�1� while keeping � finite. In this paper, we show that the
application of MFSS to the z=2 quantum critical point is
reliable if the condition of validity is satisfied, just as the
conventional FSS is below the upper critical dimension.

In Sec. II, we define the N-component BH model. In Sec.
III, we focus on the N=1 case and show the application of
the MFSS to the numerical result of the QMC simulation. In
Sec. IV, we focus on the N=� case, which is exactly solv-
able even for finite systems, to show that the susceptibility*katoyasu@issp.u-tokyo.ac.jp
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obeys the MFSS form. In Sec. V, we give a discussion and
summary of this paper.

II. N-COMPONENT BOSE-HUBBARD MODEL

We consider the N-component BH model on the hypercu-
bic lattice with a Hamiltonian is described as

HN = −
t

Z
�

=1

N

�
�i,j	

�b
i
† b
j + b
ib
j

† � − 
�

=1

N

�
i

b
i
† b
i

+
U

2N
�

=1

N

�
�=1

N

�
i

b
i
† b�i

† b�ib
i, �2�

where b
i
† �b
i� creates �annihilates� an 
-type boson at site i,

and �i , j	 runs over all pairs of nearest-neighbor sites. The
symbols t, U, and 
 denote the hopping amplitude, the on-
site interaction between bosons, and the chemical potential,
respectively. The coordination number in the hypercubic lat-
tice is Z=2d. We take the lattice spacing as our unit of dis-
tance. For concreteness, we consider only the three-
dimensional case in this paper �i.e., Z=6�. The generalization
to arbitrary dimensions should be straightforward.

Here, we define the free energy F� as

F� � −
1

N
ln Tr�e−��HN−�Q�� , �3�

Q � �

=1

N

�
i

�b
i
† + b
i� , �4�

with the field � inducing the order parameter.
The N-component BH model �2� is solvable in the large-N

limit. In Sec. IV, we demonstrate that MFSS �1� exactly de-
scribes the asymptotic behavior of model �2� in the large-N
limit. We note here that an exactly solvable model similar to
the present one was investigated in the 1980s �16,17�. The
model was defined with Bose field operators in the continu-
ous space. In those papers, the critical behavior in the ther-
modynamic limit near the quantum critical point was dis-
cussed. As a result, the mean-field-type criticality was
confirmed above the upper critical dimension �e.g., ���−1�.

III. NUMERICAL VERIFICATION OF MODIFIED
FINITE-SIZE SCALING

In this section, we apply MFSS to the result of QMC
simulation for the single-component BH model �18,19�. We
focus on the superfluid to Mott-insulator transition. The zero-
temperature phase diagram is shown in Fig. 2; it consists of
Mott lobes and a superfluid region. The phase boundary was
estimated using the Mott gap �6�. At the tip of the Mott lobe,
which is a multicritical point, the dynamical critical exponent
z is 1 because of the asymptotic particle-hole symmetry
�4,13�. The rest of the critical lines correspond to the generic
transition with the dynamical critical exponent z=2. In this
section, we fix the chemical potential as 
 /U=0.1 and vary
the hopping amplitude t /U. Namely, � in the first argument

of the scaling functions corresponds to �= t /U− �t /U�c in the
present case.

We study compressibility � and susceptibility �. Their
definitions are

� �
1

�2

��

�

�5�

and

� � −
 1

2Ld�

�2F�

��2 

�=0

, �6�

where

� � −
1

Ld�

�F0

�

. �7�

The scaling forms of � and � are derived using the scaling
form of the free energy �1� as

� � Ỹ��x,y�, � � L5/2Ỹ��x,y� , �8�

where

x = �L5/2, y =
�t

L2 . �9�

We fix the second argument as y=0.375 and estimate the
critical value of t /U as �t /U�c=0.088 935�7� at 
 /U=0.1 by
MFSS of � and �, as shown in Figs. 1�a� and 1�b�. In these
plots, we used the mean-field values for the exponents, leav-
ing the critical value of t /U as the only fitting parameter.

It is also possible to estimate the positions of the quantum
critical points using the Mott gap �5�. To compare the esti-
mations using the Mott gap and MFSS, we estimate the Mott
gap at t /U=0.088 935 and 
 /U=0.5, and plot the corre-
sponding points in the inset of Fig. 2. As we can see in the
figure, the agreement is very good.

Here, a remark on the range of validity of the MFSS form
is appropriate. We consider the finite-temperature behavior
of � at the quantum critical point �=0. If we neglect the
applicability condition of the MFSS form and take the limit
L→� while keeping �t finite, the finite-temperature depen-
dence of � is derived as

� � L5/2��t

L2�5/4
� T−5/4�error� �10�

from the scaling form �8�. This exponent, −5 /4, is different
from that of mean-field theory, −3 /2. As shown in Sec. IV,
the reason for this error is that scaling form �8� or �1� is valid
only under the condition of �t /L2=O�1�. To confirm the
mean-field exponent, we show the finite-temperature depen-
dence of � at the quantum critical point in Fig. 3.

The superfluid density �S is one of the most important
quantities characterizing superfluidity. However, it is not
straightforward to derive the MFSS form of �S because it is
not directly obtained from the free energy by simple differ-
entiation. The superfluid density �S is proportional to the
fluctuation of the winding number W= �Wx ,Wy ,Wz� and is
defined as �S��W2	 / ��tL� within the framework of QMC
simulation �20�. In Appendix B, we show that �S=� / ��Ld�,
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for model �2� in the large-N limit under the condition,
�t /L2�O�1�, d�2, and �t�1. By MFSS for �, we obtain

�S � L−5/2Ỹ�S
�x,y� . �11�

Although this form is derived only for the exactly solvable
model, we believe that it holds in general for the mean-field-
type critical behavior. We apply this MFSS form to the result
of �S estimated by QMC simulations. As can be seen in Fig.
1�c�, MFSS �11� describes the data well.

IV. LARGE-N LIMIT OF N-COMPONENT
BOSE-HUBBARD MODEL

In this section, we consider model �2�, which is known to
exhibit a mean-field-type critical phenomenon, to see
whether MFSS is applicable to such a model. We consider

the model on the d-dimensional hypercubic lattice in the
large-N limit and show that the MFSS form Eq. �1� is exactly
applicable to this case. To derive the self-consistent equation
of � in the large-N limit, we represent the partition function
as a functional integral by making use of a coherent state
basis at first. Then, we use the Stratonovitch-Hubbard trans-
formation and the saddle-point method, which is also called
the steepest descent method. Thus, the self-consistent equa-
tion of susceptibility � in the large-N limit is derived exactly
as
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FIG. 1. �Color online� MFSS plots of single-component BH
model where 
 /U=0.1 and �t /L2=0.375. �� t /U− �t /U�c with
�t /U�c=0.088 935. �a� Compressibility, �b� susceptibility, and �c�
superfluid density.
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FIG. 2. �Color online� Zero-temperature phase diagram of
single-component BH model in three dimensions. Almost all the
quantum critical points �L=8,12, and 16�, which is estimated using
the Mott gap, is from our previous paper �6�. FSS indicates the
result of MFSS. Inset is an enlarged view of the region near the
critical point estimated by MFSS in Fig. 1.
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FIG. 3. �Color online� Temperature dependence of � at the
quantum critical point estimated by MFSS �
 /U=0.1, �t /U�c

=0.088 935�. The solid line is A�T / t�−3/2, where A=0.89. The data
points are obtained for L=24, 32, and 48. There is no visible size
dependence on this scale. The statistical error is smaller than the
size of symbols.
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�−1 = − 
 − t +
U

Ld�
k

1

exp
��−1 +
2�t

Z
�
�=1

d

�1 − cos k��� − 1

.

�12�

See Appendix A 1 for details of the derivation. By expanding
the summand with respect to exp�−���−1+ 2�t

Z ��=1
d �1

−cos k����, we obtain

�−1 = − 
 − t +
U

Ld �
�=1

�

e−���−1

�
�
n=1

L

exp�−
2��t

Z

1 − cos�2�n

L
����d

. �13�

Below, we show that this equation has a solution such that
��O���t��d+2�/4�. Therefore, we assume ��O���t��d+2�/4�
for � in the right-hand side �r.h.s.� of Eq. �13�. Then, as
shown in Appendix A 2, the approximation formula

�
�=1

�

e−���−1
�
n=1

L

exp�−
2��t

Z

1 − cos�2�n

L
����d

� �−1�

�14�

becomes exact in the limit �t→� under the condition that
d�2, �t /L2�O�1�. Using the self-consistent Eq. �13� and
approximation �14�, we arrive at a simple equation, �−1=
−
− t+U��−1L−d. Its solution can be cast into the form

�t

Z
� ��t

Z
��d+2/4�
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UZ/t
��t

Z
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− 1�,� �t

L2Z
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� L�d+2/2�P�
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t
− 1�,

�t

L2Z
� , �15�

with the scaling function

P�
u�x,y� �

2

x + �x2 + 4uy−1
. �16�

At the critical point �
=−t�, we obtain �t���t��d+2�/4

� ��t /L2�−d/4. To make this consistent with �
=O���t��d+2�/4� assumed initially and the condition �t /L2

�O�1�, we must set �t /L2=O�1�. Thus, we have proved that
Eq. �13� has the solution �=O���t��d+2�/4� that satisfies Eq.
�15�, and MFSS form �8� has been derived as a formula that
is asymptotically exact under the conditions of d�2 and
�t /L2=O�1�.

To verify the validity of the form of scaling function �16�,
we demonstrate the MFSS plot of susceptibility in d=3. We
solve the self-consistent Eq. �13� without using Eq. �14� and
plot the results in Figs. 4�a� and 4�b�. As shown in Fig. 4�b�,
the MFSS form fits well in the region �t /L2=O�1�.

V. DISCUSSION AND SUMMARY

In Secs. III and IV, we demonstrated that MFSS �1� is
efficient in locating quantum critical points with the dynami-
cal critical exponent z=2. It has been shown that MFSS is

valid only if the second argument of scaling function �t /L2

is O�1�. In particular, it is not permitted to infinitize L in
scaling forms �8� and �11� while � is constant. This explains
the apparent contradiction between MFSS and the mean-field
critical exponents. It should be noted here that similar situa-
tions appear in classical models. Suppose we attempt to ap-
ply MFSS to a finite-temperature phase transition of a clas-
sical system and infinitize the system size in some �not all� of
the directions while keeping the size in other directions fixed
�15,21�. Singh and Pathria �21� considered a system of size
Ld−d��L�d�, where d is larger than the upper critical dimen-
sion and d� is less than the lower critical dimension. They
analyzed a spin model with O�n� symmetry in the limit of
L�→� �21�. Then they derived the scaling form of suscep-
tibility �0 as

�0 � L�2�d−d��/�4−d���Y�0

d��t̃L�2�d−d��/�4−d���� , �17�

where t̃��T−Tc� /Tc. Then, �0�L2�d−d��/�4−d�� at the critical
point t̃=0. On the other hand, if we keep L /L� finite, the
MFSS form is

�0 � Ld/2Ȳ�0

d��t̃Ld/2,L/L�� , �18�

with the additional argument L /L� �15�. If we ignore the
validity condition of MFSS �18� and take the limit L�→�,
we reach an erroneous conclusion, that is, �0�Ld/2 at t̃=0.

In summary, MFSS is applied to the quantum critical phe-
nomenon with the dynamical critical exponent z=2. Using
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FIG. 4. �Color online� MFSS plots of susceptibility at U / �t /Z�
=1. �a� The x dependence of scaling function of susceptibility
P�

UZ/t�x ,y� and the solution of self-consistent Eq. �13� with y
��t / �ZL2�=1, �b� y dependence of P�

UZ/t�x ,y� and the solution of
self-consistent Eq. �13� at quantum critical point �=0.
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the N-component BH model, the MFSS form of the suscep-
tibility Eq. �15� is exactly derived in the large-N limit with
the applicability conditions d�2 and �t /L2=O�1�. We also
apply MFSS to the numerical results obtained by QMC
simulation. As a result, we see that the position of the quan-
tum critical point estimated by MFSS is identical to that
estimated using the Mott gap within the statistical error. Fi-
nally, note that the scaling function derived in this paper,
P�

u�x ,y�, is in complete agreement with the scaling function
of the �4 model reported in Ref. �9�. While the scaling func-
tion is not justified by the renormalization group or scaling
theories in contrast to the standard FSS below the upper
critical dimension, the agreement strongly indicates that the
mean-field scaling function above the upper critical dimen-
sion is universal.
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APPENDIX A: CALCULATION OF LARGE-N
LIMIT

1. Self-consistent equation of �

Here, we derive the self-consistent Eq. �13� of Hamil-
tonian �2�. The partition function is expressed as

ZN =� D�i���D�i
����e−�S0+S1�,

S0 = �
0

�

d�
�
i

��i
���� · ����i���� − 
�i

���� · �i����

−
t

Z
�
�i,j	

��i
���� · � j��� + � j

���� · �i����� ,

S1 = �
0

�

d�
U

2N�
i

��i
���� · �i����2, �A1�

by the path-integral representation with �i��� being an
N-component complex field. Using the Stratonovitch-
Hubbard transformation, the partition function is written as

ZN =� D�i���D�i
����Dsi���e−S0 � exp


− �
0

�

d���
i
�N

2
si

2��� − i�Usi�����i
���� · �i������� ,

ZN =� Dsi���e−�N/2��0
�d��isi

2����Z1��s���N, �A2�

Z1��s�� � � D�i

���D�i


����exp
− �
0

�

d�
�
i

��i

����

�����i

���� − �
 + i�Usi�����i


�����i

����

−
t

Z
�
�i,j	

��i

����� j


��� + � j

�����i


������ , �A3�

where si��� is an auxiliary field and the integral with respect
to si��� is defined as

� Dsi��� = �
i,�

� N

2�
�

−�

�

dsi��� . �A4�

In the large-N limit, by the saddle-point method, the auxil-
iary field si��� is replaced by s̄ �see Ref. �12� and its refer-
ences�, which makes the exponents of the partition function
maximum. Using Fourier transformation, we obtain

ZN = Ae−�N�Ld/2�s̄2
�Z1�s̄��N, �A5�

Z1�s̄� = �
k

�1 − e−��k�−1, �A6�

�k = − 
 − i�Us̄ −
2t

Z
�
�=1

d

cos k�, �A7�

where A is a real number originating from the fluctuation of
si��� from s̄, and does not contribute to the following discus-
sion, and the product of k runs over the first Brillouin zone
k= �2� /L��m1 , ¯ ,md�, with mi=1,2 , ¯ ,L. The stationary
solution s̄ must satisfy

�

� s̄
−
N�Ld

2
s̄2 − �

k
ln�1 − e−��k�� = 0, �A8�

which yields

s̄ =
i�U

Ld �
k

�e��k − 1�−1. �A9�

The susceptibility � is related to s̄ by

� �
1

N
�

0

�

d��
i

��i
���� · �0�0�	 = �− 
 − t − i�Us̄�−1.

�A10�

Therefore, � satisfies

�−1 = − 
 − t +
U

Ld�
k

1

exp
2�t

Z
�
�=1

d

�1 − cos k�� + ��−1� − 1

.

�A11�

2. Derivation of Eq. (14)

In Sec. IV, we derived �=O���t /Z��2+d�/4� by self-
consistent analysis. Namely, assuming the condition �
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=O���t /Z��2+d�/4�, we proved the resulting solution satisfies
this condition. Here, assuming

��t/Z��2+d�/4�−1 = O�1� , �A12�

we provide the approximation form

�
�=1

�

e−���−1
�
n=1

L

exp�−
2��t

Z

1 − cos�2�n

L
����d

� �−1� ,

�A13�

which becomes exact under the conditions that

d � 2, �A14�

�t/L2 � O�1� , �A15�

and

�t � 1. �A16�

To begin with, we rewrite the left-hand side as

�
�=1
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e−���−1
�
n=1

L

exp�−
2��t

Z

1 − cos�2�n

L
����d

= �
�=1

�

e−���−1
�1 + A��d,

=�
�=1

�

e−���−1
+ �

�=1

�

e−���−1
�

=1

d
d!


 ! �d − 
�!
A�


� ,

�A17�

where

A� � e−4��t/Z + 2 �
n=1

−1+L/2

exp
−
2��t

Z
�1 − cos�2�n

L
��� .

�A18�

Here, we note that ��−1�0. �This is because ��−1

=O���t�−�d−2�/4� �because of condition �A12��, and because
of condition �A14�, it vanishes in the limit of Eq. �A16�.�
Since ��−1�0, the first term of the r.h.s. of Eq. �A17� is
approximated by

�
�=1

�

e−���−1
= �−1� + O����−1�0� = O���t��d−2�/4� .

�A19�

Below, we show that the second term of Eq. �A17� is a cor-
rection term that vanishes in the limit of �t→�. At first, A�

is bounded as

0 � A� � 2�
n=1

L/2

exp
−
2��t

Z
�1 − cos�2�n

L
��� ,

0 � 2�
0

L/2

dp exp
−
2��t

Z
�1 − cos�2�p

L
��� ,

0 � 2�
0

L/2

dp exp
−
2��t

Z
�8p2

L2 �� ,

0 �� �L2Z

16��t
. �A20�

Then, the second term of Eq. �A17� is evaluated as

0 � �

=1

d
d!


 ! �d − 
�!
�
�=1

�

e−���−1
A�


� ,

� �

=1

d
d!


 ! �d − 
�!
�
�=1

�

e−���−1� �L2Z

16��t
�
/2� ,

� �

=1

d
d!


 ! �d − 
�!��L2Z

16�t
�
/2
�

0

�

dpe−p��−1
p−
/2� ,

= �

=1

d
d!


 ! �d − 
�!� �Z

16��t/L2��
/2
�
0

�

dqe−qq−
/2�
����−1��
−2/2�. �A21�

Since �t /L2�O�1� and ��−1�1, the 
=1 term is dominant.
Therefore, the second term is of the same order as
��t /L2�−1/2���−1�−1/2. Because of condition �A12�, this is
O���t /L2�−1/2� ��t��d−2�/8�. Therefore, the ratio of the second
to the first term of Eq. �A17� becomes less than
O���t /L2�−1/2� ��t�−�d−2�/8�. This vanishes because of condi-
tions �A14�, �A15�, and �A16�. Thus Eq. �A13� is derived.

APPENDIX B: SCALING FUNCTION OF SUPERFLUID
DENSITY IN LARGE-N LIMIT

In this section, we provide the MFSS form of superfluid
density using the N-component BH model. The outline of
this section is as follows. First, we obtain the explicit defi-
nition of superfluid density, which is estimated using the
winding number in the QMC simulation, with an infinitesi-
mal twist of the phase of the bosonic operator. Next, we
calculate the superfluid density of the N-component BH
model exactly. The result reveals that the superfluid density
�S is proportional to the susceptibility �. Then, we derive the
MFSS form of �S as that of �.

To start with, we derive an expression for the superfluid
density �S, introducing an infinitesimal twist of the phase of
the bosonic operators. Namely, we modify Hamiltonian �2�
by b
i

† →b
i
† ei�ri

z
, b
i→b
ie

−i�ri
z
, where ri

z is the z coordinate
of site i. �Because of the periodic boundary condition, �
should be discrete. That is, �=2�n /L, where n is an integer.
However, considering a sufficiently large system, we regard
� as a continuous real number.� Then, we define the twisted
Hamiltonian HN�, the partition function ZN� and the free en-
ergy FN� as
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HN� = −
t

Z
�

=1

N

�
�i,j	

�b
i
† b
je

i��ri
z−rj

z� + b
ib
j
† e−i��ri

z−rj
z��

− 
�

=1

N

�
i

b
i
† b
i +

U

2N
�

=1

N

�
�=1

N

�
i

b
i
† b�i

† b�ib
i,

�B1�

ZN� = Tr�e−�HN�� , �B2�

FN� = −
1

N
ln ZN�. �B3�

The superfluid density �S is defined with this twisted free
energy FN� as

�S �
1

2�Ld�t/Z�

 �2FN�

��2 

�=0

. �B4�

Next, we calculate �S in the large-N limit. The partition func-
tion ZN� is obtained, as well as the nontwisted partition func-
tion �see Appendix A 1�, as

ZN� = Ae−�N�Ld/2�s̄2
�Z1��s̄��N, �B5�

Z1��s̄� = �
k

�1 − e−��k��−1, �B6�

�k� = − 
 − i�Us̄ −
2t

Z
�
�=1

d−1

cos k� −
2t

Z
cos�kz + �� . �B7�

The derivation of the free energy is straightforward using
this partition function. Then, we obtain the superfluid density
as

�S =
1

Ld�
k

cos kz

e��k − 1
�B8�

with �k defined in Eq. �A7�. This superfluid density is lower
than the total density of particles,

� � −
1

Ld�

�FN�=0

�

,

=
1

Ld�
k

1

e��k − 1
, �B9�

and larger than the density of particles of k=0,

�0 =
1

Ld

1

e��−1
− 1

. �B10�

That is,

�0 � �S � � . �B11�

As shown in Appendix A 2,

� = �0 =
�

Ld�
, �B12�

under the conditions �t /L2�O�1�, d�2, and �t→�. Using
inequality �B11�, we obtain

�S =
�

Ld�
. �B13�

As shown in Sec. IV, we derive the MFSS form of �S as

�S = L−�d+2�/2P�S

UZ/t�L�d+2/2�Z�−



t
− 1�,

�t

L2Z
� , �B14�

P�S

u �x,y� �
2y−1

x + �x2 + 4uy−1
. �B15�

The applicability conditions of this MFSS form are d�2 and
�t /L2=O�1�.
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