PHYSICAL REVIEW E 81, 011123 (2010)

Finite-size scaling for quantum criticality above the upper critical dimension:
Superfluid—-Mott-insulator transition in three dimensions
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The validity of modified finite-size scaling above the upper critical dimension is demonstrated for the
quantum phase transition whose dynamical critical exponent is z=2. We consider the N-component Bose-
Hubbard model, which is exactly solvable and exhibits mean-field type critical phenomena in the large-N limit.
The modified finite-size scaling holds exactly in that limit. However, the usual procedure, taking the large
system-size limit with fixed temperature, does not lead to the expected (and correct) mean-field critical behav-
ior because of the limited range of applicability of the finite-size scaling form. By quantum Monte Carlo
simulation, it is shown that the modified finite-size scaling holds in the case of N=1.
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I. INTRODUCTION

Since the quantum phase transition to the Mott insulator
from a superfluid was observed in the optical lattice system
[1], this quantum critical phenomenon has been a hot topic
[2]. This system is effectively described by the Bose-
Hubbard (BH) Hamiltonian [3]. The zero-temperature phase
diagram of the BH model has been well investigated [4—6].
There are phase transition points called multicritical points
with the dynamical critical exponent of z=1 and a line of the
other type of phase transition called generic transition, the
dynamical critical exponent of which is z=2 on the zero-
temperature phase diagram. In this paper, we consider the
generic transition (i.e., z=2) in three-dimensional systems.
Three dimensions (d=3) are above the upper critical dimen-
sion d,=2. Therefore, this phase transition is exactly classi-
fied and its critical exponents should be identical to those of
the mean-field theory. To estimate the locations of critical
points quantitatively, we frequently apply finite-size scaling
to the data of finite-size systems calculated by the quantum
Monte Carlo (QMC) method.

Above the upper critical dimension, a finite-size scaling
(FSS) should be modified because of a dangerous irrelevant
variable [7]. In contrast to the conventional FSS below d,,,
the modified finite-size scaling (MFSS) [8] is not justified by
renormalization group or scaling theories. However, its va-
lidity has been demonstrated for the five-dimensional Ising
model [7,9,10], the O(n) model [11], and the ¢* model in a
large-N limit [9,12]. For the quantum phase transition with
z=1, below the upper critical dimension, a simple applica-
tion of the FSS is trivially possible by identifying the inverse
temperature B as merely an additional dimension. Actually,
to estimate the multicritical point quantitatively, Smakov and
Sgrensen [13] applied the FSS with the additional argument
B/L to the multicritical point in the d=2 case where the
system is below the upper critical dimension because d+z
< 4. For the quantum phase transition with z# 1, below the
upper critical dimension, the application of FSS is also pos-
sible with the additional argument B/L® instead of /L on
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the ground where the ratio between the correlation time &,
and the correlation length & to the zth power is &./&=0(1)
[4]. Zhao et al. applied the FSS to the case of z=2 and d
=2, which is just the upper critical dimension, and succeeded
in estimating the phase boundary on the zero-temperature
phase diagram of their model [14]. The purpose of the
present paper is to demonstrate the validity of the MFSS in
the case where d>d, and z# 1, both by Monte Carlo simu-
lation and by exact solutions. We consider the case of z=2
and d=3, i.e., above the upper critical dimension. It seems a
natural extension to add the argument B/L? to the scaling
function of MFSS [15]. Namely, we assume that the singular
part of the free energy F has the scaling form

FS(V, 7],,3,L) — YF(5L(d+2)/2’ 7]L3(d+2)/4,B/L2) (1)

with a universal scaling function ?F, where the definition of
the free energy is F=-In E with the partition function &, r
indicates the coefficient of the term including the square of
the order parameter in the Hamiltonian [e.g., the chemical
potential u or the hopping amplitude ¢ in model (2) described
below], § indicates the difference from the quantum critical
point (e.g., 6=r—r,), and 7 is the field inducing the order
parameter.

The critical exponents for the finite-temperature behavior
at the quantum critical point should be identical to those of
the mean-field theory, e.g., x~7T>? where y is susceptibil-
ity. However, as shown in Sec. III, the exponents derived by
the limit L —  of the scaling form (e.g., y~ T~>*) are dif-
ferent from those of the mean-field theory. The reason for
this apparent contradiction is that scaling form (1) is valid
only when 8/L>=0(1). That is, we cannot infinitize L in Eq.
(1) while keeping B finite. In this paper, we show that the
application of MFSS to the z=2 quantum critical point is
reliable if the condition of validity is satisfied, just as the
conventional FSS is below the upper critical dimension.

In Sec. II, we define the N-component BH model. In Sec.
III, we focus on the N=1 case and show the application of
the MESS to the numerical result of the QMC simulation. In
Sec. IV, we focus on the N=% case, which is exactly solv-
able even for finite systems, to show that the susceptibility
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obeys the MFSS form. In Sec. V, we give a discussion and
summary of this paper.

II. N-COMPONENT BOSE-HUBBARD MODEL

We consider the N-component BH model on the hypercu-
bic lattice with a Hamiltonian is described as

N
ME 2 bzu'bai

a=1 i

———E 2 (blibe+baibly)

Z a=1 (i,

E 2 Eb bﬁlbﬁz ais (2)

+ —
2Noz—1 p=1 i

where b (b,;) creates (annihilates) an a-type boson at site i,
and (i,j) runs over all pairs of nearest-neighbor sites. The
symbols ¢, U, and u denote the hopping amplitude, the on-
site interaction between bosons, and the chemical potential,
respectively. The coordination number in the hypercubic lat-
tice is Z=2d. We take the lattice spacing as our unit of dis-
tance. For concreteness, we consider only the three-
dimensional case in this paper (i.e., Z=6). The generalization
to arbitrary dimensions should be straightforward.
Here, we define the free energy F', as

1
F,=- Xlln Tr[e PHN-7197, (3)

N
Q=2 D (bl +bg), (4)

a=1 i

with the field # inducing the order parameter.

The N-component BH model (2) is solvable in the large-N
limit. In Sec. IV, we demonstrate that MFSS (1) exactly de-
scribes the asymptotic behavior of model (2) in the large-N
limit. We note here that an exactly solvable model similar to
the present one was investigated in the 1980s [16,17]. The
model was defined with Bose field operators in the continu-
ous space. In those papers, the critical behavior in the ther-
modynamic limit near the quantum critical point was dis-
cussed. As a result, the mean-field-type criticality was
confirmed above the upper critical dimension (e.g., y~ &").

III. NUMERICAL VERIFICATION OF MODIFIED
FINITE-SIZE SCALING

In this section, we apply MFSS to the result of QMC
simulation for the single-component BH model [18,19]. We
focus on the superfluid to Mott-insulator transition. The zero-
temperature phase diagram is shown in Fig. 2; it consists of
Mott lobes and a superfluid region. The phase boundary was
estimated using the Mott gap [6]. At the tip of the Mott lobe,
which is a multicritical point, the dynamical critical exponent
z is 1 because of the asymptotic particle-hole symmetry
[4,13]. The rest of the critical lines correspond to the generic
transition with the dynamical critical exponent z=2. In this
section, we fix the chemical potential as u/U=0.1 and vary
the hopping amplitude #/U. Namely, ¢ in the first argument
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of the scaling functions corresponds to §=¢/U—(t/U), in the
present case.

We study compressibility « and susceptibility y. Their
definitions are

19
K= __p (5)
P’ ip
and
x=- 4 ©
d
2LB o
where
1 dF
p=-— . ™)
LB

The scaling forms of « and y are derived using the scaling
form of the free energy (1) as

~ Y (xy), x~L"Y (xy), (8)
where
Bt
x=08L"? y= o )

We fix the second argument as y=0.375 and estimate the
critical value of ¢/ U as (¢/U),=0.088 935(7) at w/U=0.1 by
MFSS of « and Yy, as shown in Figs. 1(a) and 1(b). In these
plots, we used the mean-field values for the exponents, leav-
ing the critical value of #/U as the only fitting parameter.

It is also possible to estimate the positions of the quantum
critical points using the Mott gap [5]. To compare the esti-
mations using the Mott gap and MFSS, we estimate the Mott
gap at +/U=0.088 935 and u/U=0.5, and plot the corre-
sponding points in the inset of Fig. 2. As we can see in the
figure, the agreement is very good.

Here, a remark on the range of validity of the MFSS form
is appropriate. We consider the finite-temperature behavior
of x at the quantum critical point 6=0. If we neglect the
applicability condition of the MFSS form and take the limit
L— o while keeping ft finite, the finite-temperature depen-
dence of y is derived as

s Bt " s/4
x~ L I ~ T"*(error) (10)

from the scaling form (8). This exponent, —5/4, is different
from that of mean-field theory, —3/2. As shown in Sec. IV,
the reason for this error is that scaling form (8) or (1) is valid
only under the condition of Bt/L’=0(1). To confirm the
mean-field exponent, we show the finite-temperature depen-
dence of y at the quantum critical point in Fig. 3.

The superfluid density pg is one of the most important
quantities characterizing superfluidity. However, it is not
straightforward to derive the MFSS form of pg because it is
not directly obtained from the free energy by simple differ-
entiation. The superfluid density pg is proportional to the
fluctuation of the winding number W=(W,,W ,W,) and is
defined as py=(W?)/(BtL) within the framework of QMC
simulation [20]. In Appendix B, we show that pg=x/(B8L%),
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FIG. 1. (Color online) MFSS plots of single-component BH
model where wu/U=0.1 and Bt/L*=0.375. 6=1t/U—-(t/U), with
(t/U),=0.088 935. (a) Compressibility, (b) susceptibility, and (c)
superfluid density.

for model (2) in the large-N limit under the condition,
Bt/L>*=0(1), d>2, and Br>1. By MFSS for y, we obtain

(11)

Although this form is derived only for the exactly solvable
model, we believe that it holds in general for the mean-field-
type critical behavior. We apply this MFSS form to the result
of pg estimated by QMC simulations. As can be seen in Fig.
1(c), MFSS (11) describes the data well.

by~ L57, (1.0).

IV. LARGE-N LIMIT OF N-COMPONENT
BOSE-HUBBARD MODEL

In this section, we consider model (2), which is known to
exhibit a mean-field-type critical phenomenon, to see
whether MFSS is applicable to such a model. We consider
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FIG. 2. (Color online) Zero-temperature phase diagram of
single-component BH model in three dimensions. Almost all the
quantum critical points (L=38,12, and 16), which is estimated using
the Mott gap, is from our previous paper [6]. FSS indicates the
result of MFSS. Inset is an enlarged view of the region near the
critical point estimated by MFSS in Fig. 1.

the model on the d-dimensional hypercubic lattice in the
large-N limit and show that the MFSS form Eq. (1) is exactly
applicable to this case. To derive the self-consistent equation
of x in the large-N limit, we represent the partition function
as a functional integral by making use of a coherent state
basis at first. Then, we use the Stratonovitch-Hubbard trans-
formation and the saddle-point method, which is also called
the steepest descent method. Thus, the self-consistent equa-
tion of susceptibility y in the large-N limit is derived exactly
as

100 p——rrrT —————

Xt
.

01 0.1 1

T/t

FIG. 3. (Color online) Temperature dependence of x at the
quantum critical point estimated by MFSS [w/U=0.1,(t/U),
=0.088 935]. The solid line is A(7/1)~>2, where A=0.89. The data
points are obtained for L=24, 32, and 48. There is no visible size
dependence on this scale. The statistical error is smaller than the
size of symbols.
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U 1
X‘I:—M—t+—dE 7 .
L7y L 2B
exp| Bx '+ — >, (1-cosky) | -1
Z 5

(12)

See Appendix A 1 for details of the derivation. By expanding
the summand with respect to exp[—{Bx '+ ggi‘;zl(l
—cos kg)}], we obtain

_ UOG a1
X 1=—M—I+Ej26 X
v=1

x[é exp{— zyzﬂt{l —cos(z?ﬂ}r (13)

Below, we show that this equation has a solution such that
x~ O((Br) @24 Therefore, we assume y~ O((Br) @24
for x in the right-hand side (r.h.s.) of Eq. (13). Then, as
shown in Appendix A 2, the approximation formula

© L d
> e""BX_I[E exp{— 21}'&[1 - cos(zﬂﬂ}] =B'x
v=1 n=1 VA L

(14)

becomes exact in the limit Bf— o under the condition that
d>?2, Bt/L*>*=0(1). Using the self-consistent Eq. (13) and
approximation (14), we arrive at a simple equation, y~'=
—u—t+UyxB 'L~ Its solution can be cast into the form

Xt Bt (d+2/4) vl (Bt (d+2/4) P Bt —(d/2)
== pYA | = Z\-E-1)| 5
V4 V4 X Z t L°Z

- L(d+2/2)P)l(/Z/t|:L(d+2/2)Z<_ % _ ])’Li;z} ’ (15)

with the scaling function

2

/42 -1
X+ \x"+4duy

Pi(x,y) (16)
At the critical point (mw=-1), we obtain ¢~ (Br)@2/*
X(Bt/L?)¥*.  To make this consistent with y
=0((Br)*?"*) assumed initially and the condition Bt/L?
=0(1), we must set 8t/L>=0(1). Thus, we have proved that
Eq. (13) has the solution y=0((Br)“*?’4) that satisfies Eq.
(15), and MFSS form (8) has been derived as a formula that
is asymptotically exact under the conditions of d>2 and
Bt/L*=0(1).

To verify the validity of the form of scaling function (16),
we demonstrate the MFSS plot of susceptibility in d=3. We
solve the self-consistent Eq. (13) without using Eq. (14) and
plot the results in Figs. 4(a) and 4(b). As shown in Fig. 4(b),
the MFSS form fits well in the region Bt/L*=0(1).

V. DISCUSSION AND SUMMARY

In Secs. III and IV, we demonstrated that MFSS (1) is
efficient in locating quantum critical points with the dynami-
cal critical exponent z=2. It has been shown that MFSS is
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FIG. 4. (Color online) MFSS plots of susceptibility at U/(t/Z)
=1. (a) The x dependence of scaling function of susceptibility
P;/Z”(x,y) and the solution of self-consistent Eq. (13) with y
=pt/(ZL*)=1, (b) y dependence of P)Z(IZ/ ‘(x,y) and the solution of
self-consistent Eq. (13) at quantum critical point 6=0.

valid only if the second argument of scaling function Bt/L?
is O(1). In particular, it is not permitted to infinitize L in
scaling forms (8) and (11) while B is constant. This explains
the apparent contradiction between MFSS and the mean-field
critical exponents. It should be noted here that similar situa-
tions appear in classical models. Suppose we attempt to ap-
ply MESS to a finite-temperature phase transition of a clas-
sical system and infinitize the system size in some (not all) of
the directions while keeping the size in other directions fixed
[15,21]. Singh and Pathria [21] considered a system of size
L4 x 1'?" where d is larger than the upper critical dimen-
sion and d’ is less than the lower critical dimension. They
analyzed a spin model with O(n) symmetry in the limit of
L' — o0 [21]. Then they derived the scaling form of suscep-
tibility x, as

Yo~ [ [2(d-d")/(4—d )]Y;i(o(fL[Z(d—d Y-l (17)

where 7=(T=T,)/T,. Then, yo~ L2@~4")4=d") at the critical
point 7=0. On the other hand, if we keep L/L’ finite, the
MESS form is

Yo~ Ld/z?ig(?Ld/Z,L/L'), (18)

with the additional argument L/L’ [15]. If we ignore the
validity condition of MFSS (18) and take the limit L’ — o,
we reach an erroneous conclusion, that is, y,~ L%? at 7=0.

In summary, MFSS is applied to the quantum critical phe-
nomenon with the dynamical critical exponent z=2. Using
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the N-component BH model, the MFSS form of the suscep-
tibility Eq. (15) is exactly derived in the large-N limit with
the applicability conditions d>2 and Bt/L>=0(1). We also
apply MFSS to the numerical results obtained by QMC
simulation. As a result, we see that the position of the quan-
tum critical point estimated by MFSS is identical to that
estimated using the Mott gap within the statistical error. Fi-
nally, note that the scaling function derived in this paper,
P“(x y), is in complete agreement with the scaling function
of the ¢* model reported in Ref. [9]. While the scaling func-
tion is not justified by the renormalization group or scaling
theories in contrast to the standard FSS below the upper
critical dimension, the agreement strongly indicates that the
mean-field scaling function above the upper critical dimen-
sion is universal.
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APPENDIX A: CALCULATION OF LARGE-N
LIMIT

1. Self-consistent equation of x

Here, we derive the self-consistent Eq. (13) of Hamil-
tonian (2). The partition function is expressed as

Zy= J Dl//i(T)Dl/I?(T)e_(S()"'Sl),

B
So= f "T[E (D) - () - pid (D) - ()}
0 i

——E(lﬂ(f

p ) - Y1) + (1) - (7)) |,
(i.j)

U
Sy=| dr— (1) - (D] Al
; fo 2N§[¢n() #(7)] (A1)

by the path-integral representation with ;(7) being an
N-component complex field. Using the Stratonovitch-
Hubbard transformation, the partition function is written as

= f D) D () Ds ()¢50 X exp{

B N — .
—f dny > ES?(T)—iV’Usi(T)[lﬂT(T)'tﬁi(T)] ]
0 i

Zy= f Ds(De- M= Oz (Y, (A2)
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B
Z[(9)]= J Dwﬂr)w?*(r)exp{— f d{z{ﬁ*m
0 i
X[30(D)] ~ [+ iNUs D] (D (D)}

- 22 L™ (D (1) + lﬂ“’“(f)tﬂ“(f)]H (A3)
)

where s,(7) is an auxiliary field and the integral with respect
to s,(7) is defined as

JDS,-(T) =H \/%f ds(7).

In the large-N limit, by the saddle-point method, the auxil-
iary field s;(7) is replaced by 5 (see Ref. [12] and its refer-
ences), which makes the exponents of the partition function
maximum. Using Fourier transformation, we obtain

(A4)

Zy=Ae"VEL 7 ()], (AS)
7, =1 -ePw, (A6)
k
— ud
MNe=—p—iNUS— =, cos kg, (A7)
Z 5

where A is a real number originating from the fluctuation of
s;(7) from 5, and does not contribute to the following discus-
sion, and the product of k runs over the first Brillouin zone

k=Q2w/L)(m;,- - ,my), with m;=1,2,-++,L. The stationary
solution s must satisfy

al N, Ld

—_{ N 2 In(1-e) | = (A8)

as 2
which yields

iu
F= D [ - (A9)
L%

The susceptibility y is related to 5 by

'B —
y=1 f 47 (D) - o0 = (= =1~ VTS,

NJg

(A10)

Therefore, y satisfies

- r+ v !
X =— M- d
L% 28t < .
exp| ==, (1 - cos k) + BY
Z s

(A11)

2. Derivation of Eq. (14)

In Sec. IV, we derived x=0((Bt/Z)?*¥'*%) by self-
consistent analysis. Namely, assuming the condition y
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=0((Bt12)**9"%), we proved the resulting solution satisfies
this condition. Here, assuming

(BtZ)** "1 = 0(1), (A12)

we provide the approximation form

%e—»ﬁr'[g exp{ 2”&{1 -cos(z?ﬂ}r: B'x.

(A13)
which becomes exact under the conditions that
d>2, (A14)
Bt/L* = 0(1), (A15)
and
B> 1. (A16)

To begin with, we rewrite the left-hand side as

%e‘”ﬁx’ [E exp{ ZVﬂt{l —cos(z%n)]}]d

oo

=D B (1+A,),
=1

) o d
=§1 B 2}1 e—vﬂx“{% — (j!_ a)!Ai'] ,
(A17)
where
—1+L/2 2 0Bt 2
A,=e P20 2:1 exp[— Z'B {l —cos(T>H.
(A18)

Here, we note that By~ '=0. [This is because By
=0((Br)"2"4) [because of condition (A12)], and because
of condition (A14), it vanishes in the limit of Eq. (A16).]
Since By '=0, the first term of the r.h.s. of Eq. (A17) is
approximated by

S e = g+ 0((BY ) = O((B1) @),
=1

(A19)

Below, we show that the second term of Eq. (A17) is a cor-

rection term that vanishes in the limit of Br— . At first, A,

is bounded as

L2
0<A, = 22 exp{—

21/,8!{ (27711)}}
1-cos| — s
n=1 Z L

_ L2 2vpBt (2771)) ]
O_ZJO dpexp[— 7 {1—005 _L ,
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L2 2
2vpt( 8p

OSZJ dpexp[— <—>]
( z \L?

)
| w27
= .
16v0t

Then, the second term of Eq. (A17) is evaluated as

(A20)

d d! S
0<S —F——| > ey
2 aa—an| =¢
L °° wl’Z |
= 2 P — E e_DBX_l P s
malld-a)!| g 16v8t
Lo w2’z | 2] (* 1
< : dpePPX a2 |
gla!(d—a)! 1681 fo pe P

d
_ d! w7 wrf (=
_z a'(d—a)‘{l6(ﬁt/L2)} lfo dqe qq ]

X(Bx~ )2, (A21)

Since Bt/L>*=0(1) and By~' <1, the @=1 term is dominant.
Therefore, the second term is of the same order as
(Bt/L*)™V2(Bx™")~V2. Because of condition (A12), this is
O((Bt/L*)~12 X (Br)\4-2)/8) Therefore, the ratio of the second
to the first term of Eq. (A17) becomes less than
O((Bt/L?) ™2 X (Br)~@-2/8) This vanishes because of condi-
tions (A14), (A15), and (A16). Thus Eq. (A13) is derived.

APPENDIX B: SCALING FUNCTION OF SUPERFLUID
DENSITY IN LARGE-N LIMIT

In this section, we provide the MFSS form of superfluid
density using the N-component BH model. The outline of
this section is as follows. First, we obtain the explicit defi-
nition of superfluid density, which is estimated using the
winding number in the QMC simulation, with an infinitesi-
mal twist of the phase of the bosonic operator. Next, we
calculate the superfluid density of the N-component BH
model exactly. The result reveals that the superfluid density
ps 1s proportional to the susceptibility y. Then, we derive the
MESS form of pg as that of .

To start with, we derive an expression for the superfluid
density pg, introducing an infinitesimal twist of the phase of
the bosonic operators. Namely, we modify Hamiltonian (2)

by bl,—b!e i0rF b, — b e, where r5 is the z coordinate
of 51te i (Because of the periodic boundary condition, 6
should be discrete. That is, §=27n/L, where n is an integer.
However, considering a sufficiently large system, we regard
0 as a continuous real number.) Then, we define the twisted
Hamiltonian Hy,, the partition function Zy, and the free en-
ergy Fyg as
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N

2 E (bl b jeiG(rf—rj.) +b ib'(' Ae—iﬂ(rf—r;f))
ai’«a aiPq

a=1(i.j) !

N N N
. U .
— > Dbl + sz 2 D bbb
a=1 i

t
HN():_E

a=1 B=1 i

(B1)

Zyg=Ti[e P, (B2)
1

FN(9=_ ]T]ln ZN9‘ (B3)

The superfluid density pg is defined with this twisted free
energy Fyg as

1 FPFyg
2BLUH1Z) 068 | oy

Ps (B4)

Next, we calculate pg in the large-N limit. The partition func-
tion Zy, is obtained, as well as the nontwisted partition func-
tion (see Appendix A 1), as

A2 .
Zyg=Ae NEERS 7, ()1, (B5)

2,43 =11 (1 - ePheo)t, (B6)
k

d-1
2t 2t
Neo=— L — iV/EE— => cos ks——cos(k.+ ). (B7)
z< z

The derivation of the free energy is straightforward using
this partition function. Then, we obtain the superfluid density
as
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1 s cos k,

=52 (BS)

Ps

with Ay defined in Eq. (A7). This superfluid density is lower
than the total density of particles,

_ 1 9Fyeo
1 1
=—2 5, B9
2 (89)
and larger than the density of particles of k=0,
1 1
=——0. B10
Po 14 . i : ( )
That is,
Po= Ps=p. (B11)
As shown in Appendix A 2,
X
=po="r", B12
P=P=Tig (B12)

under the conditions ,8t/L22 O(1), d>2, and Bt— 0. Using
inequality (B11), we obtain

X
=—. B13
Ps Ldﬂ ( )
As shown in Sec. IV, we derive the MFSS form of pg as

_ @ puzi( p a2, B ) BL
ps=L Py (L z( ; 1>’L2z)’ (B14)
2y‘l

s (B15)
X+ VX~ +4duy

P! () =

The applicability conditions of this MFSS form are d>2 and
Bt/L*=0(1).
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