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The fluctuation-dissipation theorem �FDT� is very general and applies to a broad variety of different physical
phenomena in condensed matter physics. With the help of the FDT and following the famous work of Caldeira
and Leggett, we show that, whenever linear response theory applies, any generic bosonic or fermionic system
at finite temperature T can be mapped onto a fictitious system of free-harmonic oscillators. To the best of our
knowledge, this is the first time that such a mapping is explicitly worked out. This finding provides further
theoretical support to the phenomenological harmonic oscillator models commonly used in condensed matter.
Moreover, our result helps in clarifying an interpretation issue related to the presence and physical origin of the
Bose-Einstein factor in the FDT.
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I. INTRODUCTION

The idea of modeling physical systems as a collection of
harmonic oscillators has a long history and dates back to
even before the birth of quantum mechanics. One of the best
known example is Planck’s work on blackbody radiation at
the edge of the classical �beginning of quantum� era. More
recently, this model has been of great importance in connec-
tion with the study of dissipation in quantum mechanics
�1–3�.

In their famous paper devoted to the study of tunneling in
dissipative systems �4�, Caldeira and Legget observed that
“any physical system, which is weakly perturbed around its
equilibrium state can be adequately represented �at T=0 at
least� by regarding that system as equivalent to a set of
simple harmonic oscillators.” They supplemented this state-
ment with an explicit computation, where they showed that
given a quantum system at T=0, in the lowest-order approxi-
mation, its dynamics can be reproduced with the help of a
properly constructed system of harmonic oscillators. They
also stressed that the study of the T�0 case �not considered
in their paper� needed separate discussion.

Caldeira and Legget then suggested the form of the total
lagrangian of a physical system in interaction with a certain
“environment” �the “heat bath”� and worked out the conse-
quences of this assumption in connection with the tunneling
problem �4,5�. Prompted by this pioneering work, harmonic
oscillator models are nowadays extensively used and there is
little doubt that, from a phenomenological point of view,
they reproduce quite well the physics of the systems under
investigation. As a specific example, we can consider an

electrical circuit, where the resistance is modeled with a col-
lection of harmonically oscillating electrical dipoles.

From a theoretical point of view, however, it would be
more satisfactory if we could prove that, for any generic
system at finite temperature T�0, it is possible to find an
equivalent system of harmonic oscillators such that the sta-
tistical �thermodynamical� properties of the real physical sys-
tem are properly reproduced by the system of oscillators.
This would be an extension of the Caldeira Legget result and
would provide further theoretical support to the commonly
used phenomenological models.

The main scope of this work is to present a new and very
general result, which provides the above mentioned exten-
sion of the Caldeira-Legget one. By working within the
framework of the fluctuation-dissipation theorem �FDT� �6�,
we show that, whenever linear response theory applies, any
generic bosonic and/or fermionic system at finite temperature
can be mapped onto the Fock space of a fictitious system of
free harmonic oscillators at the same temperature.

As a byproduct of our analysis, we shall see that our
finding should help in clarifying an interpretation issue con-
cerning the Bose-Einstein �BE� distribution factor which ap-
pears in the FDT. Actually, an often raised question concerns
the physical meaning and/or origin of the BE factor, which
appears in the relation between the power spectrum of the
fluctuating quantity and the corresponding generalized sus-
ceptibility. Sometimes this term is interpreted as due to an
harmonic oscillator composition of the physical system un-
der investigation. Such an interpretation, however, is not sup-
ported by the derivation of the theorem itself �see for in-
stance �7–9��. Moreover, the FDT applies to any generic
bosonic or fermionic system �irrespectively of its statistics�.

Far from being an academic question, the resolution of
this interpretation issue is of very practical importance in
many different contexts �10–13�. From a real understanding
of the origin of this term often depends the correct physical
interpretation of theoretical and experimental results
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�8,9,14–17�. As we shall see, our results suggest that this
term does not originate from underlying physical oscillator
degrees of freedom of the system but is rather a general
property related to the approximation �linear response� in-
volved in the derivation of the FDT.

According to this theorem, whenever linear response
theory is applicable, given a generic system which interacts

with an external field f�t� through the interaction term V̂=

−f�t�Â, where Â is an observable of the system, the mean

square of the Fourier transform Â��� of Â�t� is related to the
imaginary part �A���� of the corresponding �Fourier trans-
formed� generalized susceptibility by the relation �6�,

�Â2���� = ��A����coth����

2
� = 2��A�����1

2
+

1

e��� − 1
� ,

�1�

where �=1 /kT, with T the temperature of the system and k
the Boltzmann constant.

For instance, in the case of a resistively shunted Joseph-
son junction �10�, when applied to the power spectrum SI���
of the noise current �fluctuation� in the resistive shunt �dis-
sipation�, the theorem takes the form �R is the shunt resis-
tance� �11�,

SI��� =
4

R
���

2
+

��

e��� − 1
� . �2�

The power spectrum SI��� has been measured �10� and good
agreement between the experimental results and Eq. �2� has
been found.

The above ��
2 term is sometimes presented �10,11,18,19�

as due to zero point energies and the experimental results
�10� as a measurement of them. In fact, the term in paren-
thesis in Eq. �2� coincides with the mean energy of an har-
monic oscillator of frequency � in a thermal bath. The same
holds true for the general case of Eq. �1�, where the similar
term is the mean energy of an harmonic oscillator in ��
units, i.e., the BE distribution function. In the following, we
shall see that our result �the mapping� strongly suggests that
the agreement between the experimental results �10� and Eq.
�2� cannot be considered as a signature of measurement of
zero point energies.

The rest of the paper is organized as follows. In Sec. II,
we briefly review the derivation of the FDT and establish
some relations useful for the following. In Sec. III we estab-
lish our new result, the mapping, i.e., we show that for any
given bosonic or fermionic system at finite temperature T
�0 we can always find a fictitious system of harmonic os-
cillators in such a manner that the physical quantities which
appear in the FDT can be obtained from this equivalent sys-
tem of oscillators. Section IV is for our comments and con-
clusions. In particular, in this last section, we present our
comments on the interpretation issue related to the BE term
in the FDT.

II. FLUCTUATION-DISSIPATION THEOREM

Let us begin by briefly reviewing the derivation of the
FDT. Consider a macroscopic system with unperturbed

Hamiltonian Ĥ0 under the influence of the perturbation,

V̂ = − f�t�Â�t� , �3�

where Â�t� is an observable �a bosonic operator� of the sys-
tem and f�t� an external generalized force.1 Let 	En� be the

Ĥ0 eigenstates �with eigenvalues En� and �En	Â�t�	En�=0.
Within the framework of linear response theory, the

quantum-statistical average �Â�t�� f of the observable Â�t� in

the presence of V̂ is given by,

�Â�t�� f = 

−�

t

dt��A�t − t��f�t�� , �4�

where �A�t− t�� is the generalized susceptibility,

�A�t − t�� =
i

�
��t − t����Â�t�,Â�t���� = −

1

�
GR�t − t�� , �5�

with � . . . �=�n�n�En	 . . . 	En�, �n=e−�En /Z, Z=�ne−�En,

GR�t− t�� being the retarded Green’s function and Â�t�
=eiĤ0t/�Âe−iĤ0t/�.

Defining the correlators �from now on t�=0�,

G��t� = �Â�t�Â�0�� and G	�t� = �Â�0�Â�t�� , �6�

so that GR�t�=−i��t��G��t�−G	�t��, and the corresponding
Fourier transforms, G���� and G	���, respectively, it is a
matter of few lines to show that,

G���� = −
2

1 − e−��� Im GR���; G	��� = e−���G���� .

�7�

Finally, by noting that,

�Â2���� =
1

2
�G���� + G	���� , �8�

and that the Fourier transform of �A�t� is �A���=�A����
+ i�A����=− 1

�GR��� we get,

�Â2���� = ��A����
1 + e−���

1 − e−��� = ��A����coth����

2
�

= 2��A�����1

2
+

1

e��� − 1
� ,

�9�

which is Eq. �1�, the celebrated FDT.
As observed by Kubo et al. �7� �and shown in the deriva-

tion sketched above�, the BE factor is simply due to a pecu-
liar combination of Boltzmann factors in Eq. �9� and there is

1More generally, we could consider a local observable and a local

generalized force, in which case we would have V̂=

−�d3r�Â�r��f�r� , t�, and successively define a local susceptibility
��r� , t ;r�� , t�� �see Eq. �5� below�. As this would add nothing to our
argument, we shall restrict ourselves to r�-independent quantities.
The extension to include local operators is immediate.
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no reference to physical harmonic oscillators of the system
whatsoever. Despite such an authoritative remark, some
people insist in interpreting the � 1

2 + 1
e���−1

� term as related to
harmonic oscillator degrees of freedom of the physical sys-
tem.

In the case of the measured �10� power spectrum of Eq.
�2�, some authors �12,13� interpret this term as due to the
electromagnetic field in the resistive shunt and therefore the
first term in parenthesis of Eq. �2� as originating from zero
point energies of this electromagnetic field. Such an interpre-
tation, however, is not supported by any physical derivation
and has been strongly criticized in �8,14–16�. Very recently,
starting from the results of the present work, we have also
carefully investigated this issue �9�, providing arguments,
which strongly support previous criticisms �see �9� for de-
tails�.

Let us go back now to our analysis. For our purposes, it is
useful to show that from Eqs. �5� and �8� we can easily

derive the following expressions for �A���� and �Â2����,

�A���� =



�
�
i,j

�i	Aij	2
��Ei − Ej

�
+ �� − ��Ej − Ei

�
+ ��� ,

�10�

and

�Â2���� = 
�
i,j

�i	Aij	2
��Ei − Ej

�
+ �� + ��Ej − Ei

�
+ ��� ,

�11�

where Aij = �Ei	Â	Ej�.
In fact, by inserting in Eq. �5� the expressions: ��t− t��=

−�−�
+� d�

2
i
e−i��t−t��

�+i� , I=�i	Ei��Ei	 and Â�t�=eiĤ0t/�Âe−iĤ0t/� we get,

�A�t − t�� = −
1

�

 d�

2


e−i��t−t��

� + i�


�
i,j

�i	Aij	2�ei�Ei−Ej��t−t��/� − e−i�Ei−Ej��t−t��/�� .

�12�

Then, making use of lim�→0
1

�+i� =P� 1
� �− i
����, Eq. �10�

follows immediately.
As for Eq. �11�, from Eq. �6� for G��t�, we have:

G��t� = �
i,j

�i�Ei	e�i/��ĤtÂe−�i/��Ĥt	Ej��Ej	Â	Ei�

= �
i,j

�ie
−i/��Ej−Ei�t	Aij	2.

Working out the similar expression for G	�t�, for the corre-
lation function G�t� we get:

G�t� =
1

2
�G��t� + G	�t��

=
1

2�
i,j

�i	Aij	2�e−i/��Ej−Ei�t + e−i/��Ei−Ej�t� , �13�

so that the Fourier transform G̃��� is

G̃��� = 
�
i,j

�i	Aij	2
��Ej − Ei

�
+ �� + ��Ei − Ej

�
+ ��� .

�14�

As �Â2�=G�0�, G̃��� is the spectral density �Â2���� of �Â2�
��Â2�=�−�

+��Â2���� d�
2
 �. Then, making use of Eq. �14�, we fi-

nally get Eq. �11�.
For our purposes, it is also useful to write Eq. �11� in a

different manner. After some straightforward manipulations,
Eq. �11� can be written as,

�Â2���� = 
�
j�i

��i − � j�	Aij	2coth���� ji

2
�


���� − � ji� + ��� + � ji�� , �15�

=
 coth����

2
��

j�i

��i − � j�	Aij	2


���� − � ji� − ��� + � ji�� , �16�

where we have introduced the notation: � ji=
Ej−Ei

� . By fol-
lowing similar steps, Eq. �10� can also be written as,

����� =



�
�
j�i

��i − � j�	Aij	2���� − � ji� − ��� + � ji�� .

�17�

Clearly, comparing Eq. �16� with Eq. �17�, we find, as we
should, the FDT theorem.

Now, starting from Eqs. �15� and �17� and taking inspira-
tion from the seminal work of Caldeira and Leggett �4�, we
shall be able to establish a formal mapping between the real
system considered so far and a system of fictitious harmonic
oscillators. A similar mapping, restricted however to the T
=0 case, was considered in �4�, where it was also noted that
the T�0 case needs separate discussion. The mapping that
we are going to construct in the present work deals with the
T�0 general case.

III. MAPPING BOSON AND FERMION SYSTEMS ONTO
HARMONIC OSCILLATORS

To prepare the basis for the construction of this mapping,
let us consider first a real system Sosc of harmonic oscillators
�each of which is labeled below by the double index �ji� for
reasons that will become clear in the following� whose free
Hamiltonian is

Ĥosc = �
j�i

� p̂ji
2

2Mji
+

Mji� ji
2

2
q̂ji

2� , �18�

where � ji are the proper frequencies of the individual har-
monic oscillators and Mji their masses. Let 	nji� �nji
=0,1 ,2 , . . .� be the occupation number states of the �ji� os-
cillator out of which the Fock space of Sosc is built up. Let us
consider also Sosc in interaction with an external system
through the one-particle operator,
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V̂osc = − f�t�Âosc, �19�

with

Âosc = �
j�i

�� jiq̂ji� . �20�

Obviously, the FDT applied to Sosc gives �Âosc
2 ����

=��osc� ���coth� ���
2 �, but this is not what matters to us.

What is important for our purposes is that, differently
from any other generic system, for Sosc we can exactly com-

pute �Âosc
2 ���� and �osc� ��� from Eqs. �10� and �11� because

we can explicitly compute the matrix elements of Âosc.
In fact, if we apply Eqs. �13� and �14� to Sosc and replace

the double index notation �� ji; nji; Mji; etc.� with the more
convenient �for the time being� and self explanatory one in-
dex notation ��1 ,�2 , . . .; n1 ,n2 , . . .; M1 ,M2 , . . .; etc.�, for

�Âosc
2 ���� we have,

�Âosc
2 ���� = 
 �

n1,n2,. . .
�

m1,m2,. . .
��n1

�n2
¯�


	�n1,n2, . . .	Âosc	m1,m2, . . .�	2


 ���� + l1�1 + l2�2 + ¯�

+ ��� − l1�1 − l2�2 − ¯�� , �21�

where lk=nk−mk, �nk
=e−��nk+1/2���k /Zk, Zk=�nk

e−��nk+1/2���k

�note also that in this one index notation Âosc is written as

Âosc=�k��kq̂k��. Now, as

�nk	q̂k	mk� =� �

2Mk�k
��nk + 1�nk + 1	mk� + �nk�nk − 1	mk�� ,

�22�

we immediately get,

�Âosc
2 ���� = 
 �

n1,n2,. . .
�

m1,m2,. . .
��n1

�n2
¯�


 
�
k

�k� �

2Mk�k
��nk + 1�mk,nk+1

+ �nk�mk,nk−1��
h�k

�mh,nh�2


 ���� + l1�1 + l2�2 + ¯�

+ ��� − l1�1 − l2�2 − ¯�� . �23�

Let us concentrate our attention to the square in the sec-
ond line of Eq. �23�. Due to the presence of the Kronecker
deltas, all the crossed terms in this square, i.e., all the terms
with different values of the index k, vanish. In other words,
the square of the sum is equal to the sum of the squares,


�
k

�k� �

2Mk�k
��nk + 1�mk,nk+1 + �nk�mk,nk−1��

h�k

�mh,nh�2

= �
k
��k� �

2Mk�k
��nk + 1�mk,nk+1

+ �nk�mk,nk−1��
h�k

�mh,nh�2

. �24�

For the same reason, the same holds true for each value of
the index k, i.e.,


�k� �

2Mk�k
��nk + 1�mk,nk+1 + �nk�mk,nk−1��

h�k

�mh,nh�2

= �k
2 �

2Mk�k
��nk + 1��mk,nk+1 + nk�mk,nk−1��

h�k

�mh,nh
.

�25�

Therefore, as lk=nk−mk, for �Âosc
2 ���� we get,

�Âosc
2 ���� = 
 �

n1,n2,. . .
��n1

�n2
¯��

k

�k
2 �

2Mk�k
�2nk + 1�


���� − �k� + ��� + �k�� . �26�

Finally, as �nk
�nk

=1, the above expression becomes,

�Âosc
2 ���� = 
�

k

�k
2 �

2Mk�k
���� − �k� + ��� + �k��


�
nk

�nk
�2nk + 1� �27�

=
�
k

�k
2 �

2Mk�k
coth����k

2
����� − �k�

+ ��� + �k�� . �28�

Going back to the original double index notation,

�Âosc
2 ���� = 
�

j�i

� ji
2 �

2Mji� ji
coth���� ji

2
����� − � ji�

+ ��� + � ji�� �29�

=
 coth����

2
��

j�i

� ji
2 �

2Mji� ji
���� − � ji�

− ��� + � ji�� . �30�

We have just seen that given a real system Sosc of har-

monic oscillators and the one particle operator Âosc of Eq.
�20�, for such an operator is possible to evaluate explicitly

�Âosc
2 ����. We find that each of the individual harmonic os-

cillators gives rise to a term coth�
��� ji

2 � which in turn comes
from the term �nji

�nji
�2nji+1� of Eq. �27�.

Let us now consider �osc� ���, which �see Eqs. �10� and
�23�� is nothing but,
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�osc� ��� =



�
�

n1,n2,. . .
�

m1,m2,. . .
��n1

�n2
¯�


 
�
k

�k� �

2Mk�k
��nk + 1�mk,nk+1

+ �nk�mk,nk−1��
h�k

�mh,nh�2


 ���� + l1�1 + l2�2 + ¯�

− ��� − l1�1 − l2�2 − ¯�� . �31�

Apart from the factor 1 /�, Eq. �31� differs from Eq. �23�
because it contains the difference �rather than the sum� of
delta functions in the last line.

If we proceed for �osc� ��� as we have just done for

�Âosc
2 ����, we immediately note that the only difference with

the previous computation is due to this minus sign. In fact,
its presence causes that rather than the combination �2nk
+1� of Eq. �26�, which comes from the sum �nk+1�+nk of
Eq. �25�, we get the combination �nk+1�−nk=1. Therefore,
for �osc� ��� we do not get the sum �nk

�nk
�2nk+1�

=coth�
���k

2 � of Eq. �27�, but rather �nk
�nk

=1. Then,

�osc� ��� =



�
�
j�i

� ji
2 �

2Mji� ji
���� − � ji� − ��� + � ji�� .

�32�

Naturally, comparing Eq. �30� with Eq. �32� we see that
for Sosc the FDT holds true, as it should. However, what is
important for our purposes is to note that for this system we

have been able to compute separately �Âosc
2 ���� and �osc� ���

and found that the coth� ���
2 � factor of the FDT originates

from the individual contributions coth�
��� ji

2 � of each of the
harmonic oscillators of Sosc.

We are now in the position to build up our mapping. Let
us consider the original system S, described by the unper-

turbed Hamiltonian Ĥ0, in interaction with an external field

f�t� through the interaction term V̂=−f�t�Â �see Eq. �3��, and
construct a fictitious system of harmonic oscillators Sosc, de-

scribed by the free Hamiltonian Ĥosc of Eq. �18�, in interac-
tion with the same external field f�t� through the interaction

term V̂osc of Eq. �19�, with Âosc given by Eq. �20�, where for
� ji we choose,

� ji = �2Mji� ji

�
�1/2

��i − � j�1/2	Aij	 , �33�

and for the proper frequencies � ji of the oscillators,

� ji = �Ej − Ei�/� � 0, �34�

with Ei the eigenvalues of the Hamiltonian Ĥ0 of the real
system.

Comparing Eq. �30� with Eqs. �16� and �32� with Eq. �17�,
it is immediate to see that with the above choices of � ji and
� ji we have,

�Â2���� = �Âosc
2 ���� and �A���� = �osc� ��� . �35�

Equations �33� and �34� are the central results of our
analysis. Actually, these are the equations, which allow to
establish our mapping. In fact, with such a choice of the �’s
and the �’s, we are able to map the real system S onto a
fictitious system of harmonic oscillators Sosc,

S → Sosc, �36�

in such a manner that �A���� and �Â2���� of the real system
are equivalently obtained by computing the corresponding
quantities of the fictitious one �Eqs. �35��.

This is the desired result. What we have just shown is that
any generic boson or fermion system at finite temperature T
is equivalent to a system of harmonic oscillators at the same
temperature. From a theoretical point of view, the relevance
of such a result should be immediately clear. As we have
already observed, in fact, harmonic oscillator models are
quite common in modeling generic physical systems. Now,
the typical physical situation we have to deal with is that of
a system �bosonic or fermionic� at finite temperature T�0.
In this respect, our mapping fills up the gap mentioned by
Caldeira and Legget �see Appendix C of �4�� by extending
the T=0 mapping put forward by them to the general finite
temperature case, thus providing further theoretical support
to the use of these models.

In the following section, we would like to add some more
comments on the above results. In particular, we are going to
consider the previously mentioned interpretation issue con-
cerning the presence and origin of the BE distribution factor
in the FDT.

IV. COMMENTS AND CONCLUSIONS

First of all, we point out that, in order to construct the
above mapping, the key ingredient we used is the hypothesis
that linear response theory is applicable, which is the main
hypothesis under which the FDT is established. When this is
not the case, Eq. �4� cannot be derived and we do not arrive
to Eqs. �10� and �11�, which are crucial to build up our map-
ping.

Note now that, by considering the “equivalent” harmonic
oscillators system Sosc rather than the real one, we are some-
how allowed to regard the BE distribution factor coth� ���

2 �
of the FDT in Eq. �1� as originating from the individual
contributions coth�

��� ji

2 � of each of the oscillators of the fic-
titious system �see above, Eqs. �29�, �30�, and �32��. In this
sense, such a mapping allows for an oscillator interpretation
of the BE term in the FDT.

At the same time, however, our result shows that this BE
factor does not describe the physics of the system, i.e., it
does not encode any real, physical, harmonic oscillator de-
grees of freedom of the system �see also the considerations
below�. In this respect, it is worth to point out that what we
have implemented is not a canonical transformation, i.e., it is
not a transformation which allows to describe the system in
terms of new degrees of freedom �such as normal modes�,
but a formal mapping, a mathematical construct, which can
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be established, we repeat ourselves, only within the frame-
work of linear response theory. In our opinion, then, our
finding provides an answer to the questions of the “physical
meaning” or “physical origin” of the BE term in the FDT or,
stated differently, to the question of whether this BE distri-
bution factor possibly describes the physical nature of the
system or not �17�.

In fact, from the derivation of the FDT, we know that the
BE factor derives from a peculiar combination of Boltzmann
factors �see �7� and Eq. �9� above�. At the same time, we
have shown that, regardless the bosonic or fermionic nature
of the �real� system S, it is always possible to establish a
mapping, which relates S to a system of harmonic oscillators
Sosc so that this BE factor can be regarded as “originating”
from the individual oscillators of the “equivalent” system
Sosc. Therefore, it is not the physical nature of the system
which is encoded in this BE term but rather a fundamental
quantum property of any bosonic and/or fermionic system,
whenever linear response theory is applicable, any generic
system is, at least with respect to the FDT, equivalent �in the
sense defined above� to a system of quantum harmonic os-
cillators.

Before ending this section, it is probably worth to spend
few words on some examples of realistic systems where our
mapping is at work. In this respect, we would like to note
that there are several applications in the literature where fer-
mionic systems, after bosonization, are actually described by
a system in interaction with a bosonic bath. This is, for in-
stance, the case of the anisotropic Kondo model, which is
shown to be equivalent to a spin-boson model �a two level
system in interaction with a bosonic bath�. The same is also
true for a quantum dot interacting with external leads. In the
above examples, the system is described with the help of a
spin-boson Hamiltonian, thus, providing concrete realiza-

tions of the mapping discussed in this work. What amounts
to the same thing, they are worked out examples where the
Caldeira-Legget model is explicitly derived.

In this respect, in fact, it is important to note that any
application of our mapping is concretely substantiated in the
Caldeira-Leggett model. At the same time, we stress again
that the present work is focused on the question of deeply
understanding what is really behind the fact that this model-
ization is so successful in covering the essential features of
dissipative systems. We believe that we achieve this goal by
performing a thorough analysis of the fluctuation-dissipation
theorem.

In summary, we have found that when linear response
theory applies, any generic system can be mapped onto a
fictitious system of harmonic oscillators so that the mean

square �Â2���� of the fluctuating observable and the corre-
sponding imaginary part of the generalized susceptibility
�A���� of the real system are given by the corresponding
quantities of the fictitious one. Moreover, we have seen that
such a mapping allows to consider the BE distribution factor
which appears in the FDT as originating from the individual
harmonic oscillators of the fictitious equivalent system. This
strongly suggests that it is only in this sense that this BE
factor can be interpreted in terms of harmonic oscillators and
that no other physical meaning can be superimposed to it.

We believe that our mapping has a broader range of ap-
plicability than the worked case of the FDT discussed in this
paper. Work is in progress in this direction.
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