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The non-Markovian diffusion of dispersed particles in a semi-infinite cell of an isotropic fluid limited by an
adsorbing-desorbing surface is theoretically investigated. The density of dispersed particles in the bulk is a
time dependent function and the time dependent density of surface particles is governed by a modified kinetic
equation with a time dependent kernel. In this framework, the densities of bulk and surface particles are
analytically determined, taking into account the conservation of the number of particles immersed in the
sample. This system exhibits anomalous diffusion behavior as well as memory effects in the adsorption-
desorption process. The results obtained here are expected to be useful to investigate the adsorption-desorption
phenomena of neutral as well as charged particles in an isotropic fluid in contact with a solid substrate when
the anomalous diffusion is present.
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I. INTRODUCTION

One of the most common phenomena in the nature is the
diffusion which may be describe in terms of an stochastic
process. The kind of the diffusion process is related to the
properties of the medium and depends on the conditions im-
posed to the system. This manner, the diffusion may have an
usual behavior where the main characteristic is the square
mean displacement with a linear dependence on time, i.e.,
��z− �z��2�� t �1�, which reflects the Markovian nature of this
process or an anomalous behavior �2�. The last case usually
occurs when the system present non-Markovian aspects such
as, for example, memory effects �3,4�, long-range correla-
tions, and long-range interactions �5–7�. A direct conse-
quence is an anomalous spreading of the system manifested
by the square mean displacement which has not linear de-
pendence on time or, in the case of Lévy distributions �8�, is
not finite. These situations can be found, for instance, in
atom deposition into a porous substrate �9�, diffusion of high
molecular weight polyisopropylacrylamide in nanopores
�10�, highly confined hard disk fluid mixtures �11�, fluctuat-
ing particle fluxes �12�, diffusion on fractals �13�, ferrofluid
�14�, and colloids �15�. Different diffusive behaviors may
also be exhibited by these systems such as the ones found in
�6,7�, for the case of long-range interaction, and in �16,17�,
for active intracellular transport. This rich variety of situa-
tions may be investigated by several formalisms
�2–4,18–20�, in particular, by extensions of the diffusion
equation such as the fractional diffusion equations �3,4,21� or
by incorporating spatial and time dependence on the diffu-
sion coefficient. The conditions imposed to the system may
also lead us to an anomalous diffusion �22�. A typical situa-
tion may be found in adsorption-desorption process by a sur-
face, governed by a typical balance equation characterizing a
chemical reaction of first kind �Langmuir’s approximation�,
when the conservation of the number of particles is imposed
�22–24�. For this case, the results for the momentum distri-
bution �22� show that the system exhibits anomalous diffu-
sion �2� behavior, according to the values of the characteris-
tic times entering the problem. More precisely, not only a

single subdiffusive or superdiffusive motion can be found,
but the system presents a multiple behavior that includes
both modes of subdiffusion and superdiffusion and, for large
times, the normal diffusive behavior. A system presenting
similar behavior can be found in the dynamics of vesicles
driven by adhesion gradients of a Langmuir monolayer �25�.
In this scenario, the diffusion process of suspended or dis-
persed particles in an anisotropic media like liquid crystals
�26� may be found suitable description. In fact, dispersions
of particles in an anisotropic host medium such as nematic
liquid crystals are responsible for a series of different physi-
cal scenarios deserving a more fundamental explanation
�26�. Among the systems recently considered, it is worth
mentioning the suspension of magnetic grains �27�, silica
spheres �28�, latex particles �29�, oil droplets �30�. All the
bulk effects in these systems have been object of attention in
the last few years.

In this paper, we investigate the adsorption-desorption
process of a system governed by an unusual diffusion equa-
tion which may recover, by suitable choice, several situations
such as the fractional diffusion equations �2–4�, fractional
diffusion equations of distributed order �31,32� and Cattaneo
equation �33,34�. We also consider here a modified kinetic
equation in which by a suitable choice for a temporal kernel
in the desorption rate can account for the relative importance
of physisorption or of chemisorption �23,24�, according to
the time scale governing the adsorption phenomena. Indeed,
more realistic descriptions of the kinetics at the interface in
the framework of a first-order chemical reaction should be
developed by taking into account both the chemisorption and
the physisorption processes, because the actual position of
the molecule on the surface can have a memory of its incom-
ing state, eventually modifying the adsorption-desorption
rates. For this context, we found exact solutions in the
Laplace space and analyzed some representative situations.
These developments are performed in Sec. II while in Sec.
III our discussions and conclusions are presented.

II. PROBLEM

To mathematically formulate the problem we consider a
typical geometry for the sample such that the Cartesian ref-

PHYSICAL REVIEW E 81, 011116 �2010�

1539-3755/2010/81�1�/011116�7� ©2010 The American Physical Society011116-1

http://dx.doi.org/10.1103/PhysRevE.81.011116


erence frame has the z axis perpendicular to the bounding
surface, located at z=0. If the system is a nematic liquid
crystal, we can consider that in this geometry the sample is
homeotropically oriented. In the general case of other host
medium, it is enough to consider that the bulk density of
particles ��z , t� is governed by the diffusion equation

�

�t
��z,t� = �

0

t

dt̄D�t − t̄�
�2

�z2��z, t̄� , �1�

where D�t� is a generic time dependent diffusion coefficient.
The bulk density of particles is subjected to the conditions:
��� , t�=0 and ��z ,0�= �̄�z�. This equation may be connected
to several cases such as the fractional diffusion equations
�3,4�, fractional diffusion equation of distributed order
�31,32�, and depending on the choice for the diffusion coef-
ficient it may incorporate a finite collision time, which is not
present in the usual diffusion equation. Indeed, the usual dif-
fusion equation is an approximation valid only on time scales
which are large compared to the time scale at which the
diffusion-causing collisions takes place. One of the most
striking nonphysical properties of the diffusion equation is an
infinite velocity of information propagation. However, the
inclusion of the finite collision frequency in the system may
create additional difficulties to treat the problem; an approxi-
mation which makes the problem more tractable is discussed
by Bourret �35� and leads to an integral equation similar to
Eq. �1� with a correlation function in the kernel �34�. This
equation may be obtained from a stochastic differential equa-
tion related to a two state process �33�. In this case, the
kernel of the diffusive term D�t� is connected to the two-time
correlation function of this two state process, i.e., D�t�
= ���0���t�� / ��2� �33�. Other situations related to the above
equation are discussed in Ref. �36�. In addition, it is interest-
ing to note that Eq. �1� may also be connected to the situa-
tions discussed in Refs. �37,38� which are essentially non-
Markovian. Also, in Ref. �39� more non-Markovian
situations may be found.

The boundary condition of ��z , t� on the surface z=0 is
defined in terms of the surface density of particles, ��t�, by
the kinetic equation

d

dt
��t� + �

0

t

dt̄K�t − t̄���t̄� = ���0,t� , �2�

where � and � are parameters describing the adsorption phe-
nomenon. In Eq. �2�, a temporal kernel K�t� was introduced
to keep the approach as general as possible and to account
for memory effects in the adsorption-desorption process. In
Refs. �23,24�, it was shown that a suitable choice of the
kernel can underline the relative importance of physisorption
or chemisorption process according to the time scale govern-
ing the adsorption phenomena. Other condition to be im-
posed to the system is the conservation of the number of
particles

��t� + �
0

�

dz��z,t� = ��t� , �3�

where ��t� represents the instantaneous amount of dispersed
particles in the bulk. Again, we have chosen a time depen-
dent function to represent this quantity to keep the approach
in a general perspective. However, a term of this kind can be
interpreted as an external source or sink of particles con-
nected with the system. Furthermore, in the case of doped
systems, a term like this one has to be considered to account
for the possibility of recombination or transformation in the
molecular structures. Some organic materials, such as
azobenzenes, which also may exhibit liquid crystalline prop-
erties, undergo, upon light illumination, a trans-to cis-
isomerisation, i.e., they are photosensitive materials. In the
initial state of this photosensitive material, all the molecules
are in the trans state. If one considers the selective adsorption
process �e.g., the adsorption-desorption of only trans-
isomers� in a sample doped with this material, upon light
illumination the quantity ��t� may represent the actual
amount of one of the components of the dyes dispersed in the
host medium. Before to proceed, it can be helpful to note that
while the first term of Eq. �3� gives the quantity of particle
adsorbed by the surface, the second term gives the quantity
of particles present in the bulk and is known as survival
probability S�t�, i.e., S�t�=	0

�dz��z , t�.
In order to solve Eq. �1� subjected to the conditions stated

above, we use the Green’s function approach and integral
�Laplace and Fourier� transforms. We start by applying in
Eq. �1� the Laplace transform �L
¯ �=	0

�dte−st
¯ and

L−1
¯ �= 1
2	i	−i�+c

i�+c dsest
¯� on the variable t. This permits us

to reduce Eq. �1� to the ordinary differential equation

D�s�
d2

dz2��z,s� = s��z,s� − ��z,0� . �4�

The solution for Eq. �4� may be formally given by

��z,s� = − �
0

�

dz��z,0�G�z,z�;s�

− D�s���0,s�
d

dz�
G�z,z�;s��z�=0, �5�

with the Green’s function obtained from the equation

D�s�
d2

dz2G�z,z�;s� − sG�z,z�;s� = 
�z − z�� , �6�

whose solution, after some calculations using the Fourier
transform �Fs
¯ �=
 2

		0
�dk sin�kz�¯ and Fs

−1
¯ �
=
 2

		0
�dk sin�kz�¯�, may be written as follows:

G�z,z�;s� = −
1

2
sD�s�
�e−
s/D�s��z−z�� − e−
s/D�s��z+z��� . �7�

It is interesting to mention that the last term of Eq. �5� gives
the contribution of the surface for the time evolution of the
initial condition and is directly connected to the adsorption-
desorption process. Now, the Laplace transform of Eq. �2�
gives s��s�−��0�+K�s���s�=���0,s� which, when substi-
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tuted in the transformed Eq. �3�, i.e., ��s�+	0
�dz��z ,s�

=��s�, leads us to write

��s� =
1

1 +
D�s�
s�2 �s + K�s��

���s� − M

+
1

s
�

0

�

dz���z�,0�e−
s/D�s�z� +
D�s�
s�2 ��0�� , �8�

where M= �1 /s�	0
�dz��z ,0�. In this framework, the problem

is formally solved in the s space. The analysis of significant
cases can be carried on in this space and the inverse of Eq.
�8� can be then searched to give, respectively, the distribution
of particles in the surface.

The first case we consider is such that ��s�=1 /s,
	0

�dz��z ,0�=1, ��0�=0 and K�s�=1 /�. Note that the choice
for D�s� will be done later on. This approach may be useful
to describe the diffusion process of a given amount of dis-
persed particles in the bulk followed by the adsorption-
desorption process at a surface that initially is empty. This
adsorption-desorption process is governed by the kernel K�t�
present in the kinetic equation, whose characteristic time is �.
Since � has the dimension of time and � of a length/time, it
is possible to introduce characteristics times connected with
these quantities to fully describe the adsorption-desorption
process at the interface. These quantities, together with a
diffusion time of the form �D, form the time scales governing
the dynamical behavior of dispersed particles in the medium
when the adsorption phenomenon is taken into account
�40,41�. In particular, the quantity �̄=D /�2, where D is the
diffusion coefficient of an isotropic system, involves the
characteristic parameters connected with the dynamics of the
diffusion process and the kinetics of the adsorption phenom-
enon in the sample �22�. If we consider, furthermore, a dif-
fusion coefficient in the form D�s�=Ds1−�, the diffusive pro-
cess here described is a fractional diffusion process, i.e., it is
equivalent to solve a fractional diffusion equation of order �
in the time derivative. In this case, Eq. �8� becomes

��s� =
s�/2−1

s�/2 + 
�̄�s + 1/��
�

0

�

dz��z,0�e−
s/D�s�z. �9�

It is possible to obtain the inverse Laplace transform of Eq.
�9� if a judicious choice for the contour of integration C is
performed �42�. After some calculations, one obtains

��t� = �
0

�

dz̄��z̄,0��
0

t

dt���t − t��
�z̄,t� , �10�

with

��t� =
1

	
sin�	

2
���

0

�

d�
��/2e−�t

�� + �̄�1/� − ��2 , �11�

and


�z,t� =
1

t�/2H1,1
1,0�� z


Dt��
�0,1�

�1−�/2,�/2�� , �12�

where Hp,q
m,n�x ��b1,B1�,¯,�bq,Bq�

�a1,A1�,¯,�ap,Ap�� is the Fox H function �43�. In
this manner, the time dependent distribution of particles on
the surface is exactly obtained. Figure 1 shows the behavior
of ��t� versus t for different values of � in order to illustrate
how a subdiffusive process governed by a fractional-
diffusion-like equation changes the adsorption process. In
this direction, it evidences that for the diffusion process gov-
erned by the usual case, i.e., D�s�=D=const, the quantity of
adsorbed particles is greater than in the fractional case rep-
resented by the choice D�s�=Ds1−�. This feature also indi-
cates how the spreading of the system �or distribution� may
influence the adsorption process at the surface z=0. In fact,
the values of � considered here are essentially related to the
subdiffusive case that makes the system to spread slower
than the usual case.

In this context, other representative situation is character-
ized by D�t�=De−t/�C /�C �D�s�=D / �1+�Cs�� which corre-
sponds to the Cattaneo equation �34�. For this case Eq. �8� is
given by

��s� =

s�s + 1/�c�


s�s + 1/�c� + 
�̄�s + 1/��

1

s
�

0

�

dz̄��z̄,0�e−
s/D�1+�cs�z̄.

�13�

By performing the inverse Laplace transform, we obtain that
the adsorption is given by

FIG. 1. �Color online� Behavior of ��t� versus t for different
values of � in order to illustrate Eq. �10�. We consider, for simplic-
ity, �=10, �=5, D=1, and the initial condition ��z ,0�=
�z−1�.
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��t� = �
0

�

dz̄��z̄,0��
0

t

dt̄��z̄,t − t̄�e−t̄/2�cI0� t̄

2�c
�

��z,t� =
2

	�c
��t −
�c

D
z��

0

1

d�
��1 − �2�e−�2t/�c

�2�1 − �2� + �̄� �c

�
− �2�2

���
1 − �2 � cos� z�


D�c


1 − �2�
+ 
�̄� �c

�
− �2�sin� z�


D�c


1 − �2�� , �14�

where ��t� is the step function and I0�x� is a Bessel function
of modified argument. Note that the adsorption process for
this case starts after a characteristic time related to the quan-
tity 
�c /Dz, which is connected to the necessary time for the
initial particles arrive to the surface z=0, where the
adsorption-desorption will occur. This feature may be evi-
denced by choosing as initial condition ��z ,0�=
�z−z��
which results for the characteristic time 
�c /Dz� indicating
that the adsorption process starts after this time. This behav-
ior for ��t� is consistent with the finite phase velocity �re-
lated to a finite collision time� which is introduced with this
choice for the diffusion coefficient. Figure 2�a� illustrates the
behavior of ��t� versus t for different values of �c in order to
show the effect of this term on the adsorption process. It is
also interesting to note that for �c→0 the usual case is re-
covered. Figure 2�b� shows the behavior of the survival

probability �S�t�=	0
�dz��z , t�� and the quantity of adsorbed

particles for a typical value of �c. It evidences the presence
of finite phase velocity since the adsorption process starts
after a finite time, in contrast to the case governed by the
usual diffusion equation.

The situations previously analyzed are essentially charac-
terized by the particles initially in the bulk and the surface in
absence of particles. Now, we consider an opposite situation,
i.e., the particles initially adsorbed by the surface and the
bulk without particles, in order to investigate a typical pro-
cess governed by desorption of particles. For simplicity, for
this case we consider ��s�=1 /s, M=0, ��0�=1, K�s�
=1 /�, and D�s�=D�s�. This choice represents a usual diffu-
sive process in which a given amount of dispersed particles
is initially adsorbed on the surface as mentioned before.
Also, we consider for this scenario D�s�=Ds1−�, D�s�
=D / �1+�cs� and D�s�=D=const which represents the usual
diffusion equation. For the first case, Eq. �8� becomes

��s� =
1

s
�1 −


�̄/�

s�/2 + 
�̄�s + 1/��
� . �15�

Performing the inverse Laplace transform, we obtain that

��t� = 1 −

�̄

�	
sin�	

2
���

0

�

d��1 − e−�t�
��/2−1

�� + �̄�1/� − ��2 ,

�16�

�see Fig. 3�. Note that similarly to the previous case, this
choice for the diffusion coefficient is related to the subdiffu-
sive process and makes the system to spread slower than the

(a) (b)

FIG. 2. �Color online� Behavior of ��t� versus t for different values of �c in order to illustrate in Fig. 2�a� Eq. �14�. Figure 2�b� shows
��t� and S�t� versus t for a typical values of �c. Note that the particles are not immediately adsorbed, in contrast to the case characterized
by the usual diffusion. This feature is related to finite phase velocity of propagation of the system which is related to �c. We consider, for
simplicity, �=5, �=10, D=1, and the initial condition ��z ,0�=
�z−1� in both figures.
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usual one. This is also evidenced in Fig. 3 by the behavior of
��t� which decays slower for ��1 indicating that the de-
sorption process is related to the spreading of the system.
Now let us consider the case which has D�s�=D / �1+�cs�.
For this case we obtain, after substituting the diffusion coef-
ficient in Eq. �8� and performing the inverse Laplace trans-
form, that the adsorption is given by

��t� = 1 −
1

�

 �̄

�c
��

0

t

dt����t − t����t�� − ��t���� ,

�17�

with

��t� =
e−��+��t/2��2�c

2��
��2Rc

2��� − �c� − �2��1 − et�/��2�c�

− ��1 + et�/��2�c�� ,

��t� = e−t/�2�c�I0�t/�2�c��, and �18�

��t� =
e−��+��t/2��2�c

2��
���2 − 2��c��1 − et�/��2�c�

− ��1 + et�/��2�c�� , �19�

where �=2Rc
2�c�−�2, �=Rc

2−1, Rc=
�̄ /�c �
=�
�2−4�̄��−�c� �see Fig. 4� By employing for the case
D�s�=D=const the previous procedure, we have that

��t� = 1 −
 �̄

�2 − 4�̄�
� 1

�−
�1 − e�−

2terfc��−

t��

−
1

�+
�1 − e�+

2terfc��+

t��� , �20�

where ��=1 / �2
�̄��
1 / �4�̄�−1 /� and erfc�x� is the
complementary error function. Equation �20� may also be
obtained from Eq. �16� by taking the limit �→0 or from Eq.
�17� in the limit �c→0. Figure 5 shows the behavior of Eqs.
�16�, �17�, and �20� in order to illustrate the effect of � and �c
on the desorption process. In addition, it also is interesting to
note from this figure that depending on the choice of the time
dependence of the diffusion coefficient, which is related to
the diffusive process presented by the system, different be-
haviors for ��t� may be obtained.

III. DISCUSSIONS AND CONCLUSIONS

We have analyzed the adsorption-desorption process of a
system governed by a generalized diffusion equation which
may be related to representative diffusion equations by a
suitable choice of the diffusion coefficient. In addition, we
also consider an unusual form the kinetic equation which
depending on the choice of K�t� may aggregate memory ef-
fects of different kinds related to adsorption-desorption pro-
cess. Another aspect of the results presented here is the con-
straint given by Eq. �3�, which represents a number of
components in the system. In particular, for this constraint

FIG. 3. �Color online� Behavior of ��t� versus t for different
values of � in order to illustrate Eq. �16�. We consider, for simplic-
ity, �=10, �=5, D=1, and the initial condition ��z ,0�=
�z−1�.

FIG. 4. �Color online� Behavior of ��t� versus t for different
values of �c in order to illustrate Eq. �17�. We consider, for simplic-
ity, �=5, �=10, D=1, and the initial condition ��z ,0�=
�z−1�.
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we admit a time dependence in order to cover others pro-
cesses in which the number of components of the system
may change, as previously discussed. In order to show how
the adsorption-desorption process may change by incorporat-

ing the extensions investigated here two representative cases
were worked out. The first one consists in considering the
system initially in the bulk and the surface without particles.
In this context, we investigate the effect produced by a dif-
fusion coefficient in the form D�t�=Dt�−2 /���−2� and
D�t�=Det/�c /�c. The power law time dependence for the dif-
fusion coefficient enable us to relate Eq. �1� with the time
fractional diffusion equation and the exponential dependence
for the diffusion coefficient leads us to obtain the Cattaneo
equation from Eq. �1�. The results obtained for these cases,
when compared to the ones obtained for the usual diffusion
equation, show differences which are connected to the sub-
diffusive regime of the diffusion process or by the presence
of a finite phase velocity. The second situation is character-
ized by the particles on the surface and the bulk without
particles. This case is typically governed by desorption pro-
cess which exhibits, for the situations worked out, a different
behavior from the usual one. These feature indicate that the
diffusion process of the system and, consequently, the
spreading of the system, plays an important role on the
adsorption-desorption process present at the surface z=0.
Other choices for the diffusion coefficient D�t� may imply
different behaviors for the ��t�. Indeed, they are related to
the diffusion equation which governs the diffusive process of
the system. Finally, we hope that the results presented here
may be useful to investigate the adsorption-desorption pro-
cess when the anomalous diffusion is present.
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