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Reaction-diffusion models can exhibit continuous phase transitions in behaviors, and their dynamics at
criticality often exhibit scalings with key parameters that can be characterized by exponents. While models
with only a single field that transitions between absorbing and nonabsorbing states are well characterized and
typically fall in the directed percolation universality class, the effects of coupling multiple fields remain poorly
understood. We recently introduced a model which has three fields: one of which relaxes exponentially, one of
which displays critical behavior, and one of which has purely diffusive dynamics but exerts an influence on the
critical field �Tchernookov et al., J. Chem. Phys. 130, 134906 �2009��. Simulations suggested that this model
is in a universality class distinct from other reaction-diffusion systems studied previously. Although the three
fields give rise to interesting physics, they complicate analysis of the model with renormalization-group
methods. Here, we show how to systematically simplify the action for this model such that analytical expres-
sions for the exponents of this universality class can be obtained by standard means. We expect the approach
taken here to be of general applicability in reaction-diffusion systems with coupled order parameters that
display qualitatively different behaviors close to criticality.
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I. INTRODUCTION

Many systems far from equilibrium can be described by
reaction-diffusion models �see �1–3� and references therein�.
Because fluctuations that are correlated in time and space can
profoundly influence the collective behaviors of interest in
such models, mean-field treatments are often inadequate, and
it becomes necessary to develop approaches that systemati-
cally account for stochastic effects. To this end, field theo-
retic renormalization-group methods have been introduced
and used to show that a broad range of reaction-diffusion
models belong to only a handful of classes, for each of which
the members conform to a set of universal scaling relations
�1,2,4–6�. In particular, many reaction-diffusion models that
exhibit phase transitions separating absorbing and nonab-
sorbing states have been shown to belong to the directed
percolation �DP� class �2,7–10�. While single-field models of
this nature have been exhaustively categorized �11�, the few
studies of multiple-field models to date �3,12–15� suggest
that coupling between order parameters can give rise to rich
physics that remains to be explored.

To this end, we recently introduced a model of catalyzed
autoamplification �3�. In the model, a molecule A binds the
catalyst D to form a bound complex B that can either disso-
ciate or create another copy of A; molecules of A are de-
stroyed at a constant rate. Schematically,

A + D�
f

h

B→
g

B + A

A→
k

� , �1�

where f , g, h, and k are the rate constants for the indicated
reactions, and A→� represents the loss of one copy of A.
An important feature of these equations is that they conserve
the catalyst: ��CD+CB=constant, where CQ is the concen-
tration of species Q�Q=A ,B ,D�.

Qualitatively, as the net rate of producing the self-
amplifying factor exceeds that of removing it, the system
undergoes a phase transition which is superficially similar to
that described above for models in the DP universality class.
The exponents that characterize the scaling of this model �as
well as DP� at criticality are

�� � ����−��, �� � ����−��, and CA � ���. �2�

where �� and �� are the correlation length and time, respec-
tively, and ��=�− fk /gh �see �3� for further discussion of
the choice of exponents�. While the behavior of our model is
like that of DP in the mean field, our stochastic simulations
suggested that the exponents for catalyzed autoamplification
are distinct from those for DP �even a multiple-field version
�12�� and another model, the diffusive epidemic process �also
known as the model with pollution� �13–15�.

Here, we develop a field theoretic treatment of the model
of catalyzed autoamplification. The three coupled fields com-
plicate the analysis, and we show in the Appendix how one
can systematically eliminate the “massive” field to obtain an
effective action in the same universality class. With
this action and the standard diagrammatic procedure �2,6� we
calculate the critical exponents governing the divergence
of the spatial and temporal correlation lengths to be
��=1 / �2−� /2� and �� =1+O��2�, respectively, and the expo-
nent which describes the behavior of the average value of the
order parameter as a function of the distance to the critical
point to be �=1−� /8. We find good agreement between
these results and our earlier simulations �3�. The relation to
other models is discussed.

II. FORMULATION OF THE STOCHASTIC FIELD
THEORY

Below a critical dimension, stochastic fluctuations affect
the behavior of the system near the critical point, and they
must be taken into account to calculate the critical exponents
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accurately. To this end, we discretize the system and denote
the number of copies of molecule Q�Q=A ,D ,B� by
nQ where each component of the vector corresponds to a
different site on the resulting lattice. For notational

convenience, we define an operator ÊQ,i such that

ÊQ,iF�	nQ
�=F�. . . ,ni+1, . . .� and its inverse such that

ÊQ,i
−1 F�	nQ
�=F�. . . ,ni−1, . . .� for an arbitrary function F.

Then, the master equation that governs the evolution of the
probability of states is

�P�nA,nD,nB,t�
�t

= ŴP�nA,nD,nB,t� �3�

with

Ŵ = D0�
�ij


�
Q

�ÊQ,iÊQ,j
−1 − 1�nQ,i

+ �
i

�gnB,i�ÊA,i
−1 − 1� + k�ÊA,i − 1�nA,i�

+ �
i

�h�ÊA,iÊD,iÊB,i
−1 − 1�nA,inD,i + f�ÊA,i

−1ÊD,i
−1 ÊB,i − 1�nB,i�

�4�

where �ij
 denotes nearest neighbors. The first �double� sum
accounts for diffusion of molecules, the second sum accounts
for production and degradation of A, and the third sum ac-
counts for binding and unbinding. Note that the catalyst is
allowed to hop from site to site such that its copy number
can vary spatially, and the conservation law mentioned in the
Introduction holds only for the sum of populations over the
whole lattice.

With a view toward applying the tools of quantum field
theory to analysis of this master equation, we convert it into
second quantized, and, in turn, coherent-state representations
following the standard procedure �2,16,17�. To this end, we
first formulate the problem in terms of the ladder operators

âx
† , âx , d̂x

† , d̂x , b̂x
† , b̂x with commutation relations

�p̂x, q̂y
†� = �p,q�x,y �p̂x, q̂y� = 0 �p̂x

†, q̂y
†� = 0, �5�

where p and q take on the values a, b, d and x and y label
lattice sites. These operators enable us to construct a state
vector that describes the system

�	
 = � P�n,m,l��
x

âx
†nxd̂x

†mxb̂x
†lx�0
 , �6�

where �0
 is the vacuum state �p̂x�0
=0 for all p and x� and
the sum runs over all possible vectors n, m, and l with each
component equal to a non-negative integer. We can then
write the master equation in the form of a Schrödinger equa-
tion with imaginary time,

d

dt
�	
 = H�	
 . �7�

The “Hamiltonian” is non-Hermitian,

H = D0�
p

�
�xx�


�p̂x
† − p̂x�

† ��p̂x − p̂x��+�
x

Hx
�r�, �8�

where Hx
�r� is the part of the Hamiltonian due to the chemical

reactions at site x,

Hx
�r� = gb̂x

†�âx
† − 1�b̂x + k�1 − âx

†�âx − hâx
†d̂x

†âxd̂x + hb̂x
†âxd̂x

− f b̂x
†b̂x + f âx

†d̂x
†b̂x. �9�

We can switch from the Hamiltonian formalism to one of
path integrals through harmonic oscillator coherent states
�2,18�. These are defined as

�
x
 = e�
xâ†−
x
�â��0
 , �10�

where 
x is a complex number. We define analogous coher-
ent states for the operators b and d which we label by � and
�, respectively. These coherent states have the property that

� �
x
�
x�
d2
x

�
= 1. �11�

Consequently, for the time evolution of every observable, we
can break the path into M time slices of length �t and then
insert a complete set of coherent states in between each time
slice. Taking the limits �t→0 and M→
, we then find that
the time evolution of the average of an observable O follows:

�O�t�
 =� D
D
�D�D��D�D��O�
,
�,�,��,�,���

�e−S�
,
�,�,��,�,��� �12�

where O�
 ,
� ,� ,�� ,� ,��� is the coherent-state representa-
tion of the operator O. Note that we have dropped terms in
this equation which correspond to the initial conditions be-
cause here we only consider the properties of the stationary
state and their associated critical exponents. In �14�, van Wij-
land et al. are also interested in the initial behavior of the
system, and they calculate exponents for quantities like the
critical initial slip which are dependent on the initial condi-
tions. Such an investigation is beyond the scope of our study.

The action �S� can be obtained from the Hamiltonian writ-
ten in a normal-ordered form simply by replacing the raising

and lowering operators âx
†, âx, d̂x

†, d̂x, b̂x
†, and b̂x, by 
�, 
, ��,

�, ��, and �, respectively, where 
, �, and � are now com-
plex functions of space and time. To obtain a simpler form of
the action, we make a shift of variables: 
̄=
�−1,

�̄=��−1, and �̄=��−1, and obtain

S0 =� ddxdt�
̄��t − D0�
2�
 + �̄��t − D0�

2��

+ �̄��t − D0�
2�� − g�̄
̄� − g
̄� + k
̄


− �
̄�̄ + 
̄ + �̄ − �̄��f� − h
��� , �13�

where d is the spatial dimensionality of the system. Moti-
vated by the fact that the model possess a quantity conserved
globally, CB+CD=�, we perform a change of variables to
���+�−�. This new variable corresponds to the difference
between the value of the conserved quantity at each point in
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space and its average value over the entire lattice. To main-
tain the diagonal structure of the kinetic terms, we also

choose �̄� �̄, ���, and �̄� �̄− �̄. The resulting expression
for the potential part of the action is

g��̄ + �̄�
̄� + g
̄� − k
̄
 + �
̄�̄ + 
̄ − �̄�

�� f� − � fk

g
+ h���
 − h
� + h
�� . �14�

The quartic terms are products of two unbarred fields with
two barred ones; as such, in the diagrammatic analysis be-
low, they would give rise to loops with mass raised to a
positive power above d=2, so they are irrelevant. As we will
shortly see, the critical dimension of the model is d=4, so we
drop these terms from the subsequent analysis. Note that
there are no quadratic terms involving � so that we can di-
agonalize the quadratic part of the action without considering
the � field.

To perform this diagonalization we consider the quadratic
part of the potential, which depends only on the remaining
two fields and thus can be written as

�
̄ �̄ ��− k −
fk

g
− h�� g + f

fk

g
+ h�� − f ��


�
� . �15�

The diagonalization can accomplished by a linear transfor-
mation,

�


�
� → U�


�
� and �
̄ �̄ � → �
̄ �̄ �U−1, �16�

where U is the matrix whose columns are the eigenvectors of
the matrix in Eq. �15�. When we apply the transformation U,
the quadratic terms become diagonal and each cubic term in
the action can be written as a group of terms which factorize
in a convenient fashion,

Sd =� ddxdt��̄��t − D0�
2�� + 
̄��t − D0�

2�


+ �̄��t − D0�
2�� + D0m2�̄� + D0mc
̄


+ �
̄ − ��̄�� �̃

2

2 + �̃
� −

�̃

2
�2�

− ��

2

̄2 + �
̄�̄ −

�

2
�̄2��
 − ���

+ �
̄ − ��̄���̃
� + �̃��� − ��
̄�̄ + ��̄�̄��
 − �1��� .

�17�

Here m, mc, �, �̃, �, �̃, �, �̃, �, �, and �1 are coupling
constants which depend on the original rate constants f , g, h,
and k. Since only the structure of the Lagrangian, not the
specific values of the coupling constants, plays a role in the
field theoretic treatment of this model, the precise expres-

sions relating the two sets of constants are not needed. The

coefficient of the �̄� term is written as m2 to emphasize the
fact that this term never changes sign and this field therefore
does not display critical behavior, while the coefficient of

̄
 is written as mc to indicate that this parameter goes to
zero at the critical point.

Since the action is dimensionless, the Lagrangian must
have the dimensions �L�−d�T�−1 in spatial dimension d. We
work in units of time in which the diffusion constant is di-
mensionless, so �T�= �L�2. Examining the derivative terms in
the action shows that the products of barred and unbarred
fields such as 
̄
 must have dimension �L�−d. To choose the
dimension of the individual fields, note that the form of the
action is unchanged under the transformation,

t → − t; 
 ↔ − 
̄; � ↔ − �̄; � ↔ − �̄ . �18�

In other words, the action possesses a symmetry correspond-
ing to time reversal and exchanging barred and unbarred
fields. Due to this symmetry we choose the dimension of the
barred and unbarred fields to be the same ��L�−d/2�. It follows
from this that the dimensions of the coupling constants are:

��̃�= ���= ��̃�= ���= ��̃�= ���= �L��4−d�/2 which means that
these terms are relevant at d=4 and below. In summary, the
critical dimension can be deduced from the form of the terms
in the diagrammatic perturbative expansion �of the full ac-
tion�, and the symmetry in Eq. �18� suggests that all conju-
gate pairs of fields should be rescaled equally.

III. RENORMALIZATION

A. Large mass reduction

To proceed it is helpful to notice that the quadratic
�“mass”� terms for each of the fields in the above action �Eq.
�17�� are qualitatively different. The 
 field exhibits critical
behavior in that its mass goes to zero at a specific point. In
contrast, the � field has a mass term which is positive at all
times, and the � field has no mass term. We therefore expect
the � field to play the role of a background diffusive field and
the � field to relax exponentially at all parameter values. Due
to this exponential relaxation, it is reasonable to expect the
effects of � to be suppressed in the long time limit in which
we are interested. Specifically,

Gfull
�n� ��,p� = Z�m�Gef f

�n���,p��1 + O�1/m�� , �19�

where m is the mass of the heavy field and Gef f
�n� has no

dependence on m. In essence, as discussed below and in the
Appendix, the heavy field � can be dropped from the model
by proper rescaling and introduction of vertices that might
arise from diagrams containing heavy propagators. That is, if
there are vertices which are not present in the Lagrangian,
but which would be capable of receiving perturbative correc-
tions containing the heavy fields, such vertices must be in-
troduced by hand into the effective Lagrangian which results
from removing the heavy field. However, it can be seen that
there are no such new vertices in our model �i.e., the La-
grangian is complete�.

To understand what it means for a Lagrangian to be com-
plete, it is helpful to consider what terms could be added to
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our Lagrangian to render it incomplete. As one example,
consider the Lagrangian of Eq. �17� with an additional term
�
̄2�, where � is a new coupling constant. Then it would be

possible to combine this vertex with the vertices �̃
̄
� and

��̄�̄
 to create the diagram shown in Fig. 1�A� for the per-
turbation theory below. This diagram would function as a
correction to a vertex 
̄�̄� �Fig. 1�B�� which is not present in
the Lagrangian of the model. In performing the large mass
reduction, we would be required to introduce this latter term
by hand when removing the field �. The physical reason for
this is that, in general, diagrams with the massive field are
suppressed by a factor of 1 /m2 and therefore need not be
considered in the long time limit. However, when the vertex
to which a loop diagram would serve as a correction is not
present in the Lagrangian, then the loop diagram is the low-
est order term in the series for the correlation function in-
volving its external legs and therefore must be considered. In
the hypothetical example above, the loop diagram in Fig.
1�A� would be the lowest order term which contributes to
�
̄�̄�
.

Since the Lagrangian is complete, we can remove the
massive field ��� from the model and the only effect is to
introduce an overall scale factor �Z�m��. However, because
we are not interested in the values of the coupling constants
in the action but only their final values reached by the
renormalization-group flow, the overall scale factor has no
effect. Thus, we simply remove any vertices containing � or

�̄ �see the Appendix for further discussion�. This leaves us
with the following effective action:

Sef f =� ddxdt��̄��t − D0�
2�� + 
̄��t − D0�

2�
 + D0mc
̄


+ 
̄� �̃

2

2 + �̃
�� − ��

2

̄2 + �
̄�̄�
� . �20�

This action will serve as the basis for the field theoretic treat-
ment in this section.

B. Diagrammatic perturbation theory

In the perturbative treatment of the reduced action, our
starting point is the free theory which contains only the qua-
dratic terms,

Squad =� ddxdt��̄��t − D0�
2�� + 
̄��t − D0�

2�
 + D0mc
̄
� .

�21�

The two-point correlation functions �“propagators”� in mo-
mentum space from the free action are

�
̄�p,��
�p�,���


= �− i� + D
�p2 + mc��−1��p + p����� + ��� ,

��̄�p,����p�,���
 = �− i� + D�p
2�−1��p + p����� + ��� .

�22�

Although the physical diffusion constants are equal, we have
introduced different diffusion constants for the 
 and � fields
because the diffusion constant for the 
 field gets renormal-
ized whereas that for the � field does not, as will be shown
explicitly below. Fourier transforming from � back to t, we
find that these propagators are only nonzero if they connect

̄ at an earlier time with 
 at a later time. In the diagram-
matic perturbation theory below, we will represent the free
propagators for 
 and � by solid and dashed lines, respec-
tively.

Note that, in the action �Eq. �20��, there is no quadratic �̄�
term, so � does not relax exponentially at criticality. In fact,
there are no quadratic terms with � at all and higher order
terms with � also contain another barred and unbarred field.
As a result, one can see by examining the vertices of the
model �Fig. 2� that it is not possible to form any diagrams
with external legs corresponding to �̄ and � other than the
bare propagator itself. That is, the expectation value ��̄�

does not get perturbative corrections in the expansion. The
physical reason for this is straightforward to understand. As
discussed above, the � field corresponds to the conserved
quantity CB+CD. By examining the reaction scheme which
defines the model �Eq. �1��, it is clear the reactions do not
change this quantity so its dynamics are purely diffusive.
Thus, the expression for the bare propagator �Eq. �22�� is
exact to all orders.

A B

FIG. 1. Illustration of a Lagrangian which is not complete. �a�
Inclusion of the term 
̄2� in the full Lagrangian �Eq. �17�� would
enable the construction of this diagram. Solid, dashed, and wiggly
lines represent the propagators for the 
, �, and � fields, respec-
tively. In these diagrams, time advances from left to right. �b� The
diagram in �a� is a correction to this vertex which would have to be
introduced by hand into the Lagrangian when performing the large
mass reduction. FIG. 2. Vertices used in the renormalization-group calculation.

Lines correspond to the same fields as in Fig. 1.
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The outline of the renormalization calculation is as fol-
lows. We first note that the action �Eq. �20�� has four cubic
terms and therefore the theory has four vertices �Fig. 2�. We
calculate correlation functions in momentum space using the
standard Feynman diagram procedure �19,20�. We construct
all possible diagrams from the propagators and vertices in
which each field in the correlation function is represented by
an external leg �Figs. 3 and 4�. Each diagram corresponds to
an integral in momentum space. These integrals exhibit an
ultraviolet divergence as the upper limit is raised to infinity.
Nevertheless, the singular part of the integral can be evalu-
ated by performing the integral in arbitrary dimension d and
analytically continuing the result to the dimension of interest.
The singularities can then be removed by introducing a
proper rescaling of the fields �
̄ and 
�, mass �mc�, diffusion
constant �D
�, and coupling constants ��, �̃, �, and �̃�. These
rescalings, which relate the renormalized values of these
quantities to their bare values, can be used to extract the
dependence of these quantities on wave vector in momentum
space. This, in turn, is used to examine the dependence of the
n-point correlation functions on wave vector, from which the
critical exponents can be extracted.

We begin the renormalization calculation by evaluating

the perturbative corrections to �
̄
= �
̄�p ,��
�p� ,���
−1.
These are given by the two diagrams in Fig. 3�A�. We will
describe the evaluation of the first of these diagrams in detail
and will only outline the calculations for the remainder of the
diagrams in the paper since they are treated analogously. We
denote the spatial and temporal Fourier components of the
incoming propagator by k and �, respectively. We then as-
sign the Fourier components of the upper arc to be p and �.
By conservation of momentum, the Fourier components of
the lower arc are k−p and �−�. Using this notation, and
noting that the overall symmetry factor of this diagram is 2,
which corresponds to exchange of the upper and lower arcs,
we find that the integral corresponding to this diagram is

− 2���̃

4
�� d�dp

�− i� + D
�p2 + mc��	− i�� − �� + D
��k − p�2 + mc�

. �23�

The contour integration over � is easily performed and the denominator factored, yielding

−
��̃

4D

� dp

�p2 + mc�	1 − i�/�2D
�p2 + mc�� + k2/�2�p2 + mc�� − p · k/�p2 + mc�
 .
�24�

Because we are only interested in the singular part of this
integral, we can formally expand the second factor in the
denominator according to 1 / �1−x�=1+x+x2+¯. Since
higher orders in this expansion have higher powers of p in
the denominator, these integrals converge, and we do not
need to consider them. The only integrals which are diver-
gent at the upper critical dimension d=4 are those from the
first order in the expansion and the second order term
�dp�p ·k�2 / �p2+mc�2. These integrals are all straightforward
to evaluate by the technique of dimensional regularization

�20�. For example, working in dimension d=4−�, we find

� dp

�p2 + mc�
=

mc

�4��2��− 1 +
�

2
� = −

mc

�4��2�2

�
+ O��0�� .

�25�

Treating the remainder of the integrals in this fashion and
performing the same procedure for the second diagram in
Fig. 3�A�, we find

Γφφ= + +

Γττ=

A

B

FIG. 3. Diagrammatic expansions for the two-point vertex func-
tions to one-loop order. Note that formally the diagrammatic ex-
pressions here are actually contributions to the correlation function
G
̄
=�


̄


−1
. To obtain the expression in Eq. �26�, we Taylor expand

G

̄


−1
to first order in �, which simply changes the sign of the two

rightmost diagrams in this figure.

Γφφφ= + +

+

Γφτφ= + +

A

B

FIG. 4. Diagrammatic expansions for the three-point vertex
functions to one-loop order.

FIELD THEORETIC TREATMENT OF AN EFFECTIVE … PHYSICAL REVIEW E 81, 011112 �2010�

011112-5



�
̄
 = − i� + D
k2 + D
mc +
��̃

4D


G�−
2mc

�
+

i�

D
�
−

k2

2�
�

+
��̃

D
 + D�

G�− 2
D
mc

�D
 + D���
+

2i�

�D
 + D���

−
2D
D�k

2

�D
 + D��2�
� �26�

where G is a geometric factor equal to 1 / �4��2.
We now introduce rescalings of the model quantities

which are necessary to make the physical quantity �
̄
 finite.
As one example, consider the terms with a factor of �,

− i��1 −
��̃G

4D

2 �

−
2��̃G

�D
 + D��2�
� . �27�

These terms are derived from the time derivative term in the
Lagrangian �
̄�t
�. Since there are no parameters accompa-
nying this term, it can only be rendered finite by a rescaling
of the fields. We thus define renormalized fields which are
the original fields divided by the square root of the singular
part of �
̄
,


 = Z

1/2
R and 
̄ = Z


1/2
̄R, �28�

where Z

−1 is the term in parenthesis in Eq. �27�. Explicitly, to

first order in �:

Z
 = 1 +
1

�
� �R�̃R

4D
R
2 + 2

�R�̃R

�D
R + D�R�2� , �29�

where the subscript R denotes a renormalized constant. Ex-
plicit expressions for these renormalized constants in terms
of the bare constants are given below. Note that below �Eq.
�32��, we absorb the geometric factor G into the definition of
the renormalized coupling constants, so it does not appear in
any subsequent equations. Divergent terms with k2 are de-
rived from the diffusion term in the action and can be made
finite by introducing a renormalization of the diffusion con-
stants. Because this term also includes the fields themselves
it is necessary to include Z
 as well in order to cancel the
effect of the field renormalization which we just described.
Thus we find

D
 = Z

−1ZD


D
R, �30�

where

ZD

= 1 +

1

�
� �R�̃R

8D
R
2 + 2

D�R�R�̃R

�D
R + D�R�3� . �31�

The renormalization prescription for the remainder of the
constants follows in exactly the same way.

mc = ZD


−1 Zmc
k−2mcR,

�̃ = Z

−3/2Z�̃G−1/2k�/2�̃R,

�̃ = Z

−1Z�̃G−1/2k�/2�̃R, �32�

and the rescalings for � and � follow from simply exchang-
ing the tilde in the last two equations in Eq. �32�. The factors
of k in these expressions are included so that the renormal-
ized quantities are dimensionless. This will be important in
the analysis of the renormalization-group equation below.
Zmc

can be calculated from the expression for �
̄
 in a man-
ner similar to Z
 and ZD


,

Zmc
= 1 +

1

�
� �R�̃R

2D
R
2 + 2

�R�̃R

�D
R + D�R�2� . �33�

To compute the renormalization factors for the coupling con-
stants, it is necessary to calculate the singularities which
arise in the computation of the three-point correlation func-

tions. It is enough to calculate the contributions to �̃ and �̃,
as the other ones follow by simply exchanging constants
with and without a tilde in the resulting expressions. The
necessary diagrams are shown in Fig. 4. The calculation of
singularities and the renormalization of the coupling con-
stants proceeds exactly as in the two-point case above. It is
somewhat simplified because in this case we do not need to
consider the diagrams with arbitrary input momentum, but
rather it is sufficient to calculate them in the case k=0. The
reason is that these terms have one more propagator than the
terms for the two-point function and therefore the integrals
have two more powers of the momentum variable p in the
denominator. Thus, if we performed a Taylor expansion simi-
lar to the one we used to evaluate the singular part of the
integral in Eq. �24�, all the k-dependent terms would be fi-
nite. We find for the renormalization factors,

Z�̃ = 1 +
1

�
��R�̃R

D
R
2 + 4

�R�̃R

�D
R + D�R�2 + 2
�R�̃R

D
R�D
R + D�R�
� ,

Z�̃ = 1 +
1

�
� �R�̃R

2D
R
2 + 2

�R�̃R

�D
R + D�R�2� . �34�

Note that in each expression above, the coupling constants �
and � do not appear alone, but rather the scale factors only
depend on the ratio of the coupling constants and the diffu-
sion constants. Calculation of the renormalization-group flow
for any of these quantities alone shows that each of these
quantities flows to infinity. However, it is reasonable to ex-
pect the ratios which appear in the above rescalings to re-
main finite on physical grounds. Thus we now define
����R /D
R and similarly for the other coupling constants.
Furthermore, because D
 flows to infinity but D� does not
change in the renormalization-group analysis, we can set the
ratio D� /D
=0 in the analysis below. Note that this means
that the second term in parenthesis in Eq. �31� can be set to
zero.
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We now calculate the � functions, which define how the
coupling constants depend on wave vector:

k
d���k�

dk
= − �����k�� . �35�

A similar equation holds for each coupling constant. Since
for any q,

d ln q

d ln k
=

k

q

dq

dk
= −

��q�
q

, �36�

these functions can be calculated according to

���̃�� = �̃�
�

� ln k
�ln�Z


3/2Z
�̃

−1� − ln�Z
ZD


−1 �� − �̃�
�

2
,

���̃�� = �̃�
�

� ln k
�ln�Z
Z

�̃

−1� − ln�Z
ZD


−1 �� − �̃�
�

2
. �37�

In practice, this calculation is performed as follows. First we
substitute the expressions for the Z factors derived above
�Eqs. �29�, �31�, �33�, and �34�� into Eq. �37�. We then sub-
stitute the definitions of the renormalized coupling constants
in terms of the bare coupling constants �Eqs. �28�, �30�, and
�32��. When doing this, we set Zq=1 for all q �including the
other terms in Zq would only give terms which are higher-
order in ��. Doing this and taking the derivatives yields

���̃�� = −
�

2
�̃� +

3

4
�̃�2�� + 5�̃��̃���,

���̃�� = −
�

2
�̃� +

3

8
�̃��̃��� + 2�̃�2��. �38�

The full system of � functions consists of these equations,
the equations for �� and �� which can be obtained by ex-
changing quantities with and without a tilde in the above
equations, and similar equations for the critical mass �mc�,
the diffusion constants, and the fields 
 and �. The quantities

�̃��� and �̃��� flow to the solution of the above equations,
the quantities mc, D
, and Z
 flow to infinity as will be
shown explicitly below �see Eq. �41��, and the quantities D�

and Z� do not get renormalized. It is the values of �̃��� and

�̃��� which determine the values of the � functions at the
fixed point of the renormalization-group flow and hence the
values of the critical exponents �see below Eqs. �41� and
�42��. The � functions have a stable fixed point given by

�̃��� = 0 and �̃��� =
�

4
. �39�

Note that the full system of � functions has three additional
fixed points as discussed in �13�. Only one of them is stable
and corresponds to the critical behavior of the diffusive epi-
demic process �DEP� �13,14�. It is important to note that at
the fixed point corresponding to this model, the ratio
D� /D
�0 in contrast to the model of catalyzed autoampli-
fication. The DEP fixed point is inaccessible in our model
because it requires that certain rate constants, which are
guaranteed to be positive, flow to negative values. The re-

maining two fixed points, one of which is the directed per-
colation fixed point, are unstable.

The properties of this renormalization-group fixed point
determine the long time behavior of the system. As we have
only a single critical degree of freedom, the renormalization-
group calculation follows by standard means given the value
of the coupling constants at the fixed point �19�. The
renormalization-group equation gives the dependence of the
renormalized density �

 on changing the scale in momen-
tum space

�k
�

�k
+ ��mc�

�

�mc
+ ��D
�

�

�D


+ ����
�

��
+ ���̃�

�

��̃

+ ����
�

��
+ ���̃�

�

� �̃
+

1

2
�
��
�k,mc,D
,�,�,�̃, �̃�
 = 0,

where �
=� ln Z
 /� ln k. The above equation is a first-order
partial differential equation which can be solved by the
method of characteristics. The solution is

�
�k,mc,D
,�,�,�̃, �̃�


= �mc��
̂���,�̃�,��, �̃�,
kx

�mc�−��
,

k2D
t

�mc�−��
� , �40�

where stars indicates values at the fixed point of the
renormalization-group flow. To calculate the exponents, we
first calculate the flow functions

�
 =
� ln

� ln k
Z
 = −

�̃���

4
− 2�̃���,

�D

=

� ln

� ln k
�ZD


−1 Z
� = −
�̃���

8
− 2�̃���,

�mc
=

� ln

� ln k
�Zmc

−1ZD

k−2� = − 2 +

3�̃���

8
+ 2�̃���, �41�

where the derivatives have been evaluated in the same way
as those for calculating the � functions �Eq. �37��. In particu-
lar, these equations show that D
 flows to infinity as was
assumed above. The exponents are given in terms of the
fixed points of the flow functions according to

�� =
1

− �mc

� =
1

2 − �/2
,

�� =
2 + �D

�

− �mc

� = 1 + O��2� ,

� =
d + �


�

− 2�mc

� = 1 −
�

8
+ O��2� , �42�

where in the second equality in each line we have plugged in

the value of the fixed point of the � functions ��̃���=0 and

�̃���=� /4�. One important feature of the model is that the
result for �� is exact to all orders. This is due to a Ward

FIELD THEORETIC TREATMENT OF AN EFFECTIVE … PHYSICAL REVIEW E 81, 011112 �2010�

011112-7



identity relating �
̄
 and �
̄�̄
 as shown in �13�. The above
expressions conclude the calculation of the critical exponents
of the model to one loop.

The expressions above can be compared with the mean-
field critical exponents �for our model as well as DP�: �=1,
��=1 /2, �� =1 �3�. Substituting a value of 1 for � in the
above expressions, one obtains �=7 /8, ��=2 /3, and
z=�� /��=3 /2; simulations on a three-dimensional lattice
yield �=0.99, ��=0.67, and z=�� /��=1.67 �3�. Substituting
a value of 2 for �, one obtains �=3 /4, ��=1, and
z=�� /��=1; simulations on a two-dimensional lattice yield
�=0.89, ��=1.15, and z=�� /��=1.67 �3�. Considering the
order of the expansion, the agreement is quite good.

In addition, as noted above, the exponents of two well-
studied models can also be derived from the � functions of
our model. The exponents of the DEP �13,15� can be ob-
tained from the full set of � functions as discussed in �13�.
The exponents for DP can be derived by substituting the

values of the DP fixed point ��̃���=2� /3 and �̃���=0� into
Eq. �41� and then substituting the resulting expressions into
Eq. �42�. The results are

�� =
1

2
+

�

16
,

�� = 1 +
�

12
,

� = 1 −
�

6
. �43�

These results establish that the critical exponents of our
model are different from those of the directed percolation
universality class.

IV. DISCUSSION

We have examined the critical behavior of a model of
catalyzed autoamplification. In this model, one species �A�
binds to a catalyst �D� and the bound state �B� generates
additional copies of A. This leads to a field theoretic descrip-
tion with three fields of which only a single field �a linear
combination of CA and CB� displays critical behavior. A sec-
ond field corresponds to a quantity whose sum over all lattice
site is conserved �CB+CD�. There are no quadratic terms in
the action containing this field and therefore its value on any
particular lattice site does not relax exponentially for any
choice of the parameters �i.e., it is a “massless” field�. The
third field has quadratic terms in the action which are always
negative, and therefore its average value always relaxes ex-
ponentially �i.e., it is a “massive” field�. To calculate the
behavior of the model at long times, we constructed a per-
turbation series of dimensionless quantities. The drastic dif-
ferences between the fields suggested an effective action
with the massive field removed and a treatment of its contri-
butions to the � functions as a perturbation. We then em-
ployed a standard renormalization-group procedure to exam-
ine the critical behavior of the model to first order in the �

expansion. Subsequently, we verified that the fixed point so
obtained is not changed by the presence of the massive field.
This analysis established that the universality class of the
model is distinct from ones studied previously.

A model very similar to the one that we examined is the
diffusive epidemic process which describes population pol-
lution �13,14�. The cubic terms in that model are the same as
those that arise in the action after performing the large mass
reduction �Eq. �17�� except that the coupling constants have
opposite sign. The difference in sign causes the
renormalization-group equations to flow to different regions
of the phase space and hence different fixed points. As one
example, in our model D� /D
 converges to zero, while in the
DEP the limit is finite. That the two models display different
critical behavior is also supported by numerical simulations
�3,15�. Another model with a conserved concentration that
influences a phase transition is the conserved lattice gas �21�;
however, the coupling between the 
 and � fields makes our
model fundamentally different, as we now discuss.

At the fixed point of the renormalization-group flow,
D� /D
=Z� /Z
=0. This means that, in this limit, the back-
ground � field acts like a static Gaussian field without corre-
lation between neighboring lattice sites. In this sense, it can
be viewed as spatially quenched disorder. However, caution
is required with respect to this interpretation because the
configuration of the catalyst evolves over times that are long
but still finite. Quenched disorder usually implies that the
stable fixed point is shifted to either an unphysical part of the
parameter space or to infinity �22�; as a result, the usual
power-law scaling is not observed, and, instead, there is a
slow, logarithmic dynamics �23–25�. It is possible that we
recover power-law scaling in our model because the steady-
state behavior of the system depends on the averaging over
the different configurations of the catalyst. Because we do
not determine the domain of attraction of the stable fixed
point, we cannot exclude the possibility that a
renormalization-group flow that was initiated from another
part of the parameter space would be divergent. Investigating
this possibility will be of interest in the future. Despite these
caveats, our results suggest that it would be of interest to
explore whether studying reaction-diffusion systems with a
background species that has purely diffusive dynamics and
influences the dynamics of the other species can provide a
useful tool for studying the critical behavior of models with
disorder. This would be of significant utility because models
that exhibit disorder arise in a variety of physical contexts
�26�, and, in the past, it has been necessary to treat such
models by introducing the disorder into the action by hand
�22,23,27�.
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APPENDIX: JUSTIFICATION OF THE EFFECTIVE
ACTION

Our analysis in the main text relied upon a simplification
of the full action Eq. �17� to the reduced action in Eq. �20�.
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We argued that because the coefficient of the quadratic term

�̄� remains positive for all parameter values, this field re-
laxes exponentially and we can utilize a large mass expan-
sion to remove the terms involving � from the Lagrangian.
In this Appendix, we provide formal justification for this
result. We believe that the strategy utilized here could be of
general use in treating reaction-diffusion problems with both
a critical and a massive field.

The minimal subtraction procedure used to treat the re-
duced action, while convenient, is not appropriate for models
with more than one field with a mass parameter. In a model
with only a single critical field, the minimal subtraction pro-
cedure can elucidate the dependence of the correlation func-
tions on the mass yielding the critical exponents. When more
than one mass scale is present, the renormalization-group
equations resulting from minimal subtraction do not explic-
itly decouple the dependences of the correlation functions on
these masses. Thus, to treat the full model, we must employ
a renormalization scheme that explicitly involves the masses
� and m for the 
 and � fields, respectively. While it is in
principle possible to treat the full model with such a renor-
malization scheme, it is not practical owing to the large num-
ber of diagrams involved. As an alternative, here we demon-
strate that if an analysis which ignores the contributions from
the heavy field yields � functions with a certain fixed point,
this fixed point will be stable in the full model as well. Con-
tributions from the heavy field only affect the transient
renormalization-group flow.

To evaluate the critical behavior of the theory, we need to
compute the � functions for dimensionless combinations of
the coupling and diffusion constants. Let us denote an arbi-
trary such ratio by �i and all such quantities by the vector
form �. Implicitly, we can write an equation for � of the
form

� = f��,
�

m
,
D


D�
� . �A1�

Differentiating this expression with respect to ln� preserves
the fact that the masses and diffusion constants enter only
through the ratios � /m and D
 /D�. The resulting expression
is the � function for � which can be obtained in perturbation
theory by considering loop diagrams with a 
̄
 field in-
serted. We can divide these contributions into two groups

�

� ln �
� = ���� +

�

m
· �m��,

�

m
,
D


D�
� . �A2�

The first term on the right side is due to loops containing
only the critical field 
, while the second term consists of
contributions from the massive field �. Consider a fixed
point of a model which ignores the heavy diagrams such that
����=0 and � /m=0. It is clear that

�m��,0,
D


D�
� �A3�

is well-defined and analytical around such finite points. That
is, if the D
 /D� argument remains finite, �m remains finite
as well. Since �m is multiplied by a term that goes to zero at
the fixed point, the renormalization-group flow is controlled

only by the � term in Eq. �A2�. Unfortunately, it is not clear
a priori that �m is indeed finite, and we cannot simply dis-
card the heavy loops. Specifically, there are coupling con-
stants that only receive heavy loop corrections; when partici-
pating in light loops, they are renormalized by Z
 and flow to
infinity. Thus, more care is needed in dropping the �m term.

To one-loop order, the �m is just a polynomial in quanti-
ties which �potentially� flow to infinite values. The power at
which they diverge is O���. Thus for small enough �, the
factor � /m dominates the second term in Eq. �A2�. However,
in general such an argument cannot be extended to all dimen-
sions. One possibility is that Lebowitz type inequalities
�28,29� on the correlation functions could put bounds on the
power of divergence of �m. Unfortunately, we are not aware
of the existence of such inequalities for reaction-diffusion
problems.

Instead, we employ an alternate strategy: to treat the �m
term as a perturbation. To this end, we first consider the flow
of � in Eq. �A2� with the �m term removed. We then calcu-
late the power of divergence of the different parameters that
make up �m to first loop order and verify that � /m ·�m→0.
A justification of the reduced action which considers higher
orders is beyond the scope of the current paper.

We already know that the coupling constants of the re-
duced action with only light fields have a fixed point given in
Eq. �39�. We now consider the coupling constants which
multiply diagrams involving the heavy fields. Consider first

�� and �1� together with their symmetric counterparts ��̃
and ��̃. A convenient rescaling factor for these constants is
�−�/2Z
Z�

1/2 /D
 and �−�/2Z

1/2Z�

1/2 /D
, respectively. In other
words, the rescaling factor for �� is the rescaling factor for �

multiplied by Z



− 1
2 Z

�

1
2 . Since Z
→
, this coupling constant

converges to zero. In concrete terms, the � functions for �
and � can be written as

����
�

= −
�

2
+ �̄��� −

3

2
�̄��,�� + d̄��,�� ,

����
�

= −
�

2
+ �̄��� − �̄��,�� + d̄��,�� , �A4�

where �̄��� , �̄��� represent the loop contributions to the

coupling constants, �̄�� ,�� represents contributions to Z
,

and d̄�� ,�� represents contributions to D
. Now consider the
� functions for �� and �1�,

�����
��

= −
�

2
+ �̄��� − �̄��,�� + d̄��,�� − c1�������̃�

− c2��1�����̃�

= +
1

2
�̄��,�� − c1�������̃� − c2��1�����̃� ,
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���1��
�1�

= −
�

2
+ �̄��� −

1

2
�̄��,�� + d̄��,�� − c1�������̃�

− c2��1�����̃�

= +
1

2
�̄��,�� − c1�������̃� − c2��1�����̃� , �A5�

where c1 and c2 are constants coming from the perturbative
expansion of Z� and the second equality of either equation

made use of the value of �̄��� and �̄��� at the fixed point

�Eq. �A4��. Since at the fixed point �̄�� ,���0 and the terms
on the right hand side involving �� and �1� are zero, we
have �� , �1�→0 although the domain of attraction for this

fixed point may be finite. The coupling constants �� and ��̃
can be treated using an analogous argument.

The rest of the coupling constants cannot be treated this
way, because there are no light loop corrections to their val-

ues. However, inspection of the diagrams corresponding to
these coupling constants reveals that they each contain at
most a single light field. Those without light fields do not
factor into the analysis because they yield zero when differ-
entiated in Eq. �A2�. Therefore we can restrict attention to
diagrams with precisely one light field. The proper rescaling
of these coupling constants is Z


1/2 /D
. However, at the fixed
point we described in the main text, D
�Z
 and Z


1/2 /D

→0. Furthermore, if the diagrams in question contain some
of the coupling constants considered earlier, the diagram val-
ues are further suppressed by a factor of ��/2. Therefore, all
of the contributions to the second term of Eq. �A2� are sup-
pressed.

In summary, we have shown that if the renormalization-
group flow with the heavy fields removed has a fixed point,
such a fixed point is present in the full model as well and the
flow in its neighborhood is independent of the heavy field.
This allows us to drop the heavy field from consideration and
justifies the analysis in the main text of the paper.
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