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Second-order dynamic transition in a p=2 spin-glass model
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We consider the dynamics of a disordered p-spin model with p=2, analyzing the dynamics within Ruelle’s
thermodynamic formalism, We use an indicator of the dynamical activity to construct the relevant dynamical
Gibbs ensemble. We prove that the dynamics in the low-temperature (spin-glass) phase of the model take place
at a second-order phase transition between dynamically active and inactive trajectories. We also show that the
same behavior is found in a related model of a three-dimensional ferromagnet.
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I. INTRODUCTION

Glassy systems are characterized by their dynamical prop-
erties: at their glass transitions, they fall out of equilibrium
on experimental time scales, and exhibit aging phenomena.
As the glass transition is approached, their relaxation times
increase dramatically and the decay of their equilibrium dy-
namical correlation functions is slower than exponential [1].
In the last fifteen years, several approaches have been devel-
oped to recover theoretically the experimental, out-of-
equilibrium results (see, for example, [2]).

One of the most striking experimental features of a glass-
forming liquid is that the increase in relaxation time near the
glass transition does not seem to be accompanied by any
significant changes in the liquid structure. However, experi-
ments and computer simulations [3-6] both indicate that a
dynamical length scale is growing as the glass transition is
approached. That is, glassy materials are made up of active
and inactive regions of space time, namely, dynamical het-
erogeneities. Based upon these results, the idea that the
glassy properties of a system arise directly from their dy-
namical heterogeneity was developed in [7,8], stimulating
further theoretical understandings of glassy dynamics.

Spin glasses are magnetic spin systems which exhibit sev-
eral features in common with glass-forming liquids. They are
modeled by spins with quenched random interactions be-
tween them, and have been extensively investigated both ex-
perimentally and theoretically (see [9] for a review). The
purpose of this paper is to show that the glassy dynamics of
a particular spin-glass model can be understood in terms of
the histories it follows in configuration space. To this end, we
employ the thermodynamic formalism of histories, devel-
oped by Ruelle and co-workers [10] within the framework of
dynamical systems theory, and summarized in [11] in the
context of Markov dynamics. While equilibrium statistical
mechanics is concerned with fluctuations in the configuration
space of the system, Ruelle’s formalism focuses on the tra-
jectories (histories) by which the system evolves through
configuration space. The method has been applied recently to
kinetically constrained models of glass-formers [12] and to a
Lennard Jones binary mixture [13]. Both these studies dis-
tinguish active and inactive histories of the systems, accord-
ing to the range of configuration space visited during the
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history. In the kinetically constrained models, it was proven
that the active and inactive histories form distinct popula-
tions. In the language of the thermodynamic formalism, they
are separated by a first-order phase transition in trajectory
space. In Refs. [12,13], it was argued that the heterogeneous
dynamics of those models is intrinsically linked to this tran-
sition.

In this article, we focus on a soft p-spin model with p
=2, whose static and dynamic properties can be studied ana-
lytically. The p — o limit of the p-spin model, namely, the
disordered Random Energy Model, was recently shown to
possess a connection between the activity of the histories it
follows and the dynamical heterogeneities in its glassy phase
[14]. (Of course, in p-spin models with infinite-ranged inter-
actions, the dynamical correlation lengths associated with
dynamical heterogeneity are ill-defined. However, the pres-
ence of large dynamical fluctuations in these mean-field
models is naturally linked to dynamical heterogeneity in
their finite-dimensional counterparts. We show that the p=2
spin-glass model is closely related to a three-dimensional
ferromagnet in which such length scales can be calculated.)

The physical question that we are addressing is the fol-
lowing. Given that singular behavior in large deviation func-
tions has been observed in several models of glass formers,
under what conditions do such transitions occur, and what
can be inferred from them? More specifically, what relations
might there be between transitions in trajectory space and
thermodynamic phase transitions? We will find that for the
p=2 spin glass, the large deviation functions are singular,
revealing a transition from a low-temperature ordered phase
to a disordered one with higher activity. In addition to the
large deviation function itself, the thermodynamic formalism
allows us to identify and characterize trajectories of larger
and smaller activity in the model. We will discuss how the
high-activity trajectories are related to the heterogeneous ag-
ing regime of the model, while the low-activity ones are
related to states with long-ranged order. Thus, while the ther-
modynamic formalism elucidates the nature of the heteroge-
neous equilibrium state in glass formers [12,13], here it is
related to the heterogeneous out-of-equilibrium (coarsening)
states.

The outline of the paper is as follows: in Sec. II, we
describe the models we will consider and the methods that
we will use. In Sec. III, we construct a “dynamic phase dia-
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gram” that describes the behavior of the system in trajectory
space. We interpret our results in Sec. IV, discussing the links
between the large deviations that we have derived and the
more familiar features of the soft-spin models, and identify-
ing directions for further study.

II. MODEL AND FORMALISM
A. Spin-glass model

We consider a system of N continuous spins o; whose
Hamiltonian H is given by

A==

rEJUO'O'-F 20'20'2 (1)
VN

Here, B=1/T as usual, where T is the temperature and we
have set Boltzmann’s constant to unity, we take >0, and
the random couplings are Gaussian distributed

L
p(Jij) =T eXpl — . (2)
N2 2

This model was first considered by Ciuchi and De Pasquale
[15]. The role of the term proportional to u>>0 is to suppress
configurations with extreme values of the spins. This param-
eter simply sets and energy scale for the spins. In [15], they
took u=1 without loss of generality, while we retain u as a
parameter to make its role explicit. The model is similar to
the p-spin models discussed in [16,17]. Like the spherical
p-spin model of [16] and in contrast to that of [17], the
model under consideration here can be solved exactly. How-
ever, we use the u term instead of a spherical constraint since
it facilitates studies of large deviations of the activity. In
particular, in a spherical model, one introduces a time-
dependent force into the Langevin equation (3). To study
fluctuations of extensive quantities, such as the activity, re-
quires careful treatment of the fluctuations of this force [18].
Thus, since all of these soft p-spin models exhibit finite-
temperature “glass transitions” at which ergodicity is broken
[15,17,19-21], we chose that of Eq. (1) for technical conve-
nience. Connections between p-spin models and the struc-
tural glass problem have been discussed in [17,22,23]. The
case of p=2 differs from that of p=3 in that correlation
functions can be obtained exactly from the properties of
large random matrices [19].

In this article, we will employ the functional-integral for-
malism of [24]. To this end, we endow the spin system with
a relaxational dynamics,

6,07=— +7,(1), (3)

o0(1)

where the 7,;’s are independent white Gaussian noises with
variance 2. Following [15,19,21], it will prove useful to re-
sort to the basis which diagonalizes the matrix of exchange
couplings. The eigenvalues {J,},_; y of the NXN matrix
(J;))i j=1... . are distributed according to Wigner semicircle
law,
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Denoting by ¢, the spin coordinates in the basis that in
which (J;;) is diagonal, the Hamiltonian simplifies into

- ﬁEJ,L¢,L+ (E¢) (5)

and the equation of motion now reads
d 1 5
Ed)y, = leu,d),u - 4“¢,¢X,E ¢y + 77;1,0)7 (6)

where the 7,’s are independent white Gaussian noises with
variance 2.

B. Ferromagnetic model

It been remarked that the p=2 spin glass resembles a
ferromagnet “in disguise” [25]. To illustrate this, we also
consider a ferromagnetic model whose Hamiltonian Hpgy is
given by

BHFM= - E (Tl(Tj +— 2 g; U (7)
Cij)

where the first sum runs over nearest neighbors on a
d-dimensional (hyper)-cubic lattice, but the u term retains
interactions between all sites. (Thus, the model contains
infinite-ranged couplings, as in the spherical ferromagnet.)
The analogs of the coordinates ¢, in this model are the
Fourier transformed spin coordinates ¢, where &k
=(ky,...,k,) is the wave vector. The eigenvalues of the ma-
trix couphng the spins are Ez=3¢ =cos k,. The resulting
equation of motion is then

d 1
= Bl —dud |+ w0, ®)

where the 7, are independent Gaussian noises as before.

In d=3, the distribution of the eigenvalues Ej is p(E})
~ (27 "Nd-E, when |k| is small. Similarly, in the spin
glass of Eq. (1), the density of eigenvalues scales as p(J,)

aNQ2-J ) for J,, close to 2. We will find that the phase
transmons in the models depend on the scaling of the eigen-
value density near these points, and hence that phase transi-
tions in the d=3 ferromagnet and the p=2 spin glass are
related to each other, and have the same scaling exponents.

C. Symmetry-breaking fields

Below its transition temperature, the ferromagnetic model
spontaneously breaks the global symmetry o;——o;. To
clarify the behavior in the ordered phase, it is convenient to
introduce a magnetic field: we take Hpy— Hpy—hZ,0; in
Eq. (7). The equation of motion becomes

1
ﬁid)k = B(Exdy + h5k,oV%) —dudy— 2 |tul* + o). (9)
‘ N

In the presence of this field, the magnetization M(z)
=N"'3,0,=N""2¢h_, acquires a finite expectation value: in
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the ordered phase, the magnetization remains finite even in
the limit of small %, with a first-order phase transition at &
=0.

In the spin-glass model, the low-temperature phase breaks
the same global symmetry, but the order parameter is not the
magnetization. Instead, the coordinate ¢, corresponding to
the largest eigenvalue of J;; becomes macroscopically occu-
pied. We assign the label w=0 to this eigenvector. Then, by
analogy with the ferromagnetic case, we can introduce an
analogous “staggered field” to the model of Eq. (1). The
equation of motion becomes

dJ — 1
b= BU LB+ 1,8,0VN) = dudp, o D B+ 7, ().

(10)

The analog of the magnetization M(r) is the staggered mag-
netization M (1)=N""2¢,_y. In the low-temperature phase
of the p=2 spin glass, the expectation of M (z) tends to a
finite value as A, tends to zero, with a first-order phase tran-
sition at h,=0.

D. Thermodynamic formalism

Ruelle’s thermodynamic formalism involves a statistical
mechanical analysis of the trajectories that a system follows
through configuration space. Let a history be a particular
time realization that the system has visited over a given time
interval. Consider an ensemble of histories constructed by
fixing their dynamical activity K(¢). Here, the dynamical ac-
tivity is a history-dependent observable, extensive both in
space and time, expressing the amount of activity within the
history. In a typical inactive history, the spins remain frozen
in a locally ordered state; in an active history, spins fluctuate
randomly between up and down states. For both spin-glass
and ferromagnetic models, a simple local observable consis-
tent with this definition of activity is

1 ! 1 !
Kit)=—=> J dmf(z):——E J digr(1).  (11)
2 Jj 0 2 n J0

With this choice, trajectories localized on a ordered state
have strongly polarized spins and large negative K; for active
trajectories, the N-dimensional spin spends more time near
the origin, and K increases toward 0. Other choices of K,
such as the time-integrated energy, would also be possible.
Our choice makes the analytic calculations relatively trac-
table.

While an ensemble of trajectories with fixed K is natural
from a physical point of view, our theoretical methods re-
quire a change in ensemble, to one in which the average
activity is fixed. (To draw an analogy with equilibrium sta-
tistical mechanics, we are transforming from a microcanoni-
cal to a canonical ensemble.) To fix the average activity, we
apply a field s that is conjugate to K(z). While we are as yet
unable to endow s with an experimentally realizable physical
meaning, ensembles of histories with finite s provide a valu-
able theoretical tool, which allow us to probe the histories
that the system follows. The ensemble with s=0 is simply
the (unbiased) ensemble of trajectories for the system: en-
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sembles with s > 0 are less active than the unbiased ensemble
while those with s <0 are more active.
In the following, we will evaluate the partition function:

Z(s,1) = (e )0, (12)

which is simply the generating function for the activity. Here
and throughout, we use (-), to denote an average of the
(unbiased) relaxational dynamics over all possible time real-
izations, which means an average over the noises 7;. We also
consider averages of a generic observable A in the biased
ensemble parameterized by s, which we write as (A),
=lim,_.. Z '(s,1){Ae~K),
We also define a dynamical free energy

Y(s) = limw, (13)
t—00 t
which is a large deviation function for the activity [11,12].
The distribution of K is sharply peaked around its average
for large observation time. However the large deviation func-
tion ¢(s) generates all cumulants of K, thus giving access to
arbitrarily large fluctuations. It follows that
==L, (14)
ds
With these definitions, singularities in i(s) are the dynamical
phase transitions of the system. Discontinuities in the deriva-
tives of ¢(s) will correspond to phase transitions between
active and inactive phases. By analogy with equilibrium sta-
tistical mechanics, transitions with a jump in (K), are termed
“first-order” or ‘“discontinuous,” otherwise the transition is
termed “continuous.” More specifically, if (K), is continuous
and the second derivative is discontinuous then we refer to
the transition as “second-order.”

E. Functional-integral formulation

To evaluate dynamical observables such as (K),, we use
the Janssen-De Dominicis functional-integral formulation
[24], as in earlier studies such as Ref. [17]. The relaxational
dynamics for the spin ¢,() is given by Eq. (6). Using a
functional-integral representation the dynamical, s-dependent
partition function introduced in Eq. (12) becomes

Z(s,t):fD¢D$ expl—ftdt’L(t’)] (15)

0

where, omitting time-dependence for brevity,

_ 4 _
L=S 800 1,0, S 60,) 520
" v

(16)

[We consider the spin-glass model of Eq. (1) and we have set
the staggered field h,=0; other cases will be discussed be-
low.]

Due to the infinite-ranged interactions in the term propor-
tional to u, this model may be reduced to a quadratic form.
Details are given in Appendix A. The result is that the par-
tition function becomes
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0

Z(s,1) = f D¢Dp explSu)?)(Nt— f dt'Laux(t’)] ,
(17)
with
Laux = E (_b/,l,(al/ + 4”)(_ Bju)d),u - 97)/2,4 - (% - 4”)?) ¢fu
7

(18)

where the parameters x and y must be determined self-
consistently, through

1
= | drpu W
X f wPUy) V(dux — BI,)* = 2(s — 8ux) "
and
. 414)(‘ B‘I,U-
N . (20
Y+ f Mp( ,u) N/(4MX_ BJ,U)2 —2(s — 8uy) (20)

Physically, X:{ﬁEi(r{(z)zx is the equal time spin-spin corre-
lation function, and )?:(#E,«E’i(t)cri(t»s is the equal time re-
sponse function. For the unbiased s=0 dynamics, causality
ensures that y=0. However, since we explicitly concentrate
on trajectories with activity that is higher or lower than av-
erage, we observe correlations between the noise and the
fields at arbitrary times, even when the noise is evaluated
before the field. In this case, we have a nonzero equal time
response function y (see also Appendix A). In addition, it
follows from the definition of y that

Nix=-2(K),, (21)

so that solving the self-consistency equations (19) and (20)
leads directly to the activities of the relevant phases. Finally,
we note that the derivative

X a0, (22)
)

gives the fluctuations of the activity.

We have shown that the dynamical correlation functions
of the original model Eq. (1) are the same as those of the
auxiliary quadratic system (17). Noting that p(J,) is finite
only for -2 <J, <2, the integrals in Egs. (19) and (20) are
well-defined as long as

(duy —2B)>-2(s — 8uy) > 0. (23)

As long as this condition is fulfilled, then the system is in a
paramagnetic disordered phase. On the other hand, if the
denominator of Eq. (19) vanishes at J,=2 then the mode
associated with this eigenvalue may become macroscopically
populated.

F. Symmetry-breaking fields

As discussed in Sec. II C, it is also useful to consider the
effects of symmetry-breaking fields &, and & on these sys-
tems. Following the analysis of the previous section, the
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FIG. 1. “Phase diagram” associated with the dynamic free en-
ergy (s) of the spin-glass model. The critical point of the model is
at s=0 and T=T,. The heavy solid line is a second-order phase
boundary between ordered and disordered phases. The dashed line
is a crossover within the disordered phase. In the high-temperature
(normal) regime then the response to a staggered field A, is positive;
the low-temperature (anomalous) regime is characterized by a nega-
tive response to this field.

symmetry-breaking fields lead to linear terms in L,,,. In gen-
eral, the fluctuating magnetization M,=N""2¢,_ and its re-

sponse field M =N"" Z(ZAFO both have finite expectation val-
ues which we denote by m, and i, respectively. Evaluating
these expectation values in the auxiliary model, we arrive at

: 4ux-28
_'Bh(4u)(— 2B)% = 2(s - 8uy)’

(24)

mg

i = B s—8uy
s (4uy-2B)>-2(s - 8uy)

(25)

Self-consistency in the presence of the field leads to modified
saddle-point equations for y and Y

X m‘“+J V(duy - BT,)> - 2(s - 8ux) (26)
25+ 1= 2mm, + f U ux =Bl g
V(duy - ,BJM)2 —2(s — 8uy)

Finally, we note that while we have considered the spin-
glass model of Eq. (1) throughout Secs. ITE and I F, the
equations for the ferromagnetic model can be obtained by

applying  the  simple  replacement  (u,J,.m,,m,)
—(k,Ey,m,m) throughout these sections, where m
NGy

III. DESCRIPTION OF THE PHASE DIAGRAM
A. Overview

The dynamical phase diagram for the p=2 spin glass of
Eq. (1) is shown in Fig. 1, for #,=0. The phase diagram of
the ferromagnetic model of Eq. (7) at h=0 has the same
form. The axis s=0 corresponds to the unbiased relaxational
dynamics of Eq. (3). On this axis, the spin-glass system has
a second-order phase transition at
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1
T.=—1—. (28)
\N2u

Below T, the mode with lowest eigenvalue is macroscopi-
cally populated, and the system is ordered: the (staggered)
magnetization remains finite as the (staggered) field is re-
duced to zero.

We will show that the effect of positive s is to promote
ordering in the system, consistent with the expectation that
ordered phases are less active that disordered ones. As s in-
creases from zero, the second-order transition between active
and inactive phases moves to a higher temperature: we have
an increasing function 7,.(s), with 7.(0)=T, being the ther-
modynamic transition temperature at s=0.

The effect of negative s is to reduce ordering in the sys-
tem, thus increasing the activity: at temperatures above 7.,
the dynamical free energy i(s) has no singularities for s
=0 and K increases smoothly as s is decreased from zero.
We also find that no ordered phases are possible for s <0: the
condition (23) is always satisfied when and m, vanishes in
the limit of small A,. Thus, for 0 <T<T,, behavior of the
model as s— 0% coincides with the ordered phase that is
found at s=0, but the behavior is different for all s <0. This
signals the presence of a phase boundary at s=0. The same
effect is observed in the ferromagnetic model of Eq. (7).

We now show how this phase diagram is obtained from
the solutions to the self-consistency Egs. (19) and (20). We
calculate the saddle-point average y as a function of s and
the other parameters of the model: this gives the activity of
the phases of the model through Eq. (21). In addition, we
also calculate the (s-dependent) staggered magnetization m,
which gives additional insight into the phases of interest.

B. Unbiased dynamics (s=0)

We begin with the unbiased (s=0) behavior of the model,
the derivation of which is identical to that of Kosterlitz et al.
[19] for the spherical version of this model. Equations (19)
and (20) can be solved at s=0 with the result that y=0, as
required by causality, and that

1 1

X:]V% 4u)(—,BJM' @9)

If x> %, then we can approximate the sum over the eigen-
values J,, by an integral over the distribution p(J,,), with the
result

X= é@ux —Vdu’x* - B2, (30)

the solution of which is given by

1
=T co 31
X=Tin B B<B (31

where B,.=1/T,= \2u consistent with Eq. (28).

However, for 8> 3., the mode with J M:Z becomes mac-
roscopically occupied, as described above. We, therefore,
have
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x=£, B> B.. (32)

2u
While the integral in Eq. (19) is formally undefined, the or-
dered phase can be studied either by introducing a finite stag-
gered field A, as discussed in Sec. II F, or by solving Eq. (19)
to O(1/N). In either case, the staggered magnetization m, at
zero field is

-7

. (33)

mg=mgy=

We also note a property of the ordered phase that is pe-

culiar to exactly soluble soft spins models such as the spheri-

cal model [16]. The susceptibility associated with the mag-
netization,

m(2) = <(M(t) - ms)2>s’ (34)

diverges as h,— 0 for the unbiased dynamics (s=0) and all
T<T,. (This can be verified by evaluating (¢;) in the auxil-
iary model.) This is in contrast to the usual situation in criti-
cal phenomena where m'® is finite for zero field and T<T,,
diverging only at the critical point.

C. Ordered phase, s >0

We now turn to the ordered phase for positive s. To sim-
plify the analysis, we introduce reduced variables

X(s) =4uTx(s), (35)

Y(s) =277[s — 8ux(s)], (36)

where we explicitly indicate the s-dependence of y and Y.
Comparing with Appendix A, we find X(s)=\": physically,
we identify the quantity (-\"¢,) in Eq. (A2) as the con-
straint force on mode u that arises from the u term in Eq. (1)
and suppresses configurations with extreme values of ¢,. We
also identify Y(s) as a renormalized field s for the auxiliary
system. It is easily verified that while the dynamical free
energy ¢ depends on four parameters (s, 3,u,h,), the prop-
erties of the auxiliary model depends only on (Y,3,X,h,).
Our strategy will be to determine properties of the auxiliary
model in terms of X and Y and then to find the relations
between (X,Y) and the bare parameters of the model.

In the presence of a staggered field &, we have from Eq.
(26) that

X-2
m?

5= hsm- (37)

For Y >0, spontaneous symmetry breaking occurs if the de-
nominator vanishes as 7, —0, as

X=2+\Y+0(h,). (38)

Working at small &, we then take the zeroth order terms in
Eq. (26), arriving at
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2+ \E

auT

1
22 -IY + (@204
(39)

=m*+T f dJp(J)

This allows us to obtain m*=m?+ 2\—ETY1/4+ oY'?).

Finally, we must relate the renormalized field Y to the
bare field s. Again working at zeroth order in h,, Eq. (27)
becomes

2-J+ \J'T/
[22 = JWY + (2 - )22
(40)

25— YR
8u

= Bm2\Y -1+ f dip(J)

Taking s small and positive, the solution has small positive
Y. More specifically, the first term on the right hand side of
Eq. (40) dominates as ¥ —0, leading to v’?=m. [The
same result can be obtained by working at 4,=0 and consid-
ering carefully the limit of large-N. The analog of Eq. (38) is
X=2+Y+O(1/N) and we allow for a finite values of m and
m; when solving Egs. (26) and (27). The remainder of the
analysis follows.]

Taking everything together, in the limit z,— 0" and for
0<s<(T-T,), the leading behavior is

_B B
T 2u * Su(B? - 2u)’

2
m?zm8+—\/+. (42)
B N B —2u

Physically, we can see that the s=0 axis in the phase diagram
of Fig. 1 is singular, but that both x and dy/ds are finite, so
that fluctuations of the activity K(¢) remain finite as 21— 0.
However, as for the case s=0, the fluctuation m® diverges as
h—0, for all cases where the spin-reversal symmetry is
spontaneously broken.

X (41)

D. High-temperature regime

We now turn to temperatures above the critical tempera-
ture, B<f3.. We treat s perturbatively in Egs. (19) and (20),
arriving at

1 1
= +s ,
X Vdu—- B> 8Q2u— BP)V4u - 3

(43)

noting also that
2u - 3
25

B (4u-p)
We also notice that these solutions satisfy (X—2)?~Y >0 at
small s.

As the temperature is lowered toward 7., we see that
dx/ds diverges. This again signals the second-order transi-
tion to the ordered phase. Indeed, it can be shown that this
transition to the ordered phase moves to a higher temperature

for s>0. At the critical point, we have (X—2)>=Y and m;
=m,=0. With these conditions, we can use Egs. (39) and (40)

Y= (44)
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to derive the phase boundary for positive s. In the limit 3
— (B, the system is ordered for s>s,., where

_ 2 :
SC(B) - 3/36 (ﬂc - B) > (45)

which holds to leading order in B.— 8. This function gives
the phase boundary in Fig. 1, and its inverse gives the func-
tion 7T.(s) discussed above.

This completes our analysis of the phase diagram for s
=0. There is an ordered phase separated from a paramagnet
by a second-order phase transition. Loosely, the effect of
positive s is simply to stabilize the ordered phase, so that
spontaneous symmetry breaking takes place at a higher tem-
perature.

E. Anomalous paramagnetic regimes

We now take s<<0 but we remain in the low-temperature
regime with 8> B,.. Working in terms of the reduced vari-
ables X, Y, we take Y <0 so that we have

(X-2)2-Y>0, (46)

and the integrand of Eq. (20) is finite for -2<J,<2. To
make progress with the integrals in Egs. (19) and (20), we
define

1
IAX,Y):Jde(J,)m, (47)
X-J)
_ _ AW
0= [ a0, N

We will consider the limit Y — 07, in which the solution to
Eq. (20) is X—2". The relevant limit is 0<(-Y) <(2-X)?
< 1. Writing y'=-Y and x'=2-X, and after some manipula-
tions presented in Appendix B, we obtain

!

I, = W_lw’yyln(4x'2/y’) +1+ 2)),3/2 +0(x'1?),  (49)
X
4 "3/2
L=1- (;C ) +0('x" ")+ 0(x"?). (50)
ar

The self-consistent Eq. (19) takes the form

BZ \/; 4x!2
—@2-x")=1+—In—+o0(1), (51)
4u Ty

where we define o(1) terms as quantities which vanish for

y<x'?<1. Recalling that X=2-x'=4uTy, we have to lead-
ing order

2 2
ﬁ(z = 2u)° _2”)). (52)

4u\" du*1n3(- 1/Y)

Then, substituting for x’ in Eq. (50) and recalling Eq. (20),
we have
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(a) T hs>0 (b) | A hS T> 7; (C) hs T< 7;
~ [
RN Normal Anomalous | Normal (+) Normal (+)
~ - ‘
Anomalous T ‘ : S Anomalous s
C ‘ SC
\ Normal (-) Normal (-)
\

| As

FIG. 2. (a) Proposed phase diagram for 4,>0. The solid line is a first-order phase transition at which the staggered magnetization and
the activity X are discontinuous. It ends at a critical point at 7=T7, and s=0, but we note that A, is finite at this critical point. The dashed line
is a crossover at which the linear response to a staggered field /i, vanishes. The dashed line is independent of 4, while the solid line
approaches the s=0 axis as i,—0. (b) Behavior as a function of the field &, in the high-temperature regime. For negative s, there is a
crossover from normal to anomalous response: at the crossover X=2 and Y satisfies Eq. (57). For positive s, there is a critical point at s, with
spontaneous symmetry breaking for s>s,. Close to T, the critical value of s, is given by Eq. (45). (c) Behavior as a function of /, in the
low-temperature regime. The solid line for s <0 is a first-order phase transition between states with positive and negative response to the
staggered field, while the line for s >0 is the usual first-order transition between spontaneously ordered states.

(B -2u)’
12833 (= 1Y)

(53)

Noting that y'=-2T%*(s—8uy) we see that when s—0, ¥
>vy’, so that s=8uy+o(1). This simplifies the expressions
for y and ), which become

_B|, (37" }
XA’zu[l_<16u> =97 (54)
X~ é (55)

which hold at leading order in s<<0 and for 8> (..

We refer to the phase with s<<0 and 7<<T,. as an anoma-
lous disordered phase. To understand this terminology, it is
useful to consider the linear response to the field &, which is
given by Eq. (24). Since we have 0 <-Y<(2-X)? with X
>72, this reduces to

(56)

- hs
mS‘

STo_x

We can see that the response to the staggered field is a stag-
gered magnetization in the opposite direction (a diamagnetic
response). In addition, it follows from Eq. (54) that
dmg/dh,~—|s|*3 for s— 0. That is, the diamagnetic re-
sponse diverges. Clearly, such a response would be impos-
sible in the unbiased (s=0) ensemble due to thermodynamic
convexity arguments, but when considering ensembles with
finite s then such arguments do not apply.

Finally, we consider the nature of the phase transition be-
tween ordered and anomalous disordered phases. Comparing
Eqgs. (41) and (54), we note that y is continuous at s=0, and
hence that the activity (K), is continuous also. Thus, we iden-
tify a continuous phase transition at s=0, consistent with Fig.
1. Often, at continuous phase transitions, one may identify a
path between the phases along which the free energy is ana-
lytic and which remains always near the critical point. (For
example, in a ferromagnet one can move between ordered
and disordered phases by applying a small field &, decreasing

the temperature and then removing the field.) However, in
the transition considered here, the (staggered) magnetization
m, is zero for s<<0 but has a finite limit as s— 0*. This
seems to preclude such a route around the critical point. Fur-
thermore, evaluating (dy/ds) indicates that the fluctuations
of the activity diverge as s— 0~ but remain finite as s —0.
This also indicates the absence of a path between the phases
that is continuous near the transition. We turn to this issue in
the next section, where we also discuss the possibility of
diverging length scales near this transition.

F. Effect of the staggered field /; on disordered phases

To understand the behavior near this phase transition in
more detail, we introduce a finite staggered field #,>0 and
note that the crossover between normal (m,>0) and anoma-
lous (m,<0) behavior takes place at y=//2u. If we insist
that y take this value, the self-consistency Eq. (26) becomes

L e
J' dJ,uP(JM) \’m =(B/B)". (57)

For B< . (high temperatures), this equation has a unique
solution for ¥ <0, which signals a crossover from normal to
anomalous behavior, at a value of Y that is independent of
the field h,. On the other hand, in the low-temperature re-
gime B> ., Eq. (57) has no solutions.

One may verify that for large positive s, the solution of
Eq. (26) has X— 0, while for small positive s we have from
Eq. (41) that X>2. Since Eq. (57) establishes that, for low
temperatures, there are no values of Y for which X=2, it
follows that the s-dependent value of X has a jump from a
value greater than 2 to a value smaller than 2. This is a
discontinuous phase transition from normal to anomalous
states. (The field A, is finite, so the concept of a spontane-
ously ordered state is not useful. However, the sign of the
staggered magnetization is positive in the normal state and
negative in the anomalous one.) These arguments lead us to
propose the qualitative phase diagram shown in Fig. 2. The
presence of first-order transitions at finite h, explains the
unusual features of the order-disorder transition at s=h,=0:
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there are indeed no continuous paths between the ordered
and disordered states due to the first-order transition at finite
hy.
The nature of the scaling behavior near 7, in this model is
clearly complicated, depending qualitatively on the order in
which s, A, and T—T.. are taken to zero, and also on the signs
of s and T-T,. A detailed investigation of these finite-/;
transitions is beyond the scope of this paper. However, we
can conclude that the order-disorder transition at h;=s5=0 is
second-order in that y(s) is continuous, but that the sponta-
neous staggered magnetization m, goes discontinuously to
zero at this transition. We again emphasize that all of this
phenomenology is also present in the ferromagnetic model of
Eq. (7), at least for d=3. We expect the qualitative features to
also be present in higher dimensions.
In the ferromagnetic model, we can also consider the cor-
relation lengths of the various phases. These appear through
the k-dependence of the fluctuations

S(k,s) = (|y|?), = (58)

VX-E)*-Y
Recall that E;, =d with equality if k=0.

Two cases are of interest. First, if the denominator van-
ishes at k=0 as in the ordered states, the fluctuations of the
spontaneous magnetization diverge, as described above. Sec-
ond, if X<<d as in the anomalous phase then S(k) has a peak
at a finite wave-vector k* for which E;==X. We interpret
1/|k*| as a characteristic length scale for structures within
this phase. It is interesting to note that this length scale di-
verges as s— 07 in the anomalous phase, and that this is
accompanied by a divergence in the fluctuations of the spon-
taneous magnetization [it may be easily verified that S(0,s
—07) is divergent since X—d~ and Y— 0~ in this limit, by
analogy with the p=2 spin glass].

IV. INTERPRETATION

We have considered in some detail the large deviations of
the dynamical activity in two soft-spin models. We end with
a comparison with previous studies and with some comments
on the relation between the large deviations that we studied
and the phase behavior of the models.

As discussed in the introduction, the central goal of this
study was to investigate the nature and origins of phase
transitions in trajectory space, and their links with dynami-
cally heterogeneous relaxation. For the soft-spin models con-
sidered here, we find a transition at s=0 for 7<<T,. This
transition is second order: it separates trajectories that are
distinct in their (staggered) magnetization, but vary continu-
ously in their activity K. This may be contrasted with the
situation in Kinetically constrained models (KCMs) [12] and
the random energy model (REM) [14], where a first-order
transition separated two populations of trajectories, separated
by a jump in K. We believe that the continuity of K in the
ferromagnetic and p=2 spin-glass models reflects the lack of
long-lived inactive states in those models, in contrast to
KCMs and the REM. That is, the order of the phase transi-
tion can be used to separate two scenarios: glassy systems
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with long-lived inactive states lead to first-order phase tran-
sitions while models with simple coarsening dynamics lead
to continuous transitions. (The models considered here real-
ize the second scenario: the link with coarsening is discussed
further below.)

The difference between these two scenarios is further em-
phasized by the nature of dynamical heterogeneities. The
anomalous paramagnetic state in the ferromagnetic model is
characterized by a domain size 1/|k*|: note that these do-
mains are structures that control both static and dynamic
features in ferromagnetic models. On the other hand, glassy
systems with long-lived inactive states typically have dy-
namical length scales much larger than those that can be
extracted from simple static correlation functions. In the re-
mainder of this closing section, we further compare and con-
trast the results we have obtained with those of previous
studies. However, the distinction between the scenarios that
we have described represents a key conclusion of this work,
in linking the nature of relaxation to the large deviations of
the dynamical activity K.

Based on the close relationship between the ferromagnetic
and spin-glass models, the form of the phase diagram in Fig.
1 is perhaps not too surprising: a similar result was found in
Ref. [11] for the infinite-ranged (mean-field) Ising model.
The equilibrium critical point leads to a dynamical phase
transition at s=0 below the critical temperature. However,
instead of being first order as in the fully connected ferro-
magnetic model, the phase transition we have found is sec-
ond order. Unlike the fully connected ferromagnet, the model
of Eq. (7) exhibits diverging length scales. While the pres-
ence of a diverging length scale throughout the ordered
phase may be a peculiarity of our particular model, the di-
verging length scale as s— 0~ within the anomalous phase
seems to be a feature that merits further investigation.

In particular, the existence of the anomalous phase seems
to be linked to the existence of aging/coarsening solutions to
the relaxational dynamics of these models. These solutions
are characterized by m,=0 as in the anomalous phase and
exhibit a length scale that grows with the time that has
elapsed since a quench from above T.. It can be readily
shown that if multiple solutions to the equations of motion
exist with different activities, then the field s acts to select
the solutions with the larger (s>0) or smaller (s<0) activ-
ity, leading to a transition at s=0. However, while the aging
dynamics of the p=2 spin glass of Eq. (1) can be solved [15],
we have not yet established any clear connection between
these dynamics and the anomalous disordered phases dis-
cussed here. This too remains an area for future study.

We also compare the results shown here with those ob-
tained for kinetically constrained models [12]. In both cases,
active and inactive phases coexist at the s=0 axis. However,
there are two important differences. First, in the kinetically
constrained models considered in [12], the transition is first-
order, signaling the coexistence of active and inactive solu-
tions to the equations of motion. These have been interpreted
as “ergodic fluid” and “nonergodic glass” states [7,8,12,13].
On the other hand, the continuous transition in the soft-spin
models is second order: the anomalous phase is characterized
by a diverging correlation length that we have tentatively
attributed to the growing length scale associated with the
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aging behavior of the system. Taking the large-time limit of
the aging solution, the activity of the system approaches that
of the ordered state: the active (aging) and inactive (ordered)
phase are not separated by a gap in the activity, unlike the
kinetically constrained models.

Second, we emphasize that in the kinetically constrained
models, the s=0 axis of the phase diagram belongs to the
active phase. Introducing any s>0 leads immediately to an
inactive phase that is qualitatively different from the unbi-
ased state at s=0. On the other hand, in the models consid-
ered here, the s=0 axis belongs to the inactive (ordered
phase): it is the introduction of any s<<O that leads to an
active phase that differs from the unbiased steady state.

Finally we note that contrary to its p =3 counterparts, the
thermodynamic properties of the p=2 spin glass have only a
single transition temperature and do not display any kind of
replica symmetry breaking. Here, we have analyzed this
problem by diagonalizing the quadratic dynamical action: a
method that applies only for p=2. However, the same results
can be verified using the replica trick and integrating out the
disorder. The application of such methods to models with p
=3 would provide further insight into the behavior of large
deviations of the activity in “glassy” models.
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APPENDIX A: SADDLE-POINT INTEGRATION
OF THE DYNAMICAL ACTION

Here, we show how the functional-integral (15) can be
cast in the form (17). We introduce the following represen-
tation of unity:

1= f DF(DX@(X(;) - %E ¢i(¢))
(A1)

“ 5(3«(:) _ }VE 3,0 ¢,L(r>).

Implementing these constraints (A1) by the Lagrange
multipliers X, X\, Eq. (15) becomes

_NDXNDX
Z(s,1) = f DXDX—Z—Dd)DqS[e‘NSO(’) 510
Tl

(A2)

with
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So(t) = f f dr'IN()X() + N X ) + 4uX () X(t')]
0
(A3)

and

Sl(t) =f dt,E {%ﬂ,[% +)\(t,) _BJ/J:| ¢/.1,
0 ®

—Bd(rv}ﬁ—%},

where we again omit the dependence of the fields ¢ and ¢ on
the time ¢', for brevity.

(A4)

In the N—oc limit, the integrals over X, X, \, and N can
be carried out through a saddle-point approximation. We re-
place X(), X(¢), N(r), and \(¢) by their saddle-point values y,
X> N, and \*. In particular, differentiating the action (NS,
+S,) with respect to X’ and X, we arrive at

N =—4duy, (A5)

N'=—duy. (A6)

Thus, performing the saddle-point integrals in Eq. (A2) leads
to Eq. (17) in the main text. Similarly, differentiating with

respect to A and \ leads to the self-consistency Eqs. (19) and
(20).

APPENDIX B: COMPUTATION OF y IN THE LOW-
TEMPERATURE DISORDERED PHASE

Here we discuss the solutions of the self-consistency Eqs.
(19) and (20) for s <0 and T<T,. Using the notation of Sec.
IIT E, we can write the integrals of Eqs. (47) and (48) as

' dz A —z) (' —2)2
I1=f 5 (B1)
—44x! £T \z +y'
’ [ ’ ’ 2
X d —_ r4 —-7) - —
= f dz —zV4(x ’ 22) (x"-2) ’ (B2)
4y’ 2T N2 +y'

Since we are at B> B, and s<0, we have x’,y’ >0. The
small s limit becomes the limit y’ — 0 but if we take the limit
for y’ — 0 keeping x’ >0 we have I;(x’,y’ — 0) — 0, and the
self-consistency condition cannot be satisfied. We therefore
take both x’ and y’ to zero together: we assume that y’
<x'? which can be verified a posteriori through the solution
to Eq. (51). The result is x" ~[In(1/y’)]™2, consistent with
our assumptions.
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We start by splitting the integral in Eq. (B1) into three
parts

I fx’ dz Nx'(4-x')
1= ~_ 5, 5
v 277. \*'y’+22

+ f ¥ dz N4 = 2) = (¢ =2 =V (4= x)
2w N2+

i~ (40" — ) — (v — »)2
+f dz NAW' —2) - (' —2)” (B3)

[
-4 2T V2 +y!

In the limit of y’ <x'?, the first integral has a divergent con-
tribution (\"7/ m)In(4x'%/y’). In the second and third parts,
we can take the limit y’ — 0 directly in the integrand. If we
then take the limit of small x’ then we find that the second
integral vanishes as O(yx') while the third approaches unity.
Thus, we arrive at Eq. (49).

We now evaluate the (y'/x'?)—0 limit of the expression
(B2). We use a similar method, splitting the integral into two
terms
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' dz -z
12=1+J —\4(x' =) - (x' -2} —=-1
—x! 27T 2

Nzo+y'
' dz -z
+ —\'4(x’—z)—(x’—z)2<——1).
fx'—4 2m V2 +y!

(B4)

In the first integral, we introduce w=z/x" and o=y’ /x'2, thus
arriving at

1
(xl)?)/ZJ d_W( _Wz_1)\1’/4(1—W)—XI(1—W)2).

| 2m\o+w

(B5)

The leading behavior of this quantity can be evaluated by
setting directly o=x"=0 into the integral, so that this contri-
bution to I, is =4(x")*?/(3m)[1+0(1)].

For the second integral in Eq. (B4), we have z2=x'2, so
we expand the integrand in powers of o=y'/ zz.lhe leading
term vanishes and the second term is O(y'/vx'). Writing
(y"/\x)=(x")¥?(y"/x'?), this term is smaller first term in Eq.
(B4), which is O((x")¥?). Thus, we arrive at

4(x/)3/2

L=1-
2 3

(B6)

as given in Eq. (50) of the main text.
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