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We consider an isolated macroscopic quantum system. Let H be a microcanonical “energy shell,” i.e., a
subspace of the system’s Hilbert space spanned by the �finitely� many energy eigenstates with energies between
E and E+�E. The thermal equilibrium macrostate at energy E corresponds to a subspace Heq of H such that
dim Heq /dim H is close to 1. We say that a system with state vector ��H is in thermal equilibrium if � is
“close” to Heq. We show that for “typical” Hamiltonians with given eigenvalues, all initial state vectors �0

evolve in such a way that �t is in thermal equilibrium for most times t. This result is closely related to von
Neumann’s quantum ergodic theorem of 1929.

DOI: 10.1103/PhysRevE.81.011109 PACS number�s�: 05.30.�d, 03.65.�w

I. INTRODUCTION

If a hot brick is brought in contact with a cold brick, and
the two bricks are otherwise isolated, then energy will flow
from the hot to the cold brick until their temperatures be-
come equal, i.e., the system equilibrates. Since the bricks
ultimately consist of electrons and nuclei, they form a quan-
tum system with a huge number ��1020� of particles; this is
an example of an isolated macroscopic quantum system.

From a microscopic point of view the state of the system
at time t is described by a vector

��t� = e−iHt��0� �1�

in the system’s Hilbert space or a density matrix

��t� = e−iHt��0�eiHt, �2�

where H is the Hamiltonian of the isolated system and we
have set �=1. In this paper we prove a theorem asserting that
for a sufficiently large quantum system with a typical Hamil-
tonian and an arbitrary initial state ��0�, the system’s state
��t� spends most of the time, in the long run, in thermal
equilibrium. �Of course, before the system even reaches ther-
mal equilibrium there could be a waiting time longer than the
present age of the universe.� This implies the same behavior
for an arbitrary ��0�.

This behavior of isolated macroscopic quantum systems is
an instance of a phenomenon we call normal typicality �1�, a
version of which is expressed in von Neumann’s quantum
ergodic theorem �2�. However, our result falls outside the
scope of von Neumann’s theorem because of the technical
assumptions made in that theorem. Our result also differs
from the related results in �3–8�, which use different notions
of when a system is in an equilibrium state. In particular they
do not regard the thermal equilibrium of an isolated macro-

scopic system as corresponding to its wave function being
close to a subspace Heq of Hilbert space. See Sec. VI for
further discussion.

The rest of this paper is organized as follows. In the re-
mainder of Sec. I, we define more precisely what we mean
by thermal equilibrium. In Sec. II we outline the problem
and our result, Theorem 1. In Sec. III we prove the key
estimate for the proof of Theorem 1. In Sec. IV we describe
examples of exceptional Hamiltonians, illustrating how a
system can fail to ever approach thermal equilibrium. In Sec.
V we compare our result to the situation with classical sys-
tems. In Sec. VI we discuss related works.

A. Equilibrium subspace

Let Htotal be the Hilbert space of a macroscopic system in
a box �, and let H be its Hamiltonian. Let ��	� be an ortho-
normal basis of Htotal consisting of eigenvectors of H with
eigenvalues E	. Consider an energy interval �E ,E+�E�,
where �E is small on the macroscopic scale but large enough
for the interval �E ,E+�E� to contain very many eigenvalues.
Let H�Htotal be the corresponding subspace,

H = span��	:E	 � �E,E + �E�� . �3�

A subspace such as H is often called a microcanonical en-
ergy shell. Let D be the dimension of H, i.e., the number of
energy levels, including multiplicities, between E and E
+�E. In the following we consider only quantum states �
that lie in H, i.e., of the form

� = �
	

c	�	 �4�

with c	�0 only for 	 such that E	� �E ,E+�E�.
According to the analysis of von Neumann �2,9� and oth-

ers �cf. �10��, the macroscopic �coarse-grained� observables
in a macroscopic quantum system can be naturally
“rounded” to form a set of commuting operators,

�Mi�i=1,. . .,k. �5�

The operators are defined on Htotal, but since we can take
them to include �and thus commute with� a coarse-grained
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Hamiltonian, we can �and will� take them to commute with
the projection to H, and thus to map H to itself. We write

= �m1 , . . . ,mk� for a list of eigenvalues mi of the restriction
of Mi to H, and H
 for the joint eigenspace. Such a set of
operators generates an orthogonal decomposition of the Hil-
bert space

H = �


H
, �6�

where each H
, called a macrospace, represents a macrostate
of the system. The dimension of H
 is denoted by d
; note
that �
d
=D. If any H
 has a dimension of zero, we remove
it from the family �H
�. In practice, d
�1, since we are
considering a macroscopic system with coarse-grained ob-
servables.

It can be shown in many cases, and is expected to be true
generally, that among the macrospaces H
 there is a particu-
lar macrospace Heq, the one corresponding to thermal equi-
librium, such that

deq/D 	 1, �7�

indeed with the difference 1−deq /D exponentially small in
the number of particles.1 This implies, in particular, that each
of the macro-observables Mi is “nearly constant” on the en-
ergy shell H in the sense that one of its eigenvalues has
multiplicity at least deq	D. We say that a system with quan-
tum state � �with ���=1� is in thermal equilibrium if � is
very close �in the Hilbert space norm� to Heq, i.e., if


��Peq��� 	 1, �8�

where Peq is the projection operator to Heq. The correspond-
ing relation for density matrices is

Tr�Peq�� 	 1. �9�

Condition �8� implies that a quantum measurement of the
macroscopic observable Mi on a system with wave function
� will yield, with probability close to 1, the “equilibrium”
value of Mi. Likewise, a joint measurement of M1 , . . . ,Mk
will yield, with probability close to 1, their equilibrium val-
ues.

Let ��d�� be the uniform measure on the unit sphere in H
�12,13�. It follows from Eq. �7� that most � relative to � are
in thermal equilibrium. Indeed,


 
��Peq�����d�� =
1

D
Tr Peq =

deq

D
	 1. �10�

Since the quantity 
��Peq��� is bounded from above by 1,
most � must satisfy Eq. �8�.2

B. Examples of equilibrium subspaces

To illustrate the decomposition into macrostates, we de-
scribe two examples. As example 1, consider a system com-
posed of two identical subsystems designated 1 and 2, e.g.,
the bricks mentioned in the beginning of this paper, with
Hilbert space Htotal=H1 � H2. The Hamiltonian of the total
system is

H = H1 + H2 + 
V , �11�

where H1 and H2 are the Hamiltonians of subsystems 1 and
2, respectively, and 
V is a small interaction between the two
subsystems. We assume that H1, H2, and H are positive op-
erators. Let H be spanned by the eigenfunctions of H with
energies between E and E+�E.

In this example, we consider just a single macro-
observable M, which is a projected and coarse-grained ver-
sion of H1 /E, i.e., of the fraction of the energy that is con-
tained in subsystem 1 alone. We cannot take M to simply
equal to H1 /E because H1 is defined on Htotal, not H, and
will generically not map H to itself, while we would like M
to be an operator on H. To obtain an operator on H, let P be
the projection Htotal→H and set

H1� = PH1P �12�

�more precisely, H1� is PH1 restricted to H�. Note that H1� is a
positive operator, but might have eigenvalues greater than E.
Now define3

M = f�H1�/E� �13�

with the coarse-graining function

f�x� = �
0 if x � 0.01

0.02 if x � �0.01,0.03�
0.04 if x � �0.03,0.05�
etc. . . . .

� �14�

H
 are the eigenspaces of M; clearly, �
H
=H. If, as we
assume, 
V is small, then we expect H0.5=Heq to have the
overwhelming majority of dimensions. In a thorough treat-
ment we would need to prove this claim, as well as that H1� is
not too different from H1, but we do not give such a treat-
ment here.

As example 2, consider N bosons �fermions� in a box �
= �0,L�3�R3; i.e., Htotal consists of the square-integrable
�anti�symmetric functions on �N. Let the Hamiltonian be

1This dominance of the equilibrium state can be expressed in
terms of the �Boltzmann� entropy S
 of a macroscopic system in the
macrostate 
, be it the equilibrium state or some other �see �11��,
defined as S
=kB log d
, where kB is the Boltzmann constant: deq /D
being close to 1 just expresses the fact that the entropy of the
equilibrium state is close to the microcanonical entropy Smc, i.e.,
Seq=kB log deq	kB log D=Smc.

2It should in fact be true for a large class of observables A on H
that, for most � relative to �, 
��A���	Tr��mcA�, where �mc is the
microcanonical density matrix, i.e., 1 /D times the identity on H.
This is relevant to the various results on thermalization described in
Sec. VI.

3Recall that the application of a function f to a self-adjoint matrix
A is defined to be f�A�=�f�a	���	�
�	� if the spectral decomposi-
tion of A reads A=�a	��	�
�	�.
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H = −
1

2m
�
i=1

N

�i
2 + �

i�j
v��qi − q j�� , �15�

where the Laplacian �i
2 has Dirichlet boundary conditions,

v�r� is a given pair potential, and qi is the triple of position
coordinates of the ith particle. Let H again be spanned by the
eigenfunctions with energies between E and E+�E.

In this example, we consider again a single macro-
observable M, based on the operator Nleft for the number of
particles in the left half of the box �,

Nleft��q1, . . . ,qN� = # �i:qi � �0,L/2� � �0,L�2���q1, . . . ,qN� .

�16�

Note that the spectrum of Nleft consists of the N+1 eigenval-
ues 0 ,1 ,2 , . . . ,N. To obtain an operator on H, let P be the
projection Htotal→H and set Nleft� = PNleftP. Note that the
spectrum of Nleft� is still contained in �0,N�. Now define M
= f�Nleft� /N� with the coarse-graining function �14�. We ex-
pect that for large N, the eigenspace with an eigenvalue of
0.5, Heq=H0.5, has the overwhelming majority of dimen-
sions �and that Nleft� 	Nleft�.

II. FORMULATION OF PROBLEM AND RESULTS

Our goal is to show that, for typical macroscopic quantum
systems,


��t��Peq���t�� 	 1 for most t . �17�

To see this, we compute the time average of 
��t��Peq���t��.
We denote the time average of a time-dependent quantity f�t�
by an overbar,

f�t� = lim
T→�

1

T



0

T

dt f�t� . �18�

Since 
��t��Peq���t�� is always a real number between 0 and
1, it follows that if its time average is close to 1 then it must
be close to 1 most of the time. Moreover, for �-most ��0�,
where � is the uniform measure on the unit sphere of H, ��t�
is in thermal equilibrium most of the time. This result fol-
lows from Fubini’s theorem �which implies that taking the �
average commutes with taking the time average� and the uni-
tary invariance of �,


 
��t��Peq���t����d�� =
 
��eiHtPeqe−iHt�����d��

=
 
��Peq�����d�� 	 1. �19�

That is, the ensemble average of the time average is near 1,
so, for �-most ��0�, the time average must be near 1, which
implies our claim above. So the interesting question is about
the behavior of exceptional ��0�, e.g., of systems which are
not in thermal equilibrium at t=0. Do they ever go to thermal
equilibrium?

As we will show, for many Hamiltonians statement �17�
holds in fact for all ��0��H. From now on, let H denote the
restriction of the Hamiltonian to H, and let �1 , . . . ,�D be an

orthonormal basis of H consisting of eigenvectors of the
Hamiltonian H with eigenvalues E1 , . . . ,ED. If

��0� = �
	=1

D

c	�	, c	 = 
�	���0�� , �20�

then

��t� = �
	=1

D

e−iE	tc	�	. �21�

Thus,


��t��Peq���t�� = �
	,�=1

D

ei�E	−E��tc	
�c�
�	�Peq���� . �22�

If H is nondegenerate �which is the generic case� then E	

−E� vanishes only for 	=�, so the time averaged exponen-
tial is �	�, and


��t��Peq���t�� = �
	=1

D

�c	�2
�	�Peq��	� . �23�

Thus, for the system to be in thermal equilibrium most of the
time it is necessary and sufficient that the right-hand side of
Eq. �23� is close to 1.

Now if an energy eigenstate �	 is not itself in thermal
equilibrium then when ��0�=�	 the system is never in ther-
mal equilibrium since this state is stationary. Conversely, if
we have that


�	�Peq��	� 	 1 for all 	 , �24�

then the system will be in thermal equilibrium most of the
time for all ��0�. This follows directly from Eq. �23� since
the right-hand side of Eq. �23� is an average of 
�	�Peq��	�.
We show below that Eq. �24� is true for “most” Hamiltonians
and, thus, for most Hamiltonians it is the case that every
wave function spends most of the time in thermal equilib-
rium.

A. Main result

The measure of most we use is the following: for any
given D �distinct� energy values E1 , . . . ,ED, we consider the
uniform distribution �Ham over all Hamiltonians with these
eigenvalues. Choosing H at random with distribution �Ham is
equivalent to choosing the eigenbasis ��	� according to the
uniform distribution �ONB over all orthonormal bases of H,
and setting H=�	E	��	�
�	�. The measure �ONB can be de-
fined as follows: choosing a random basis according to �ONB
amounts to choosing �1 according to the uniform distribution
over the unit sphere in H, then �2 according to the uniform
distribution over the unit sphere in the orthogonal comple-
ment of �1, etc. Alternatively, �ONB can be defined in terms
of the Haar measure �U�D� on the group U�D� of unitary D
�D matrices: any given orthonormal basis ��	� of H defines
a one-to-one correspondence between U�D� and the set of all
orthonormal bases of H, associating with the matrix U
= �U	���U�D� the basis
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�	 = �
�=1

D

U	���. �25�

The image of the Haar measure under this correspondence is
in fact independent of the choice of ���� �because of the
invariance of the Haar measure under right multiplication�
and is �ONB.

Put differently, the ensemble �Ham of Hamiltonians can be
obtained by starting from a given Hamiltonian H0 on H
�with distinct eigenvalues E1 , . . . ,ED� and setting

H = UH0U−1 �26�

with U a random unitary matrix chosen according to the
Haar measure. Note that, while considering different possible
Hamiltonians H in H, we keep Heq fixed, although in prac-
tice it would often be reasonable to select Heq in a way that
depends on H �as we did in the examples of Sec. I B�.

For our purpose it is convenient to choose the basis ��	�
in such a way that the first deq basis vectors lie in Heq and the
other ones are orthogonal to Heq. Then, we have that


�	�Peq��	� = �
�=1

deq

�U	��2 �27�

with U	� the unitary matrix satisfying Eq. �25�.
We will show first, in Lemma 1, that for every 0���1,

if D is sufficiently large and deq /D sufficiently close to 1,
then most orthonormal bases ��	� are such that


�	�Peq��	� � 1 − � for all 	 . �28�

This inequality is a precise version of Eq. �24�. How close to
1 should deq /D be? The fact that the average of 
��Peq���
over all wave functions � on the unit sphere of H equals
deq /D, mentioned already in Eq. �10�, implies that Eq. �28�
cannot be true for most orthonormal bases if deq /D�1−�.
To have enough wiggling room, we require that

deq

D
� 1 −

�

2
. �29�

We will show then, in Theorem 1, that for every �arbi-
trarily small� 0���1 and for sufficiently large D, most H
are such that for every initial wave function ��0��H with
���0��=1, the system will spend most of the time in thermal
equilibrium with accuracy 1−�, where we say that a system
with wave function � is in thermal equilibrium with accuracy
1−� if


��Peq��� � 1 − � . �30�

This inequality is a precise version of Eq. �8�. In order to
have no more exceptions in time than the fraction 0���
�1, we need to set � in Eqs. �28� and �29� equal to ���.

Lemma 1. Let �U�D� denote the Haar measure on U�D�,
and

S� ª�U � U�D�� ∀ 	:�
�=1

deq

�U	��2 � 1 − �� . �31�

Then for all 0���1 and 0���1, there exists D0
=D0�� ,���0 such that

if D � D0, deq � �1 − �/2�D then �U�D��S�� � 1 − � .

�32�

The proof of Lemma 1 is given in Sec. III. It also shows
that D0 can, for example, be chosen to be

D0��,�� = max�103�−2 log�4/��,106�−4� . �33�

Here and throughout this paper, log denotes the natural loga-
rithm. From Eq. �27�, we obtain

Theorem 1. For all � ,� ,��� �0,1�, all integers D
�D0���� ,�� and all integers deq� �1−��� /2�D the follow-
ing is true: let H be a Hilbert space of dimension D, let Heq
be a subspace of dimension deq, let Peq denote the projection
to Heq, let E1 , . . . ,ED be pairwise distinct but otherwise ar-
bitrary, and choose a Hamiltonian at random with eigenval-
ues E	 and an eigenbasis �	 that is uniformly distributed.
Then, with probability at least 1−�, every initial quantum
state will spend �1−���-most of the time in thermal equilib-
rium as defined in Eq. �30�, i.e.,

lim inf
T→�

1

T
��0 � t � T:
��t��Peq���t�� � 1 − ��� � 1 − ��,

�34�

where �M� denotes the size �Lebesgue measure� of the set M.
Proof. It follows from Lemma 1 that under the hypotheses

of Theorem 1,


��t��Peq���t�� � 1 − ���

with probability at least 1−�. Thus, since ���

�1− 
��t��Peq���t�����̃, where �̃ is the lim supT→� of the
fraction of the time in �0,T� for which 
��t��Peq���t���1

−�, it follows that �̃���. �

B. Remarks

Normal typicality. Theorem 1 can be strengthened; with
the same sense of ‘‘most’’ as in Theorem 1, we have that for
most Hamiltonians and for all ��0�,


��t��P
���t�� 	
dim H


dim H
, for all 
 , �35�

for most t. For 
=eq, this implies that 
��t��Peq���t��	1.
This stronger statement we have called normal typicality �1�.
A version of normal typicality was proven by von Neumann
�2�. However, because of the technical assumptions he made,
von Neumann’s result, while much more difficult, does not
quite cover the simple result of this paper.

Typicality and probability. When we express that some-
thing is true for most H or most � relative to some normal-
ized measure �, it is often convenient to use the language of
probability theory and speak of a random H or � chosen with
distribution �. However, by this we do not mean to imply
that the actual H or � in a concrete physical situation is
random, nor that one would obtain, in repetitions of the ex-
periment or in a class of similar experiments, different H’s or
�’s whose empirical distribution is close to �. That would be
a misinterpretation of the measure �, one that suggests the
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question whether perhaps the actual distribution in reality
could be nonuniform. This question misses the point, as there
need not be any actual distribution in reality. Rather, Theo-
rem 1 means that the set of “bad” Hamiltonians has very
small measure �Ham.

Consequences for example 2. From Lemma 1 it follows
for example 2 that typical Hamiltonians of the form �26�
with H0 given by the right-hand side of Eq. �15� are such that
all eigenfunctions are close to H0.5; this fact in turn strongly
suggests �although we have not proved this� that the eigen-
functions are essentially concentrated on those configura-
tions that have approximately 50% of the particles in the left
half and 50% in the right half of the box.

Equilibrium statistical mechanics. Theorem 1 implies
that, for typical H, every ��0��H is such that for most t,


��t��Mi���t�� 	 Tr��mcMi� , �36�

where �mc is the standard microcanonical density matrix �i.e.,
1 /D times the projection Htotal→H�, for all macro-
observables Mi as described in Sec. I A. This justifies replac-
ing ���t��
��t�� with �mc as far as macro-observables in equi-
librium are concerned. However, this does not—by itself—
justify the use of �mc for observables A not among �Mi�. For
example, consider a microscopic observable A that is not
‘‘nearly constant’’ on the energy shell H. Then, standard
equilibrium statistical mechanics tells us to use �mc for the
expected value of A in equilibrium. We believe that this is in
fact correct for most such observables, but it is not covered
by Theorem 1. Results concerning many such observables
are described in Sec. VI. These results, according to which,
in an appropriate sense,


��t��A���t�� 	 Tr��mcA� �37�

for suitable A and ��0�, are valid only in quantum mechan-
ics. The justification of the broad use of �mc in classical
statistical mechanics relies on rather different sorts of results
requiring different kinds of considerations.

III. PROOF OF LEMMA 1

Proof. Let us write P for the Haar measure �U�D�, and let

p ª P��
	=1

D ��
�=1

deq

�U	��2 � 1 − ��� . �38�

Observe that

p = 1 − P��
	=1

D ��
�=1

deq

�U	��2 � 1 − ��� �39�

�1 − D max
	

P��
�=1

deq

�U	��2 � 1 − �� . �40�

Since U= �U	�� is a random unitary matrix with Haar distri-
bution, its 	th column is a random unit vector U� ª �U	���

whose distribution is uniform over the unit sphere of CD �i.e.,
the distribution is, up to a normalizing constant, the surface
area measure�. Therefore, the probability in the last line does

not, in fact, depend on 	, and so the step of taking the maxi-
mum over 	 can be omitted.

A random unit vector such as U� can be thought of as
arising from a random Gaussian vector G� by normalization:
let G� for �=1, . . . ,D be independent complex Gaussian
random variables with mean zero and variance E�G��2
=1 /D; i.e., Re G� and Im G� are independent real Gaussian
random variables with mean zero and variance 1 /2D. Then
the distribution of G� = �G1 , . . . ,GD� is symmetric under rota-
tions from U�D�, and thus

G�

�G� �
= U� in distribution, with �G� �2 = �

�=1

D

�G��2.

�41�

We thus have that

p � 1 − DP��
�=1

deq �G��2

�G� �2
� 1 − �� . �42�

To estimate the probability on the right-hand side of Eq.
�42�, we introduce three different events:

A���� ª ���G� �2 − 1� � ��� , �43�

B���� ª ��1 − ���
deq

D
� �

�=1

deq

�G��2 � �1 + ���
deq

D � ,

�44�

C���� ª ��1 − ���
deq

D
� �

�=1

deq �G��2

�G� �2
� �1 + ���

deq

D � .

�45�

Let us now assume that

deq

D
� 1 −

�

2
. �46�

We then have that

�1 − �/2�
deq

D
� 1 − � +

�2

4
� 1 − � , �47�

so that

C��/2� � ��1 − �/2�
deq

D
� �

�=1

deq �G��2

�G� �2�
��1 − � � �

�=1

deq �G��2

�G� �2� , �48�

and thus

p � 1 − DP�Cc��/2�� , �49�

where the superscript c means complement. Our goal is to
find a good upper bound for P�Cc�� /2��.

If the event A���� occurs for 0����
1
2 then
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1 − �� �
1

�G� �2
� 1 + 2��, �50�

and, consequently, if A�����B���� occurs then

deq

D
�1 − ����1 − ��� �

�
�=1

deq

�G��2

�G� �2
�

deq

D
�1 + 2����1 + ��� .

�51�

It is now easy to see that A�����B�����C�2��+��
+2�����, so if we choose ��=��=� /8 we obtain that

A��

8
� � B��

8
� � C�3

8
� +

1

32
�2� � C��/2� for 0 � � � 1.

�52�

We thus have the following upper bound:

P„Cc��/2�… � P„Ac��/8�… + P„Bc��/8�… . �53�

To find an estimate of P(A�� /8�) and P(B�� /8�) we use
the large deviations principle. It is convenient to use a
slightly stronger version of this principle than usual �see Sec.
2.2.1 of �14��, which states that for a sequence of N indepen-
dent and identically distributed �i.i.d.� random variables Xi,

P���
i=1

N
Xi

N
− E�X1�� � �� � 2e−NI�E�X1�+��, �54�

where I�x� is the rate function �14� associated with the dis-
tribution of Xi, defined to be

I�x� = sup
��0

��x − log Ee�Xi� . �55�

In our case, where Xi will be the square of a standard normal
random variable, the rate function is

I�x� = 1
2 �x − 1 − log x� ∀ x � 1, �56�

as a simple calculation shows.
To estimate P(A�� /8�), set

N = 2D, X� = 2D�Re G��2, XD+� = 2D�Im G��2 for �

= 1, . . . ,D . �57�

Thus, for i=1, . . . ,2D, Xi are i.i.d. variables with mean EXi
=2DE�Re Gi�2=1; we thus obtain

P„Ac��/8�… = P���G� �2 − 1� � �/8� �58�

=P���
�=1

D

�G��2 − 1� � �/8� �59�

=P���
i=1

2D
Xi

2D
− 1� � �/8� �60�

�2e−2DI�1+�/8� �61�

=2e−D��/8−log�1+�/8�� �62�

�2 exp�−
D�2

192
� . �63�

In the last step we have used log�1+x��x−x2 /3 for 0�x
�1 /2.

We use a completely analogous argument for B, setting

N = 2deq, X� = 2D�Re G��2,

XD+� = 2D�Im G��2, for � = 1, . . . ,deq, �64�

and obtain that

P„Bc��/8�… = P���
�=1

deq

�G��2 −
deq

D
�/

deq

D
� �/8� �65�

=P���
i=1

2deq Xi

2deq
− 1� � �/8� �66�

�2 exp�−
deq�2

192
� . �67�

From Eqs. �53�, �63�, and �67� it follows that

P„Cc��/2�… � 2 exp�−
deq�2

192
� + 2 exp�−

D�2

192
�

� 4 exp�−
D�2

384
� , �68�

where we have used deq�D /2. Therefore, by Eq. �49�,

p � 1 − 4D exp�−
D�2

384
� . �69�

The last term converges to zero as D→�, so there exists
D0�0 such that for all D�D0,

p � 1 − � , �70�

which is what we wanted to show. In order to check this for
D0 specified in Eq. �33� right after Lemma 1, note that the
desired relation

4D exp�−
D�2

384
� � � �71�

is equivalent to

D� �2

384
−

log D

D
� � log�4/�� . �72�

Thus, it suffices that D�103�−2 log�4 /�� and

log D

D
� 10−3�2. �73�

Since log D��D for all positive numbers D, condition �73�
will be satisfied if �D�103�−2, i.e., if D�106�−4. �

IV. EXAMPLES OF SYSTEMS THAT DO NOT APPROACH
THERMAL EQUILIBRIUM

We shall now present examples of atypical behavior,
namely, examples of bad Hamiltonians, i.e., Hamiltonians for

GOLDSTEIN et al. PHYSICAL REVIEW E 81, 011109 �2010�

011109-6



which not all wave functions approach thermal equilibrium
�or, equivalently, for which Eq. �24� is not satisfied�. Accord-
ing to Theorem 1, bad Hamiltonians form a very small subset
of the set of all Hamiltonians. Of course, to establish that Eq.
�24� holds for a particular Hamiltonian can be a formidable
challenge. Moreover, the small subset might include all stan-
dard many-body Hamiltonians �e.g., all those which are a
sum of kinetic and potential energies�. But there is no a
priori reason to believe that this should be the case.

The first example consists of two noninteracting sub-
systems. This can be expressed in the framework provided
by example 1 in Sec. I B with the Hamiltonian H=H1+H2
+
V by setting 
=0. Let ��i

1� be an orthonormal basis of H1
consisting of eigenvectors of H1 with eigenvalues Ei

1, and let
�� j

2� be one of H2 consisting of eigenvectors of H2 with
eigenvalues Ej

2. Clearly, for 
=0 not every wave function
will approach thermal equilibrium. After all, in this case,
�i

1
� � j

2 forms an eigenbasis of H, while

H = span��i
1

� � j
2:Ei

1 + Ej
2 � �E,E + �E�� , �74�

Heq = span��i
1

� � j
2:Ei

1 � �0.49E,0.51E�, Ei
1 + Ej

2 � �E,E

+ �E�� . �75�

Thus, any �i
1

� � j
2 such that Ei

1+Ej
2� �E ,E+�E� but, say,

Ei
1�0.49E, will be an example of an element of H that is

orthogonal to Heq and, as it is an eigenfunction of H, forever
remains orthogonal to Heq.

As another example, we conjecture that some wave func-
tions will fail to approach thermal equilibrium also when 
 is
nonzero but sufficiently small. We prove this now for a
slightly simplified setting, corresponding to the following
modification of example 1 of Sec. I B. For the usual energy
interval �E ,E+�E�, let H be, independently of 
, given by
Eq. �74�; and, instead of H1+H2+
V, let H be given by

H = H�
� = P�H1 + H2 + 
V�P , �76�

where P is the projection to H. Then H defines a time evo-
lution on H that depends on 
. �Note that H is still an “en-
ergy shell” for all sufficiently small 
, as all nonzero eigen-
values of H�
� are still contained in an interval just slightly
larger than �E ,E+�E�, and the corresponding eigenvectors
lie in H.� Let Heq for 
�0 also be given by Eq. �75�. Again,
choose one particular �i

1 and one particular � j
2 �indepen-

dently of 
�, so that Ei
1+Ej

2� �E ,E+�E� and Ei
1�0.49E, and

consider as the initial state of the system again

��t = 0� = �i
1

� � j
2, �77�

which evolves to

��
,t� = e−iH�
�t�i
1

� � j
2. �78�

Suppose for simplicity that H�
=0�=H1+H2 is
nondegenerate.4 Then, according to standard results of per-
turbation theory �15�, also H�
�, regarded as an operator on
H, is nondegenerate for all 
� �−
0 ,
0� for some 
0�0;
moreover, its eigenvalues E�
� depend continuously �even
analytically� on 
, and so do the eigenspaces. In particular, it
is possible to choose for every 
� �−
0 ,
0� a normalized
eigenstate ��
��H of H�
� with eigenvalue E�
� in such a
way that ��
� and E�
� depend continuously on 
, and
��
=0�=�i

1
� � j

2.
We are now ready to show that, for sufficiently small


�0,


��
,t��Peq���
,t�� 	 0 �79�

for all t; that is, ��
 , t� is nearly orthogonal to Heq for all t,
and thus is never in thermal equilibrium. To see this, note
first that since ��0�	��
� for sufficiently small 
, and since
e−iH�
�t is unitary, also

e−iH�
�t��0� 	 e−iH�
�t��
� �80�

�with error independent of t�. Since the right-hand side
equals

e−iE�
�t��
� 	 e−iE�
�t��0� , �81�

we have that


e−iH�
�t��0��Peq�e−iH�
�t��0�� 	 
��0��Peq���0�� = 0.

�82�

This proves Eq. �79� with an error bound independent of t
that tends to zero as 
→0.

Another example of bad Hamiltonians is provided by the
phenomenon of Anderson localization �see in particular
�16,17��: certain physically relevant Hamiltonians possess
some eigenfunctions �	 that have a spatial energy density
function that is macroscopically nonuniform whereas wave
functions in Heq should have macroscopically uniform en-
ergy density over the entire available volume. Thus, some
eigenfunctions are not close to Heq, violating Eq. �24�.

V. COMPARISON WITH CLASSICAL MECHANICS

In classical mechanics, one would expect as well that a
macroscopic system spends most of the time in the long run
in thermal equilibrium. Let us define what thermal equilib-
rium means in classical mechanics. �We defined it for quan-
tum systems in Eq. �8�.� We denote a point in phase space by
X= �q1 , . . . ,qN ,p1 , . . . ,pN�. Instead of the orthogonal decom-
position of H into subspaces H
 we consider a partition of
an energy shell � in phase space, �= �X :E�H�X��E+�E�,
into regions �
 corresponding to different macrostates 
, i.e.,
if the microstate X of the system is in �
 then the macrostate

4Since this requires that no eigenvalue difference of H1, Ei
1−Ei�

1 ,
coincides with an eigenvalue difference of H2, Ej

2−Ej�
2 , we need to

relax our earlier assumption that systems 1 and 2 be identical; so,
let them be almost identical, with slightly different eigenvalues, and
let H1 and H2 each be nondegenerate.
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of the system is 
. It has been shown �18� for realistic sys-
tems with large N that one of the regions �
, corresponding
to the macrostate of thermal equilibrium and denoted �eq, is
such that, in terms of the �uniform or Liouville� phase-space
volume measure � on �,

���eq�
����

	 1. �83�

Although the subspaces H
 play a role roughly analogous to
the regions �
, a basic difference between the classical and
the quantum cases is that while every classical phase point in
� belongs to one and only one �
, and thus is in one mac-
rostate, a quantum state � need not lie in any one H
, but can
be a nontrivial superposition of vectors in different mac-
rostates. �Indeed, almost all � do not lie in any one H
. That
is why we defined being in thermal equilibrium in terms of �
lying in a neighborhood of Heq, rather than lying in Heq
itself.�

The time evolution of the microstate X is given by the
solution of the Hamiltonian equations of motion, which
sends X �at time zero� to Xt �at time t�, t�R. We expect that
for realistic systems with a sufficiently large number N of
constituents and for every macrostate 
, most initial phase
points X��
 will be such that Xt spends most of the time in
the set �eq. This statement follows if the system is ergodic,5

but in fact is much weaker than ergodicity. Theorem 1 is
parallel to this statement in that it implies, for typical Hamil-
tonians, that initial states �here, ��0�� out of thermal equilib-
rium will spend most of the time in thermal equilibrium; it is
different in that it applies, for typical Hamiltonians, to all—
rather than most—initial states ��0�.

VI. COMPARISON WITH THE LITERATURE

von Neumann �2� proved, as his “quantum ergodic theo-
rem,” a precise version of normal typicality �defined in Sec.
II B�; his proof requires much more effort, and more refined
methods, than our proof of Theorem 1. However, his theorem
assumes that the dimension d
 of each macrospace H
 is
much smaller than the full dimension D, and thus does not
apply to the situation considered in this paper, in which one
of the macrospaces, Heq, has the majority of dimensions. The
reason von Neumann treated the more difficult case of small
d
 but left out the easier and particularly interesting case of
the thermal equilibrium macrostate is that he had in mind a
notion of thermal equilibrium different from ours. He
thought of a thermal equilibrium wave function �, not as one
in �or close to� a particular H
, but as one with �P
��2

	d
 /D for every 
, i.e., one for which ���
��	�mc in a
suitable coarse-grained sense. Because of this different fo-
cus, he did not consider the situation presented here. We also
note that von Neumann’s quantum ergodic theorem makes an
assumption on H that we do not need in our Theorem 1; this

assumption, known as a “no resonances” �8,10� or “nonde-
generate energy gaps” �4� condition, asserts that

E	 − E� � E	� − E�� unless �either 	 = 	�, � = ��

or 	 = �, 	� = ��.
�
�84�

The Schnirelman theorem �19� states that, in the semiclas-
sical limit and under suitable hypotheses, the Wigner distri-
bution corresponding to an eigenstate �	 becomes the micro-
canonical measure. That is, �	 has a property resembling
thermal equilibrium, similar to our condition �24� expressing
that all eigenstates are in thermal equilibrium. Srednicki �7�
observed other thermal equilibrium properties in energy
eigenstates of example systems, a phenomenon he referred to
as “eigenstate thermalization.”

The results of �4,5,8� also concern conditions under which
a quantum system will spend most of the time in thermal
equilibrium. For the sake of comparison, their results, as well
as ours, can be described in a unified way as follows. Let us
say that a system with initial wave function ��0� equilibrates
relative to a class A of observables if for most times �,


�����A������ 	 Tr����t��
��t��A� for all A � A .

�85�

We then say that the system thermalizes relative to A if it
equilibrates and, moreover,

Tr����t��
��t��A� 	 Tr��mcA� for all A � A , �86�

with �mc the microcanonical density matrix �in our notation,
1 /D times the projection P to H�. With these definitions, the
results of �4,5,8� can be formulated by saying that, under
suitable hypotheses on H and ��0� and for large enough D, a
system will equilibrate, or even thermalize, relative to a suit-
able class A.

Our result is also of this form. We have just one operator
in A, namely Peq. We establish thermalization for arbitrary
��0� assuming that H is nondegenerate and satisfies

�	�Peq��	�	1 for all 	, which �as we show� is typically
true.

von Neumann’s quantum ergodic theorem �2� establishes
thermalization for a family A of commuting observables; A
is the algebra generated by �M1 , . . . ,Mk� in the notation of
Sec. I A. He assumed that the dimensions of the joint eigens-
paces H
 are not too small and not too large and that H
obeys Eq. �84�, he made an assumption about the relation
between H and the subspaces H
 that he showed is typically
true, and he admitted arbitrary ��0�. See �1� for further dis-
cussion. Rigol et al. �6� numerically simulated an example
system and concluded that it thermalizes relative to a certain
class A consisting of commuting observables.

Tasaki �8� as well as Linden et al. �4� considered a system
coupled to a heat bath, Htotal=Hsys � Hbath, and took A to
contain all operators of the form Asys � 1bath. Tasaki consid-
ered a rather special class of Hamiltonians and established
thermalization assuming that

5A classical system is ergodic if and only if the time evolved
microstate Xt spends, in the long run, a fraction of time in each
�measurable� set B�� that is equal to ��B� /���� for �-almost
all X.
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max
	

�
�	���0���2 � 1, �87�

a condition that implies that many eigenstates of H contrib-
ute to ��0� appreciably and that can �more or less� equiva-
lently be rewritten as

�
	

�
�	���0���4 � 1. �88�

Under assumption �88� on ��0�, Linden et al. established
equilibration for H satisfying Eq. �84�. They also established
a result in the direction of thermalization under the additional
hypothesis that the dimension of the energy shell of the bath
is much greater than dim Hsys.

Reimann’s mathematical result �5� can be described in the
above scheme as follows. Let A be the set of all observables

A with �possibly degenerate� eigenvalues between 0 and 1
such that the absolute difference between any two eigenval-
ues is at least �say� 10−1000. He established equilibration for
H satisfying Eq. �84�, assuming that ��0� satisfies Eq. �88�.
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