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Origin of end-of-aging and subaging scaling behavior in glassy dynamics
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Linear response functions of aging systems are routinely interpreted using the scaling variable #.y,/t",, where
t,, is the time at which the field conjugated to the response is turned on or off, and where 7, is the “obser-
vation” time elapsed from the field change. The response curve obtained for different values of #,, are usually
collapsed using values of w slightly below one, a scaling behavior generally known as subaging. Recent spin
glass thermoremanent magnetization experiments have shown that the value of u is strongly affected by the
form of the initial cooling protocol [G. F. Rodriguez er al., Phys. Rev. Lett. 91, 037203 (2003)], and even more
importantly [G. G. Kenning et al., Phys. Rev. Lett. 97, 057201 (2006)], that the ¢,, dependence of the response
curves vanishes altogether in the limit 7,,,>1,,. The latter result shows that 74,/ scaling of linear response
data cannot be generally valid, thereby casting some doubt on the theoretical significance of the exponent u. In
this work, a common mechanism is proposed for the origin of both subaging and end of aging behavior in
glassy dynamics. The mechanism combines real and configuration space properties of the state produced by the
initial thermal quench which initiates the aging process.

DOLI: 10.1103/PhysRevE.81.011108

I. INTRODUCTION

In glassy systems, a thermal quench initiates a so called
aging process, whereby physical observables, e.g., the en-
ergy, slowly change as a function of “age,” a term conven-
tionally denoting the time 7 elapsed from the quench. In non-
stationary processes, conjugated linear response and
correlations functions generally depend on two time argu-
ments, e.g., the system age #, and its value ¢, at the moment
where the field is switched on, or off. However, both func-
tions appear to actually depend on a single scaling variable,

def

namely, #.,/t4, where fy,,=1—t, [1-3]. The “observation”
time 7,,, (widely denoted by the symbol ¢ in the literature) is
often used in lieu of the system age as an independent time
variable. The exponent u is generally near one, and the terms
superaging, subaging, and pure or full aging are used to
discriminate between cases with u>1, u<<1, and pu=1, re-
spectively. Subaging (henceforth, SA) has mainly been ob-
served in spin-glass thermoremanent magnetization (TRM)
data [2,4-6], usually after subtracting a “stationary” term,
which describes the response immediately after the field is
cut.

As a quench is unavoidably carried out at a finite cooling
rate, the point =0 on the time axis eludes a sharp definition
in an experimental setting. Possibly as a consequence
thereof, the scaling form of response functions is, in spite of
a protracted debate [4,5,7-11], only partially understood.
E.g., the physical significance of wu (and of the additional
time scale it brings along) is unclear, even more so in the
light of the recent discovery that the TRM loses its ¢,, depen-
dence in the limit 7/, — % [11]. This last observation fal-
sifies the long-held hypothesis that SA could be a scaling
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form generally applicable to linear response functions.
Coined in [11], the term ‘“end-of-aging” (EOA) is also
adopted here. It describes that, for large values of #/¢,, the £,
dependence of the TRM disappears and is replaced by a
simple logarithmic time decay. The term EOA should not be
construed as contradicting the fundamental unity of aging
dynamics, which subtends our description.

In this work, an expression for the TRM decay, Eq. (8), is
derived, which, depending on the value of the model param-
eter x, interpolates between pure aging (PA), SA, and EOA
behavior. Our derivation combines well known configuration
and real space properties of spin glasses and supplements
them with a model assumption regarding the spatial hetero-
geneity of the system configuration at the beginning of the
isothermal aging process. Our analytical expression for the
TRM decay is derived by averaging the magnetic response of
independent domains over a suitable distribution characteriz-
ing their initial state. Even though the ratio 7.,/ nowhere
appears in the treatment, the TRM decay curves produced by
our Eq. (8) can, in accordance with standard practice, be
empirically collapsed in the SA regime using ./t scaling.

II. LINEAR RESPONSE AND DOMAIN
HETEROGENEITY

Thermalized domains whose linear size grows with the
thermal correlation length [12] are ubiquitous in aging sys-
tems with short range interactions. Real space scaling de-
scriptions [13] rely on their properties to account for several
dynamical properties, e.g., so-called “chaos” effects. In a
physics context, hierarchies were brought to the fore by the
Parisi equilibrium solution of a mean field model [14], a
solution, which has inspired manifold hierarchical models of
complex dynamics, e.g., [15]. Hierarchical dynamics is a ge-
neric feature of complex systems [16-18], and a feature
which is complementary, not antithetic, to real space descrip-
tions.
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Hierarchical models, see, e.g., [19-21], assume that
nested ergodic components [22] exist in configuration space.
In simple cases, the solution of the pertinent master equa-
tions shows PA behavior [20]. For thermally activated dy-
namics, this result can be heuristically explained as follows:
any ergodic component of the hierarchy is at time ¢ indexed
by a real valued “dynamical barrier” b(¢). On the (Arrhenius)
time scale 7,(f)=C exp[b(r)/T] the component is near a state
of internal thermal equilibrium. The constant C is the fluc-
tuation time, 1. e. the smallest relevant time scale of the dy-
namics. Consider now a system starting in a component with
vanishing initial barrier b(r=0)=0. After aging isothermally
for a time 7=t,,, the component is characterized by a barrier
b(t,) =T In(t,/C). On scales fy,,<1, the dynamics has char-
acter of quasiequilibrium fluctuations within the same com-
ponent, while off-equilibrium processes involving larger
components take over for 7.,,,>t?,. The age t,, hence, sepa-
rates the two dynamical regimes observed for aging systems,
and constitutes the dominant time scale for >t,,. From this
observation, PA heuristically follows. A mathematically more
precise route leading to the same conclusion relies on the fact
that, within a hierarchy indexed by energy barriers, only ther-
mal energy fluctuations of record magnitude are able to trig-
ger irreversible changes of ergodic component, or quakes.
Since the statistics of record-sized fluctuations in a stationary
series is known analytically [23,24], assuming that all physi-
cal changes are statistically subordinated to the quakes leads
to record dynamics [24-26] and to analytical formulas, such
as Eq. (3), for one and two-point averages of aging pro-
cesses. In spite of their simplicity, the above ideas rationalize
a large amount of experimental evidence [10,27,28]. Yet,
they neither account for SA nor for EOA scaling behaviors.
In order to do so, the spatial and temporal heterogeneity of
spin glasses, experimentally demonstrated by Chamberlin
[29], must be properly taken into account.

In the present model, independently relaxing domains of a
glassy system are all endowed with the same type of hierar-
chically structured configuration space. Nonetheless, their re-
spective contributions to the overall linear response are dif-
ferent (albeit related) functions of time. The assumption is
that domains find themselves in states characterized by dif-
ferent dynamical barriers at the end of the initial quench, or
equivalently, at the beginning of the isothermal aging pro-
cess.

The physical mechanism behind the difference is likely
related to the way in which the cooling process proceeds near
the glass transition temperature, see, e.g., [6,30]. Here, the
spatial heterogeneity is heuristically described by a distribu-
tion of initial barriers P(b). We checked that a flat distribu-
tion supported in the interval (0,b),) and an exponential dis-
tribution with average b), lead to similar behaviors. The
finiteness of the first moment of P(b) seems hence to be the
crucial feature. Since the exponential form leads to simpler
closed form expressions, this form is chosen for mathemati-
cal convenience.

In summary the initial state of the aging process feature
domains described by the dynamical barriers distribution,
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P(b) = ——exp(— bib]). (1)
bM

Let ), be the Arrhenius time associated to bj,. As we shall
see, the quantity

def T 1

= = —’ 2
T T (o) @

controls all deviations from PA behavior. Note that x>0, that
x—0 for £,,—, and that x— o for 1), | C.

III. PURE AGING APPROXIMATION OF TRM DATA

In the present theory, the additive contribution to the mag-
netic response of a single domain is given by Eq. (5), where
the function M(t/t,) describes the TRM of a domain ini-
tially in a state having a vanishing dynamical barrier.

The functional form chosen for M| reflects that record
dynamics is a homogeneous stochastic process in the single
“time” variable log(#/t,,). By standard arguments, all mo-
ments of the process, including the average response, admit
eigenvalue expansions where log(¢/1,,) replaces time. The
generic term in such expansions is proportional to (/t,,)M,
where A\, is the k-th relaxation eigenvalue. In practice, the
expansion can be truncated after few terms and, as shown
graphically in the Appendix, two terms (one term less than in
[10]) already provide an acceptable parameterization of the
TRM decay in the PA approximation.

Summarizing, the PA scaling ansatz for the TRM can be
written as

2
Mo(2) =M+ 7z 1)) %(zxk— ), (3)
k=1 Mk

where z=t/t,, and where 7 is the Heaviside step function,
and M, is the “initial” value of the TRM, which for simplic-
ity is treated as a parameter. According to the formula, the
TRM remains constant and equal to M; until the magnetic
field is cut. The notation a;/\; for the prefactor is chosen to
simplify the form of the rate of magnetization change, which
reads

1 r\M
rrrmolt.t,) = ;2 ak<t—> . (4)

k=1 w

The (negative) prefactors and exponents entering the expres-
sion are for completeness tabulated in the Appendix.

IV. ORIGIN OF SUBAGING AND END-OF-AGING

Let T denote the isothermal aging temperature. As men-
tioned, C denotes the smallest relevant relaxation time, i.e.,
the time associated to the smallest energy barrier in the en-
ergy landscape of a single domain. Consider now a domain
characterized by the initial barrier b, or equivalently, by the
Arrhenius time *=C exp(b*/T). If t,,<t", the behavior at
time ¢=t,, remains controlled by the initial barrier b* and the
domain’s contribution to the TRM correspondingly depends
on /1*. Conversely, if 7,,>1" the initial barrier has been sur-
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mounted at ¢,,, and the scaling variable is hence #/¢,. In real
space, the size of the domain grows as a function of the
dynamical barrier b(r). E.g. a power-law growth in the time
domain [12] corresponds to an exponential growth in b(z). In
our case, b(t)=max[T In(¢/ C),b*], and, compared to the case
b*=0, domain growth is delayed up to the Arrhenius time #*.

Returning to the form of the response, the contribution of
a domain with initial dynamical barrier b* is

m(t’tvwb*) = n(tw - t*)MO(t/tw) + ﬂ(t* - tw)MO([/t*)’ (5)

where 7 is again the Heaviside function, where M|, is given
in Eq. (3) and where r=t,,. The formula embodies the key
feature of hierarchical relaxation without reference to any
specific model. Second, it introduces spatial heterogeneity, as
b*, or equivalently, the Arrhenius time %, is allowed to differ
across the domains. At 7,=f", the Heaviside function 7
switches between the two scaling forms available for the
magnetic response of a single domain. If the barriers of the
different domains in the system are all initially near zero,
only the first term contributes. and the PA behavior given by
M(t/t,,) goes through at the macroscopic level. In the gen-
eral case, the TRM decay takes the form,

T In(t,,/C)

M(t,1,) = My(i/t,,) P(b)db

0

T 1n(1/C) ¢
+ f M()<Ee‘b/T>P(b)db

T In(1,,/C)
+ M,f P(b)db, (6)
T In(1/C)

where P(b) is the probability density for a domain with bar-
rier in the initial state.

Inserting Eq. (1) into Eq. (6), and using simple algebraic
manipulations, one arrives at

M(t,t,) = M,(é>_x+ {1 - (%)_X}Mg(mw)

t —x [t/tw
+x<—> M(z)7"dz. (7)
¢/ Jy

Using the parameterization of M, given in Eq. (3), the last
expression becomes

tw -X a; L -X i N;
MUJW):MOO””’”(E) z)\ﬁx{(m) _(tw) }
)

Pure aging is achieved in the limit x=2%, i.e., when all initial
barriers are equal to zero with probability one. Subaging is
present for intermediate values of x. Let now A\, be the larg-
est of the two decay exponents characterizing the PA regime.
If and only if x <-\,, the asymptotically dominant contribu-
tion to the TRM for large 7 is proportional to (&)™. To bear
this out, we first rewrite our last equation as
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TABLE I. The first column contains the ratios of the isothermal
aging temperature 7, at which the measurements are taken to the
critical temperature 7,. The other columns contain the prefactors
and exponents of the two power-law terms appearing in Eq. (3). All
values are obtained by fits (not shown) of quality similar to Fig. 2.

T/T, a N a, Ny

0.40 —-0.0878 -2.7575 -0.0289 -0.1869
0.60 —-0.0981 -3.0945 —-0.0462 -0.2609
0.83 -0.1365 -2.9016 -0.0527 -0.3102
0.90 —-0.1309 -3.2785 —-0.0418 —-0.3098
0.95 -0.1117 -3.4737 -0.0296 —-0.3495

t\™ a t Nj+x
M(t,tw)zMO(t/tw)+(E> % >\i+x{1_<a> }
)

The PA term M(t/t,) decays the fastest and can be ne-
glected. In what remains, the ¢, dependent term having the
slowest decay is (¢/1,)*2**. In order for the EOA behavior to
set in, this term must be much smaller than one. E.g., a
relative deviation of the TRM curve from EOA equal to 1/10
is reached at time

troa = (10)/#haly (10)

Since \x+1_>\2\ is very large when x+A,~0, the model
predicts that EOA may occur on a time scale which diverges
very rapidly with ¢,. This is qualitatively in accord with the
experimental observations of [11]. Second, when the
exponent x is numerically small, the expansion (#/C)™*
=1-x1n(t/C)+O{[x In(¢/C)]?} is applicable, and the TRM
decays in a nearly logarithmic fashion for a wide range of ¢,
likewise in accord with the experimental findings.

V. ON t,/t* SCALING

Equation (8) features a clear sub-aging behavior with no
reference to the scaling variable #/¢;. Model TRM curves
generated using the equation can nevertheless be empirically
scaled in the traditional manner for an intermediate range of
t and 1,, values. This is checked numerically (i) by evaluating
Eq. (8), with C=1, 1,,=10 and with all other parameters
given in Table I, and (ii) by scaling the curves obtained as
usually done for experimental data. The left panel in Fig. 1 is
shown to confirm that #.,./¢, scaling is unsatisfactory for the
parameter values utilized: The four curves plotted do not
collapse in the midrange of the abscissa. The curves all per-
tain to T=0.6Tg, and correspond to #,,=50, 100, 1000, and
10 000. The exact same data are shown in the middle panel
of the same figure, now plotted versus 7.,/ 7. The value of u
is chosen to optimize the data collapse, which is visibly im-
proved. Additional curves (not shown) were similarly ob-
tained for T/Tg=0.4,0.6,0.9, and 7=0.93. The correspond-
ing empirical p values gauge how close the TRM is to PA.
These values are plotted versus 7/7, in the right panel of the
same figure (the line is only a guide to the eye). Interestingly,
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FIG. 1. (Color online) The Thermoremanent Magnetization, calculated according to Eq. (8), is plotted for #,,=50, 100, 1000, and 10 000

VErsus o/ 1,,, (left panel), and versus 7.,/ t*

w?

(middle panel). The left panel shows that a #/t,, scaling does not work satisfactorily. The middle

panel shows that the standard 7/¢f; scaling procedure visibly improves the quality of the data collapse. All data are for T=0.60T,. Similar
scaling plots were also obtained for other temperatures (not shown). In each case the exponent u was estimated as the value providing the
best data collapse. In the rightmost panel, the u values, thus, obtained are plotted versus 7/T, (squares). The dotted line is only a guide to

the eye. A clear maximum is visible at T/7T,=0.83.

w versus T peaks at T/T,=0.83, the very temperature where
w is experimentally closest to unity [5].

To conclude, Eq. (8) fully contains the standard SA be-
havior widely seen in spin glasses. Furthermore, it implies
that the applicability of 7,/ scaling per se does not endow
wm with physical significance, since the latter is plainly absent
in our case.

VI. SUMMARY AND OUTLOOK

In this work, the known scaling properties of off-
equilibrium linear response functions in spin glasses have
been accounted for by combining two aspects of complex
dynamics: the hierarchical relaxation of independently ther-
malizing domains, coupled with the spatial heterogeneity of
the initial domain configurations, as defined by their initial
dynamical barriers. Such barriers would uniformly vanish for
PA behavior. Our analysis relies on generic properties of
complex dynamics, and should, therefore, be widely appli-
cable to glassy systems with short-range interactions. These
might include quantum spin glasses, whose critical behavior
has recently been investigated [31,32], and irrespective of
whether a true equilibrium phase transition exists [32] or not
[31].

The distribution of initial dynamical barriers plays a piv-
otal role in the theory. Arguably, its form depends on the
cooling protocol, e.g., fast cooling could give a distribution
more sharply peaked at zero, and lead to a relaxation scaling
form closer to PA. The width of the initial barrier distribution
is expressed by the exponent x, which is experimentally ac-
cessible as the logarithmic slope of the TRM decay for very
large values of ¢/¢,, i.e., in the dynamical regime where the
t,, dependence of the data is absent. It should therefore be
possible to empirically study, via x, how the initial cooling
protocol affects the distribution of initial barriers and, indi-
rectly, the subsequent relaxation dynamics.

In this work, dynamical heterogeneity is attached to the
thermalized domains, which determine the real-space evolu-
tion of spin glasses with short-ranged interactions. While this
choice is natural for the case at hand, other interpretations

are possible. Specifically, mean field models with no spatial
structures can explain features of hole burning experiments
[33]. The source of dynamical heterogeneity may hence, in
some cases, differ from spatial structures. Our formalism can
accommodate different interpretations. Its key feature is su-
perposing, in a linear fashion, the hierarchical dynamics of
independent, or nearly independent subsystems each starting
out with a different initial conditions. The independence of
the subsystems is granted, within a domain interpretations,
by separation in space. More generally, a nearly decompos-
able interaction matrix would provide a similar effect.

APPENDIX

We describe in this Appendix how the parameter values
entering Eq. (3) are estimated by fitting to experimental

T=0.83T
9

FIG. 2. (Color online) The TRM decay rate, multiplied by the
age ¢ is plotted versus ¢/¢,, for T/T,=0.83 and #,,=50 (right pointing
triangles), 100 (circles), 300 (squares), 630 (diamonds), 1000 (pen-
tagrams), 3600 (hexagrams), 6310 (asterisks) and (10 000) (left
pointing triangles). The line is given by Eq. (4). The insert com-
pares the TRM decay measured at #,,=100s (red line), with the
theoretical estimates (blue circles) obtained by Eq. (3).
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TRM data. The data are obtained according to a standard
procedure: a CugguMnggs spin glass sample is rapidly
quenched to a temperature 7<7, in the presence of a small
magnetic field. The field is cut at time 7=t,,, and the magne-
tization decay is then recorded [2,4—6] for 1>1,,.

The parameters shown in Table I are used to empirically
determine, on the basis of Eq. (8), the SA exponent u(7).
The small deviation of the experimental data from the PA
form given in Eq. (3) implies, of course, a small systematic
error. Of special importance are the values of the dominant
exponent N\, which are listed in the last column of the table:
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According to Eq. (10), the quantity A\, +x determines the time
scale for the onset of EOA behavior.

Figure 2 is scaling plot of the rate of (de-) magnetization
multiplied by the system age, versus the scaling variable
t/t,. At the aging temperature 7=0.83 the empirical subag-
ing exponent u is very close to one [4,5] and the data con-
form reasonably well to a PA ansatz. The approximation is
worse, but still usable, at other aging temperatures and all
data can be fit reasonably well by the full aging formula Eq.

(3).
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