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We investigate the influence of additive Gaussian white noise on two different bistable self-sustained oscil-
lators: Duffing–Van der Pol oscillator with hard excitation and a model of a synthetic genetic oscillator. In the
deterministic case, both oscillators are characterized with a coexistence of a stable limit cycle and a stable
equilibrium state. We find that under the influence of noise, their dynamics can be well characterized through
the concept of stochastic bifurcation, consisting in a qualitative change of the stationary amplitude distribution.
For the Duffing-Van der Pol oscillator analytical results, obtained for a quasiharmonic approach, are compared
with the result of direct computer simulations. In particular, we show that the dynamics is different for
isochronous and anisochronous systems. Moreover, we find that the increase of noise intensity in the isochro-
nous regime leads to a narrowing of the spectral line. This effect is similar to coherence resonance. However,
in the case of anisochronous systems, this effect breaks down and a new phenomenon, anisochronous-based
stochastic bifurcation occurs.
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I. INTRODUCTION

The investigation of the influence of random forces
�noise� on nonlinear dynamical systems is one of the most
relevant and intensively developing research directions in
nonlinear dynamics. In general, it is well known that noise
can induce shift of the bifurcations to different control pa-
rameter values, compared to their deterministic counterparts.
Moreover, new types of dynamical behavior can be observed
in presence of noise, generally referred to as noise-induced
effects �1�. On the other hand, the investigation of stochas-
ticity is very important for the understanding of the dynami-
cal features of real systems, since they are inevitably affected
by internal and external noise sources. Thus, it is signifi-
cantly relevant to study changes in the dynamics of nonlinear
systems through the concept of stochastic bifurcations �2�. In
this direction, large number of investigations has been de-
voted to stochastic bifurcations and noise-induced transitions
�3–14�. In stochastic systems, one can either treat the noise
intensity as a bifurcational parameter, but additionally other
statistical characteristics of noise �e.g., mean value, spectral
width etc.� can be used to track the dynamical changes in the
system, and thus, developing and proposing novel ways to
control the behavior of nonlinear systems by means of noise.

At this point, the necessity occurs to define a stochastic
bifurcation. In general, stochastic bifurcations are character-
ized with a qualitative change of the stationary probability
distribution, e.g., a transition from unimodal to bimodal
distribution �1,4,5,7�. Such a change in the distribution law
results in a change of other stochastic characteristics of
the system that can be observed experimentally as well.
Additionally, stochastic bifurcations can also become ap-
parent through the change of stability of trajectories belong-
ing to a certain set with a given invariant measure �8�. The
first type of stochastic bifurcations is called P-bifurcations
�phenomenological bifurcations�, whereas the second

one-D-bifurcations �dynamical bifurcations� �2�. Moreover,
the stochastic bifurcations can also consist of two steps:
P-bifurcation and D-bifurcation, separated in the parameter
space by a certain bifurcational interval �9–11�.

In the present work we study the qualitative change of the
stationary probability distribution of amplitude of oscilla-
tions in periodic self-sustained oscillators that are character-
ized with a region of bistability in the deterministic case.
This region is bounded by a tangent bifurcation of limit
cycles from the one side and a subcritical Hopf bifurcation
from the other one. It is a well known fact that Gaussian
noise can join basins of different attractors. In this contribu-
tion, we study the changes in the bistability region borders
which occur. Moreover, in the vicinity of the saddle-node
bifurcation of limit cycles, for increasing noise intensities,
we observe an effect similar to coherence resonance. We find
that for a certain interval of the noise intensity, the spectral
line width of oscillations decreases �15�. Our purpose is to
investigate the interconnection of this phenomenon and sto-
chastic bifurcations. Additionally, we study the influence of
the anisochronicity of oscillations on the spectrum properties
of the noisy oscillator as well.

II. NOISE INFLUENCE ON A BISTABLE
DUFFING–VAN DER POL OSCILLATOR

The first model under investigation is the classical
bistable self-sustained Duffing–Van der Pol oscillator with
additive Gaussian white noise

ẍ − �� + x2 − x4�ẋ + x + �x3 = �2Dn�t�, � � 0, �1�

where n�t� is the normalized source of Gaussian white
noise: �n�t�n�t+���=����, �n�t��=0, and D—the noise inten-
sity. In the deterministic case, for − 1

8 ���0, the system
�Eq. �1�� is characterized with a bistable behavior: two at-
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tractors are present in the phase plane—a stable focus at the
origin and a stable limit cycle. Thus, the bistability region is
restricted with a saddle-node bifurcation of cycles at �=− 1

8 ,
and a subcritical Andronov-Hopf bifurcation at �=0. Addi-
tionally, the parameter � defines the anisochronicity of
oscillations—for �=0 the system �Eq. �1�� is isochronous,
i.e., the frequency of the oscillations does not depend on
their amplitude.

In the quasiharmonic regime, on assumption that noise
intensity is small, we introduce change of variables,

x�t� = a�t�cos�t + ��t��, ẋ�t� = − a�t�sin�t + ��t�� .

After the substitution and averaging the equations of
Duffing–Van der Pol system over the period of oscillations,
we obtain the following stochastic equations for �the slow, on
a scale of 1

2	 , variables� the instantaneous amplitude a�t� and
phase ��t� �16�,

ȧ = ��

2
+

a2

8
−

a4

16
	a +

D

2a
+ �Dn1�t� ,

�̇ =
3�

8
a2 +

�D

a
n2�t� , �2�

where n1�t� and n2�t� are independent normalized sources
of Gaussian white noise. As derived from Eq. �2�, the
amplitude of the stable cycle for D=0 is defined by

a0=�1+�1+8�. It is worth pointing out that ȧ does not
depend on �, allowing us further to develop a probability
density for a, rather than a joint density for a and �.

For D�0, the probability density p�a , t� of the instanta-
neous amplitude satisfies the Fokker-Planck-Kolmogorov
equation �17,18�,

�p�a,t�
�t

= −
�

�a

��a

2
+

a3

8
−

a5

16
+

D

2a
	p�a,t�� +

D

2

�2p�a,t�
�a2 .

�3�

Hence, the stationary solution of Eq. �3� is

p�a� = Nae�−�1/48D�a2�a4−3a2−24���, �4�

with N being a normalization constant. As far as the instan-
taneous amplitude in Eq. �2� does not depend on the phase,
its shape is identical for isochronous and anisochronous os-
cillators.

Additionally, the extrema of the distribution �Eq. �4�� are
the roots of the equation

f�am� = am
6 − 2am

4 − 8�am
2 − 8D = 0, �5�

where am is the amplitude, corresponding to the extremum of
distribution �Eq. �4�� and m is the index number of the ex-
tremum. Varying parameters � and D, the number of the real
roots of Eq. �5� changes. This effect can be seen as a type of
a stochastic P-bifurcation in the system �Eq. �2�� �2�. In gen-
eral, the bimodal distribution for the noisy oscillator is simi-
lar to the bistability in the deterministic case. However, the
bimodality region which exists for D�0 and the region of
bistability present for D=0 do not coincide and in this case
the noise intensity acts as the bifurcation parameter. It is

important to note that for the stationary distribution p�x ,y� of
the dynamical variables x and y, we do not observe any
qualitative transformation with the increase of the noise in-
tensity. The number of maxima of p�x ,y� changes only for
the lines, corresponding to the saddle node and the subcriti-
cal Andronov-Hopf bifurcation of the deterministic system.
Since qualitative transformations of p�a� in the presence of
noise play an important role in the system’s behavior, we
denote them as P bifurcations.

Figure 1�a� shows the bifurcation diagram of the system
�Eq. �2��, obtained from the analysis of the dependence
of Eq. �5� on the parameters � and D. In the tinted region,
the stationary amplitude distribution is bimodal. The lines l1
and l2 that bound this region correspond to stochastic
P-bifurcations. Increasing the value of D, the bimodality re-
gion shifts to smaller values of � and becomes narrower. If D
is increased even further �e.g., for D
Dcr�0.036�, then

(b)

(a)

FIG. 1. Stochastic P-bifurcations in the Duffing–Van der Pol
oscillator �Eqs. �1� and �2��. �a� Bifurcation diagram of the system
�Eq. �2�� in the parameter plane �� ,D�. The tinted region represents
the bimodal distribution; lines l1 and l2 correspond to the appear-
ance and disappearance of one of the maxima of p�a�. The vertical
dashed line stands for the bistability border of the deterministic
oscillator �region 2 corresponds to bistability in the deterministic
model�. �b� Stationary amplitude distribution for �=−0.13 and dif-
ferent values of the noise intensity D. The circles represent numeri-
cal computation for the oscillator �Eq. �1��, whereas the solid lines
denote the algebraic calculations using formula �Eq. �4�� �the nor-
malization constant N is defined numerically�. For numerical inte-
gration of the stochastic equations we used the Heun scheme �19�.
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P-bifurcations are not observed while varying �, and the bi-
modality region does not exist any more.

It is important to note that the averaged model �Eq. �2��
does not reflect the properties of the initial system �Eq. �1��
completely for large values of noise intensities and for non-
harmonic regimes. However, within the bifurcation diagram
shown in Fig. 1�a�, the amplitude distributions calculated by
Eq. �4� and obtained numerically for the system �Eq. �1��
coincide significantly well. This leads to the conclusion that
the bifurcation diagram �Fig. 1�a�� is related not only to the
averaged model, but also to the initial system and does not
depend on the parameter of anisochronicity ��0. Figure
1�b� shows the stationary amplitude distributions for differ-
ent values of the noise intensity and for a fixed value of the
nonlinearity parameter � ��=−0.13�. In this case, there is
only one attractor in the deterministic system: a stable focus
at the origin. For small noise intensities �below the line l1 in
Fig. 1�a��, the amplitude distribution has only one maximum
situated in the vicinity of zero �curve 1 in Fig. 1�b��: e.g., the
phase trajectory is mainly located in the vicinity of the stable
focus, where nonlinear effects can be neglected. Correspond-
ingly, the amplitude distribution is similar to a Rayleigh dis-
tribution. When the noise intensity is increased however, the
phase trajectory visits more and more frequently the regions
far away from the origin, and the nonlinearity of the system
becomes increasingly important. At the same time, the tra-
jectory stays longer in the region, where in the deterministic
case, for ��− 1

8 , the stable limit cycle is located. Hence, the
distribution evolves with D. For D�0.005 �on the line l1,
Fig. 1�a��, a transition from a unimodal to a bimodal distri-
bution occurs �see curve 2 in Fig. 1�b��. In the case of strong
noise intensities however, the trajectory finds itself very
rarely in the vicinity of the stable focus, and for D
�0.0202 �on the line l2, Fig. 1�a�� the second stochastic
bifurcation takes place. This results in the disappearance of a
pair of extrema. Consequently, the amplitude distribution be-
comes unimodal again, but its maximum is shifted toward
larger amplitude values �curve 3 in Fig. 1�b��.

In the presence of additive Gaussian noise there exists
only one invariant set of trajectories in the phase space, char-
acterized with a defined stationary probability density over it.
Therefore, additive noise destroys dynamical bifurcations
which are connected with the change of stability of the in-
variant sets �2�. We have performed numerically a detailed
stability analysis of system �Eq. �1��, which we omit here for
brevity. This shows that the largest Lyapunov exponent re-
mains negative for all values of � and D. Studying the aver-
aged model �Eq. �2��, the same conclusion can be obtained.
Moreover, one can distinguish the Lyapunov exponent con-
nected with the phase dynamics from the one characterizing
the amplitude behavior: the first one is identical to zero, and
the second one �averaged over the stationary distribution
�Eq. �4��� is always negative.

Though the P-bifurcations observed for the amplitude dis-
tribution of the Duffing–Van der Pol oscillator �Eqs. �1� and
�2�� do not depend on the anisochronicity parameter �,
the power spectra of the oscillations are essentially different
for the isochronous and the anisochronous cases. The nor-
malized power spectra of the oscillator �Eq. �1��, obtained
numerically for different values of noise intensity at �=0

�isochronous oscillations� and at �=0.5 �anisochronous os-
cillations�, are shown in Fig. 2.

Furthermore, in the isochronous case, an effect similar to
coherence resonance is observed. In particular, for a certain
noise intensity �close to the central region of the bimodal
amplitude distribution� the spectrum width becomes minimal
�Fig. 2�a��. This effect was initially observed experimentally
in an optical bistable oscillator �15� and referred to as coher-
ence resonance. However, this term is not entirely correct,
since the mechanism of the present phenomenon is princi-
pally different from the mechanism of classical coherence
resonance �CR�, as defined in �20�. We point out here the
differences: for small noise intensities, the trajectory of the
system �Eq. �1�� spends most of the time in the vicinity of the
equilibrium point. It is known from linear analysis in gen-
eral, that the spectrum of small oscillations near an equilib-
rium point has the form of a Lorentzian, whose width at
half-maximum is defined by 
�
. The spectrum width of the
oscillations in the vicinity of the limit cycle, on the other
hand, is determined by the noise intensity �16� and can be
smaller than 
�
. Accordingly, we observe narrowing of the
spectral line as a result of the change of the amplitude dis-
tribution with the increase of noise intensity. For ��−1 /8
�i.e., outside the bistability region of the deterministic oscil-
lator� such kind of behavior can be found only after the sto-

(a)

(b)

FIG. 2. �Color online� Normalized power spectral density of
oscillation in �Eq. �1�� for �=−0.13 and different values of noise
intensity: �a�—in the isochronous case ��=0� and �b�—in the aniso-
chronous case ��=0.5�.
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chastic bifurcation on line l1. The narrowest spectrum then is
not observed for small, but for noise of intermediate inten-
sity. A similar explanation of the observed effect was given
in �15� as well, but no presence of P-bifurcations for the
amplitude distribution was established there. Moreover, it
was assumed that the location of the spectral maximum does
not depend on the noise intensity. We show here, however,
that these assumptions hold true only in the case of isochro-
nous oscillations.

The power spectrum of the anisochronous oscillator �Eq.
�1�� for increasing noise intensities, behaves differently in
comparison to the isochronous case �Fig. 2�b��. In particular,
for small D it has only one maximum at frequency �0=1 �as
for the isochronous oscillator�. Such a spectrum corresponds
to the rotation of the trajectory in the vicinity of the equilib-
rium point at the origin. With the increase of D, however,
there appears a second maximum at a different frequency �1,
which corresponds to the rotation of the trajectory on a limit
cycle. Thus, in some interval of D there are two spectral
maxima. Further on, for larger D, the first maximum disap-
pears and there remains only the maximum at frequency �1.
The width of the first spectral line does not change essen-
tially, but the width of the second one grows with the in-
crease of D. �The evolution of the power spectrum for aniso-
chronous oscillations is described in detail in Sec. III.� We
denote this phenomenon anisochronous-based stochastic bi-
furcation (ASB). Consequently, in the case of anisochronous
oscillations, the effect we observe is substantially different
than the CR.

III. NOISE INFLUENCE ON A SYNTHETIC
GENE OSCILLATOR

Next we analyze a system demonstrating self-sustained
oscillations, namely, a paradigmatic mathematical model of a
synthetic gene oscillator, as discussed in �21�,

ẋ�t� =
1 + x2 + �
x4

�1 + x2 + 
x4��1 + y4�
− �xx + �2Dn�t� ,

�yẏ�t� =
1 + x2 + �
x4

�1 + x2 + 
x4��1 + y4�
− �yy , �6�

The dimensionless system presented here describes the evo-
lution of concentrations of the two constituent proteins x�cI�
and y�lac�, where the time scale for y is defined by �y, which
at the same time is a design parameter �for detailed explana-
tion of the system see �21��. � represents the degree to which
the transcription rate is increased, 
 is the affinity for a
dimer, and �x and �y characterize the degradation rates. The
noise term n�t� models the contribution of random fluctua-
tions and is a Gaussian white noise with zero mean. We
assume that the deterministic equations provide a reasonable
description of the system’s dynamics, whereas the noise term
represents the inevitable fluctuations in living systems. It is
considered that the noise intensity D is rather small, not ex-
ceeding the order of 10−4; hence, a sufficient motivation to
use Gaussian noise and Langevin equations. The numerical
integrations are performed using standard techniques for sto-
chastic differential equations ��19��.

The inherent stochasticity of biochemical processes,
which depend on relatively infrequent molecular events
involving a small number of molecules, is an essential source
of internal noise in biochemical systems. Additionally, fluc-
tuations originating from random variations of one or more
externally set control parameters act as external noise, which
makes the consideration of the effect of noise on the dynamic
of genetic network unavoidable ��22,23��. It is noteworthy to
mention that our goal here is to study general properties of
bistable oscillators under the influence of noise. Therefore,
we investigate here the simplest case where noise influences
the dynamical behavior of the oscillator through one of the
genes, although introducing a stochastic term to the second
equation as well does not qualitatively change the obtained
results �results not shown here�.

In the deterministic case, for certain set of the parameters
�see �21� for their values�, bistability is observed in the sys-
tem �Eq. �6��: there are two attractors—a stable focus F and
a stable limit cycle L, separated in the phase plane by an
unstable limit cycle L� �Fig. 3�a��. For �y �0.037 01�10−6

a tangent bifurcation of cycles L and L� takes place. In

(b)

(a)

FIG. 3. �Color online� Phase trajectories of the system �Eq. �6��:
�a�—in the deterministic case �D=0� in the region of bistability for
�y �0.037 01 �F—stable focus, L—stable limit cycle, L�—unstable
limit cycle�; �b�—in the presence of noise with intensity D
=0.000 02 near the border of bistability for �y �0.037 02.
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the calculations performed further, we have chosen �y
=0.037 02, at which in the deterministic system �Eq. �6��
there exists only one attractor, the stable focus F. In the
stochastic case there is only one invariant set of trajectories
in the phase space �Fig. 3�b��.

Since for this system �Eq. �6�� the instantaneous ampli-
tude a�t� depends on the rotation angle of the radius-vector
connecting the state of equilibrium F with a point of the
phase trajectory �i.e., on a reduced phase ��t�� �0;2	��, it is
more appropriate to consider here a conditional amplitude
distribution for a predetermined value of ��t�, than the av-
eraged value approach used before. Thus, we calculate now
the stationary amplitude distributions pc�a�, corresponding to
the condition cos���t��=0�0.001 �i.e., ��t��	 /2, where
��t� is measured with respect to x�, and the power spectra of
x�t�.

Figure 4�a� shows the stationary amplitude distributions
pc�a� for different noise intensities. The obtained curves are
not smooth because of statistical errors and uncertainty in
defining the predetermined value of the phase ��t�. The lat-
ter is particularly large for small amplitudes, explaining the
fact that the obtained dependences pc�a� do not fall into the
vicinity of zero when a→0. Nevertheless, the distributions
pc�a� are qualitatively similar to those obtained for oscillator
�Eq. �1�� in the quasiharmonic approach. For increased noise
intensity, we observe here again stochastic P-bifurcations:
transition from a unimodal �curve 1 in Fig. 4�a�� to a bimodal

distribution �curve 2� and back again to a unimodal one
�curve 3�.

Changes of the power spectrum for increasing noise in-
tensity, obtained for �Eq. �6��, verifies the anisochronous
character of oscillations. And instead of CR-like effect we
observe here ASB �Fig. 4�b��. The frequency of the oscilla-
tions in the vicinity of the unstable focus F is different from
that in the region distant from it. In the case of small noise
intensities, there is one maximum at frequency �0�0.052
�curve 1 in Fig. 4�b��, characteristic for the rotation in the
vicinity of the focus F. With the increase of D, a second
maximum appears, with frequency �1�0.047 corresponding
to the rotation faraway from F, and close to the main fre-
quency of the limit cycle L. If D is increased further, the
trajectory spends progressively less time in the vicinity of F,
the maximum at the frequency �0 gradually disappears, and
the width of the remaining line at the frequency �1 grows
�curves 2 and 3 in Fig. 4�b��. Except for the disposition of
the corresponding spectral lines ��0
�1�, the evolution of
the spectrum with the increase of the noise intensity is, in
general very similar to the one observed for the anisochro-
nous oscillator �Eq. �1�� �Fig. 2�b��.

IV. DISCUSSION

Studying oscillators in the regime of bistability, we find a
strong sensitivity to the influence of additive noise. This be-
comes apparent through the occurrence of stochastic
P-bifurcations, represented through a qualitative change of
the stationary amplitude distribution. An analog to the deter-
ministic bistability, in a noisy oscillator is a regime charac-
terized by a bimodal amplitude distribution, which can be
observed outside the region of the bistability of the determin-
istic system. Hence, stochastic P-bifurcations corresponding
to the appearance and disappearance of one of the maxima of
the distribution of the amplitudes p�a�, serve as borders of
the bimodality region. In these investigations, the noise in-
tensity represents a bifurcation parameter: very strong noise
intensities cause the disappearance of the bimodal distribu-
tion region.

Additionally, the transformation of the distribution law
connected with P-bifurcations results in a change of the
power spectrum. In the isochronous oscillator, we observe a
nonmonotone dependence of the spectral line width on the
noise intensity, similar to what is observed for coherence
resonance. However, if the oscillations are nonisochronous,
there occurs a power redistribution between both lines in the
spectrum and we cannot speak about a CR-like effect any
longer.

The described effects of noise influence on a bistable os-
cillator are found for two essentially different models and
were partially observed earlier experimentally �15�. Thus, we
can state that the results are not model specific, but rather
valid in general for bistable systems. Additionally, these ef-
fects are quite robust to the characteristics of additive noise:
our numerical studies revealed P-bifurcations and a CR-like
effect in the isochronous oscillator �Eq. �1�� in case of
narrow-band noise with restricted amplitude. However this
case requires further investigation.

(b)

(a)

FIG. 4. �Color online� �a� Stationary amplitude distributions
pc�a� �under the condition cos���t�=0�0.001�. �b� Normalized
power spectra in system �Eq. �6�� for �y =0.037 02 and different
values of noise intensity D.
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