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Point configurations have been widely used as model systems in condensed-matter physics, materials sci-
ence, and biology. Statistical descriptors, such as the n-body distribution function gn, are usually employed to
characterize point configurations, among which the most extensively used is the pair distribution function g2.
An intriguing inverse problem of practical importance that has been receiving considerable attention is the
degree to which a point configuration can be reconstructed from the pair distribution function of a target
configuration. Although it is known that the pair-distance information contained in g2 is, in general, insufficient
to uniquely determine a point configuration, this concept does not seem to be widely appreciated and general
claims of uniqueness of the reconstructions using pair information have been made based on numerical studies.
In this paper, we present the idea of the distance space called the D space. The pair distances of a specific point
configuration are then represented by a single point in the D space. We derive the conditions on the pair
distances that can be associated with a point configuration, which are equivalent to the realizability conditions
of the pair distribution function g2. Moreover, we derive the conditions on the pair distances that can be
assembled into distinct configurations, i.e., with structural degeneracy. These conditions define a bounded
region in the D space. By explicitly constructing a variety of degenerate point configurations using the D space,
we show that pair information is indeed insufficient to uniquely determine the configuration in general. We also
discuss several important problems in statistical physics based on the D space, including the reconstruction of
atomic structures from experimentally obtained g2 and a recently proposed “decorrelation” principle. The
degenerate configurations have relevance to open questions involving the famous traveling salesman problem.
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I. INTRODUCTION

A collection of a finite or infinite number of points in
d-dimensional Euclidean space Rd is called a point configu-
ration. Point configurations are one of the most popular and
widely used models for many-particle systems in various
branches of modern science, including condensed-matter
physics and materials science �1–5�, statistical mechanics
�6–8�, discrete mathematics �packing problems� �9�, astro-
physics �distribution of galaxy clusters� �10,11�, ecology
�tree distributions in forests� �12�, and biology �various cel-
lular structures� �13�. Point configurations can exhibit a va-
riety of degrees of disorder, from the most random Poisson
distribution �2� to a perfectly ordered Bravais lattice �1�. The
degrees of disorder can be quantified by discriminating order
metrics �1,14�, which, in their simplest forms, are scalars and
normalized such that the most disordered system is associ-
ated with zero and the most ordered ones with unity.

In this paper, we focus on individual point configurations.
In most circumstance, it is impossible and even unnecessary

to acquire detailed knowledge of all positions of the points in
a single configuration. Instead, statistical descriptors, such as
distribution functions, are typically employed to characterize
point configurations. In particular, the n-body distribution
function gn�x1 ,x2 , . . . ,xn� is related to the probability of
finding a generic configuration of n points at positions
x1 ,x2 , . . . ,xn. It is well known that a set of n-body distribu-
tion functions g1 ,g2 , . . . ,gn �2� is required to statistically
characterize an n-point configuration completely. As n→�
in the thermodynamic limit �e.g., the volume V which the n
points occupy also increases to infinity such that the number
of points per volume—number density �=N /V—is a well-
defined finite number�, the set contains an infinite number of
correlation functions. For statistically homogeneous systems,
which are the focus of this paper, gn is translationally invari-
ant and hence depends only on the relative displacements of
the positions with respect to some chosen origin, say x1, i.e.,
gn�x1 ,x2 , . . . ,xn�=gn�x12,x13, . . . ,x1n� with xij =x j −xi. Thus,
the one-body distribution function g1 is just equal to the
number density �. The important two-body quantity g2�x12�
is usually referred to as the pair distribution function. In the
statistically isotropic case, g2 is a radial function, i.e.,
g2�x12�=g2��x12�� and it is also called the radial distribution
function. The radial distribution function, which is one of the*torquato@electron.princeton.edu
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most widely used structural descriptors, essentially provides
the distribution of the point-pair separation distances and can
be obtained experimentally via scattering of radiation �1�.
The three-body function g3 contains information about how
the pair separations involved in g2 are linked into triangles.

It is worth noting that by decorating the points in the
system �e.g., letting equal-sized spheres be centered at each
point�, one can construct a two-phase random texture from a
given point configuration. In general, there is an infinite
number of ways to decorate a point configuration. In the
characterization of random textures, the analog of the n-body
distribution functions are the n-point correlation functions
Sn�x1 ,x2 , . . . ,xn� �2�, which give the probability of finding n
points at positions x1 ,x2 , . . . ,xn in the phase of interest. In
general, a complete statistical characterization of a con-
tinuum random texture requires an infinite set of Sn. Though
under certain conditions, gn of a point configuration and Sn
of the associated decorated random texture might convey the
same level of structural information �in fact the associated Sn
can expressed as functional of gn given the details of the
decorating phase �2��, the former evidently reflects the essen-
tial geometrical features of the point configuration more di-
rectly.

An intriguing inverse problem that has been receiving
considerable attention is the reconstruction �or construction�
of configurations of a many-body system �essentially point
configurations� that match the prescribed structural informa-
tion of the system in the form of g2 or S2 obtained from
either experiments or theoretical considerations. Examples
include the reconstruction of random media �15–23� and col-
loidal suspensions �24�, investigation of the iso-g2 process
�25� or g2-invariant processes, and the realizability condi-
tions of g2 �26� as well as the more recent discovery of
unusual disordered classical ground states �27�. X-ray scat-
tering techniques have been an indispensable tool historically
in the study of the structures of crystalline matter, and it has
been generalized to probing disordered media �1�. In particu-
lar, the pair distribution function g2�r� is obtainable from the
Fourier transform of the structure factor S�k� �1�, which is
proportional to the scattering intensity �with the atomic
structure function removed� and can be directly measured in
experiments. With the obtained g2, one can then employ vari-
ous reconstruction techniques to generate realizations of the
system of interest. Another related family of inverse prob-
lems is the reconstruction of pair interaction potential from a
given radial distribution function g2�r� between particles,
i.e., the inverse Monte Carlo problems �28�. It is worth men-
tioning that in quantum mechanics, the analog of the
g2-realizability condition is the representability condition for
the two-body density matrix, i.e., the conditions the density
matrix must satisfy in order to correspond to a physical state
�29–32�.

It is known that though the information contained in g2
can be sufficient to completely characterize ordered point
configurations in very special circumstances �33�, it is gen-
erally devoid of crucial structural information to uniquely
determine a disordered point configuration �34–36�. How-
ever, it seems that this aspect has not been widely appreci-
ated and general claims of uniqueness of the reconstructions
using g2 or S2 have been made based on numerical studies

�18,23�. One aim of this paper is to show via a variety of
examples the existence of distinct point configurations with
identical pair-distance distributions �e.g., g2�, which implies
the nonuniqueness of the reconstructions involving g2 of
these point configurations. Besides, general mathematical
formalism to characterize the structural ambiguity of pair
information is also devised.

Figure 1 shows two distinct configurations of four points
in two dimensions with identical pair distances. In particular,
one configuration �with the pair distances shown� resembles
a “kite” and the other resembles a “trapezoid.” In order to
provide an in-depth presentation of the ambiguity of pair-
distance distributions, it is necessary to examine the problem
mathematically first and then discuss the physical implica-
tions. Some definitions are in order here. Two d-dimensional
statistically homogeneous and isotropic n-point configura-
tions �d,n

i and �d,n
j are identical if and only if they possess

identical sets of k-body distribution functions gk for
k=1,2 , . . . ,n. The configurations �d,n

i and �d,n
j are gk distinct

if and only if they process distinct n-body distribution func-
tions for all n�k. A d-dimensional n-point configuration �d,n

1

is k-fold degenerate if and only if there exist additional
�k−1� d-dimensional n-point configurations �d,n

i

�i=2, . . . ,k� that are mutually g3 distinct and also g3 distinct
from �d,n

1 , all of which possess the same two-body distribu-
tion function g2. This definition of structural degeneracy
rules out the possibility that two degenerate point configura-
tions are trivially connected by translation, rotation, mirror
reflection, or any of their combinations. Moreover, we con-
sider that two-point configurations are equivalent �i.e., do not
form a degenerate pair� if they are related by a trivial isotro-
pic rescaling, which does not change the internal structure of
the configuration. Thus, we see that the kite and the trapezoid
are associated with the same set of pair distances �i.e., they
are twofold degenerate�, but the triangle information of the
two is distinguishable �37�. It is worth noting the historically
prominent Kirkwood superposition approximation of g3,
which replaces the three-body distribution function with a
product of three pair distribution functions �38�. Because the
separate members of our pair-distance degeneracy examples
present distinct triangle �i.e., three-body� distributions, the
conclusion must be that no functional of g2 �Kirkwood or
otherwise� can uniquely specify g3.

It is clear that given g2 associated with the degenerate
point configurations, it is impossible even in principle to ob-
tain a unique reconstruction, and each degenerate configura-
tion should be recovered with equal probability. Therefore,
an outstanding problem is to determine under what condi-
tions the pair-distance information contained in g2 could

(b)(a)

FIG. 1. �Color online� An example of two-dimensional four-
point configurations possessing twofold degeneracy: �a� a “kite.”
�b� a “trapezoid.” The specific distance sets are a= �2x2−3x+ 5

4 �1/2,
b= �2x2−x+ 1

4 �1/2, c=2x−1, d=1, for 1
2 �x�1. For x�1, the outer

boundary of the kite is no longer a quadrilateral but reduces to an
isosceles triangle.
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uniquely determine a point configuration, i.e., there is no
associated structural degeneracy. A question with more prac-
tical importance is that how the point configurations would
change when the measurement of g2 is subject to slight im-
precision, a common situation in experiments and numerical
simulations.

In addition to their physical relevance, degenerate point
configurations are also of mathematical interest. For ex-
ample, open questions connected to the famous traveling
salesman problem �39� can be raised. Given the degenerate
configurations associated with the same set of pair distances,
what are the optimal solutions of the traveling salesman
problem for each configuration and are they unique? Are
there special degenerate configurations whose solutions are
identical? For the simplest “kite-trapezoid” example shown
in Fig. 1, for the parameter values x�1 /2, the trapezoid has
three distinguishable circuits and the kite has only two �see
Fig. 2�. The shortest route among all is presented by the
trapezoid, i.e., a closed circuit visiting each vertex once and
only once. For x=1 /2, both the kite and the trapezoid col-
lapse onto a line segment, and in that limiting case all cir-
cuits have the same length. For more general and compli-
cated degenerate configurations, such questions are
notoriously difficult to solve; the problem belongs to the NP-
complete class.

In this paper, we present the idea of the distance space
�i.e., the D space�, in which each dimension is associated
with the separation distance between a given point pair. The
pair-distance distribution of a particular point configuration
is then presented by a single point in the D space. It is clear
that not all the points in D space correspond to realizable
configurations, i.e., the separation distances have to satisfy
certain conditions such that they could be assembled into a
point configuration. These conditions together define a �par-
tially� bounded region in the D space. For example, for three-
point configurations in R2 �i.e., triangles�, the region of the
feasible distances is an open “pyramid” in the three-
dimensional D space, as shown in Fig. 3. When degeneracy
exists, the region of the feasible distances is generally a com-
plicated closed intersection of several such simple curved
pyramids in high dimensions. The determination of the re-
gion of feasible distances is equivalent to obtaining the con-
ditions of a realizable g2, i.e., a pair distribution function that
can be associated with a point configuration. We emphasize
that our focus here is the pair-distance distribution of a single
point configuration �or a single realization of a point pro-

cess�. Thus, the function g2 we examine should be inter-
preted as the volume-averaged pair distribution �14�. Al-
though in the infinite-volume limit, volume averaging is
equivalent to ensemble averaging for ergodic systems, we do
not explicitly consider this limiting case here. Discussions of
the realizability conditions and the nonuniqueness issue for
ensemble-averaged pair distributions can be found in Refs.
�25,26,40,41�. Using the D space, we will answer various
aspects of the aforementioned questions concerning the de-
generate point configurations and the nonuniqueness issue of
the reconstruction. We will show that the utility of the D
space also improves our understanding of various important
problems in statistical physics such as the recently proposed
decorrelation principle in high-dimensional Euclidean space
�42�. In a sequel to this paper, we will extend the present
analysis to understand degeneracy issues pertaining to two–
phase random media which is a larger classification than
point configurations �43�.

The rest of the paper is organized as follows. In Sec. II,
we discuss the D space in detail and derive the conditions for
feasible distances and for the occurrence of degeneracy,
through which we show that in general degeneracy is rare. In
Sec. III, we provide a variety of examples of degenerate
point configurations and illustrate how the conditions derived
in Sec. II could be employed to construct point configura-
tions with specific degeneracy. In Sec. IV, we discuss several
problems in statistical physics such as the reconstruction of
atomic structures from experimentally obtained g2 and the
decorrelation principle, based on the idea of the D space.
Finally, we make concluding remarks.

II. DISTANCE SPACE D

In this section, we will discuss in detail the D space. In
particular, we will derive the conditions under which the pair
distances could be assembled into a point configuration, i.e.,
the feasibility conditions as well as the conditions under
which the pair distances correspond to degenerate point con-
figurations. We will first study a four-point configuration in
R2 to illustrate the idea and then consider the general n-point
configurations in Rd.

A. Simple example: Four-point configuration in R2

Consider a four-point configuration �2,4 in R2 �see Fig. 4�
and the associated six-dimensional D space. We would like

FIG. 2. �Color online� The three distinguishable circuits for the
trapezoid �upper panel� and two distinguishable circuits for the kite
�lower panel�. The circuits are shown in thick lines. The circuit
shown in �a� is the shortest route among all possibilities.

(b)(a)

FIG. 3. �Color online� �a� A three-point configuration �i.e., a
triangle� in R2. �b� The region of feasible distances in the D space
�bounded by the blue planes�. The three pair distances of the tri-
angle shown in �a� is represented as a point �red spot� in the D
space.
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to know the answers to the following two questions:
�i� What are the conditions the six pair separation dis-

tances must satisfy so that they correspond to a four-point
configuration in R2?

�ii� What are the conditions the pair distances must satisfy
so that they correspond to k-fold degenerate four-point con-
figurations in R2?

To answer these questions, we consider a particular con-
struction as follows. Suppose the six pair distances are ele-
ments of the set �= �d1 ,d2 , . . . ,d6�, which can be further
partitioned as �= ��1 ,�2 ,�3 ,�4�, where P1= �	� �	 is the
null set�, P2= �d1�, P3= �d2 ,d3�, and P4= �d4 ,d5 ,d6�. We will
see that such a partition enables us to associate the pair dis-
tances with the corresponding points in a convenient way.
Recall that from our definition �Sec. I�, point configurations
are considered identical if they are connected by translation,
rotation, mirror reflection, and any of their combinations.
Thus, we can put point P1 at the origin of a Cartesian coor-
dinate system and put point P2 on one of the two orthogonal
axes of the coordinate system separated from the origin �i.e.,
P1� by a distance d1. Note different choices of the position of
P1 and the orientation of the line segment P1P2 lead to point
configurations that are identical up to translations and rota-
tions. For point P3, we can either let P1P3=d2, P2P3=d3 or
P1P3=d3, P1P2=d2. The two choices correspond to two con-
figurations connected by a mirror reflection, which are con-
sidered identical and either choice is acceptable. Without loss
of generality, we choose P1P3=d2, P2P3=d3. Finally, we
choose P1P4=d4, P2P4=d5, P3P4=d6 for point P4.

We see from the above construction that the positions of
points P3 and P4 are determined with respect to the line
segment defined by points P1 and P2 as a “reference” struc-
ture. Note that the line segment is a one-dimensional sim-
plex. In R2, the position of a point is completely determined
by specifying two distances from the point of interest to the
vertices of a reference line segment, given that the distances
involved satisfy the triangular inequality, i.e., the triangle
formed by the point of interest and the two vertices of the
reference line segment possess non-negative area. The area 

of a triangle with edges a, b, c is related to the Cayley-
Menger determinant �44�, i.e.,


2 = −
1

16�
0 1 1 1

1 0 a2 b2

1 a2 0 c2

1 b2 c2 0
� . �1�

Thus, for point P3, we obtain

d1
4 + d2

4 + d3
4 − 2d1

2d2
2 − 2d1

2d3
2 − 2d2

2d3
2 � 0, �2�

and for point P4, we obtain

d1
4 + d4

4 + d5
4 − 2d1

2d4
2 − 2d1

2d5
2 − 2d4

2d5
2 � 0. �3�

Inequalities �2� and �3� define a partially bounded region in
the six-dimensional D space, the lower-dimensional analog
of which is the open pyramid shown in Fig. 3. The distance
d6 between points P3 and P4 is also completely determined
by d1 ,d2 , . . . ,d5 via

� − 2d1
2 �d3

2 − d1
2 − d2

2� �d5
2 − d1

2 − d4
2�

�d3
2 − d1

2 − d2
2� − 2d2

2 �d6
2 − d2

2 − d4
2�

�d5
2 − d1

2 − d4
2� �d6

2 − d2
2 − d4

2� − 2d5
2 � = 0, �4�

which results from the requirement that all the 3�3 minors
of the Gram matrix �36� involving the distances possess zero
determinant. We will discuss the Gram matrix in detail in
Sec. II B. Equation �4� defines a curved hypersurface in the
D space, whose intersection with the region defined by Eqs.
�2� and �3� contains the feasible distances � that can be
assembled into a four-point configuration in R2. We call Eqs.
�2�–�4� the feasibility conditions. Note that for the four-point
configuration in R2, only five pair distances can be chosen
almost independently subject to the mild triangle inequality
constraint. Thus, we define the free dimension of the D space
to be the number of pair distances that are only constrained
by inequalities, which total to five here. The free dimension
is also the dimension of the region for the feasible distances,
which is also referred to as the feasible region.

Now we can answer question �i� given at the beginning of
this section easily. Suppose a list of distances is given, when
any one permutation of these distances satisfies the feasibil-
ity conditions �Eqs. �2�–�4��, the pair distances correspond to
a four-point configuration in R2. However, such a simple
answer does not exist for �ii�. For the pair distances to cor-
respond to k-fold degenerate point configurations, a neces-
sary condition is that the dimension of the intersection of the
feasible regions for the k permutations of the pair distances is
nonzero. In other words, each permutation of the pair dis-
tances is associated with a set of feasibility conditions, and a
feasible region can be constructed. To obtain a k-fold degen-
eracy, all sets of the feasibility conditions need to be satisfied
simultaneously, which is only possible when the intersection
of the feasible regions is at least a single curve in the D
space. For the two-dimensional four-point configuration of
interest, the free dimension is five, which leads to an upper
bound on the order of the degeneracy, i.e., kmax=5. This con-
dition is only a necessary one because there are certain per-
mutations that lead to identical configurations, such as those
that correspond to the permutations among the point indices,
which do not change the structure of the configuration,
since the points are indistinguishable. For example,
�1= �d1 ,d2 ,d3 ,d4 ,d5 ,d6� and �2= �d1 ,d4 ,d5 ,d2 ,d3 ,d6� cor-
respond to an exchange of P3 and P4, which possess the
identical feasible regions and thus do not contribute to the
degeneracy. No further conclusions can be made without
knowing the details of how the distances are permuted. In

FIG. 4. A four-point configuration in R2.
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Sec. III, we will construct concrete examples of degenerate
�2,4, where the details of permutations are considered.

B. General formulation: Feasibility conditions

The generalization of the above formulation is straightfor-
ward. Note in the following discussion in this section, we
assume n� �d+1�; the case when n=d+1 �i.e., the simplex
configurations� is discussed in detail in Sec. III A and the
case when n� �d+1� is trivial. Consider an n-point configu-
ration �d,n in Rd, which possesses m=n�n−1� /2
pair distances �= �d1 ,d2 , . . . ,dm�. The distances can
be further partitioned, i.e., �= ��1 ,�2 , . . . ,�n�, where �1
= �	�, �2= �d1� , . . ., �i= �d�i2−3i+3�/2 , . . . ,d�i2−i�/2� , . . ., �n

= �d�n2−3n+3�/2 , . . . ,d�n2−n�/2�. Following the same construction
procedure prescribed in Sec. II A, the distances associated
with the first d points, i.e., �1 ,�2 , . . . ,�d, are assembled
into a �d−1�-dimensional simplex as the reference structure.
Each point Pi�i�d� is associated with �i−1� distances and
the position of point Pi is completely determined by speci-
fying the d distances from Pi to the vertices of the reference
structure, given that the d-dimensional simplex formed by Pi
and the vertices of the reference structure possesses a non-
negative volume. In particular, denote the �d+1� vertices of
the d-dimensional simplex by vi �i=1, . . . ,d+1�, we can de-
fine a �d+1�� �d+1� distance matrix M, i.e.,

Mij = Mji = 	vi − v j	2, �5�

where 	 · 	 denotes the L2 norm of a d-dimensional vector and
Mij �Mji� is the squared distance between vertices i and j.
The volume 
 of the simplex is then given by the Cayley-
Menger determinant, i.e.,


d
2 =

�− 1�d+1

2d�d!�2 �M̂� � 0, �6�

where M̂ is a �d+2�� �d+2� matrix obtained from M by
bordering M with a top row �0,1,…,1� and a left column
�0,1 , . . . ,1�T. For example, Eq. �6� reduces to Eq. �1� in R2,
and in R3 we obtain


2 =
1

288�
0 1 1 1 1

1 0 M12 M13 M14

1 M21 0 M23 M24

1 M31 M32 0 M34

1 M41 M42 M43 0
� . �7�

The requirement that the constructed d-dimensional simplex
possesses non-negative volume leads to higher-dimensional
analogs of the well-known triangle inequalities in two di-
mensions, which we will refer to as simplex inequalities. In
general, each set of the simplex inequalities associated with a
point Pi �i�d� defines a partially bounded region in the D
space, the intersection of which is a high-dimensional analog
of the open pyramid shown in Fig. 3�b�.

It is clear from the above construction that a point con-
figuration �d,n can be completely determined by only speci-
fying f = � 1

2d�d−1�+ �n−d�d� distances �e.g., “free” dis-
tances�, satisfying the simplex inequalities. Thus, the free

dimension of the D space is f and the remaining �m− f� pair
distances �e.g., “constrained” distances� cannot be chosen
freely but instead are completely determined by the f free
distances. To obtain the relations between the constrained
and free distances, we will employ the following theorem
�36�.

Theorem 1. For a set of n vectors v1 ,v2 , . . . ,vn in Rd

�n�d�, let the Gram matrix be defined by Gij = 
vi ,v j�, where

 · � denotes the inner product. Then all �d+1�� �d+1� mi-
nors of G must have zero determinant.

The proof of the theorem is given in Ref. �36�. It is es-
sentially another way of stating the fact that there are at most
d linearly independent vectors among v1 ,v2 , . . . ,vn in a
d-dimensional Euclidean space. Without loss of generality,
we can choose the origin at v1 and obtain

Ĝij = 
v̂i, v̂ j� = 
vi − v1,v j − v1� . �8�

Consider the identity �36�,


vi − v1,v j − v1� =
1

2
�
vi − v1,vi − v1� + 
v j − v1,v j − v1� − 
vi

− v j,vi − v j�� , �9�

we obtain that

Ĝij =
1

2
�d̂i1

2 + d̂j1
2 − d̂ij

2 � , �10�

where d̂ij is the distance between the two points i and j.
Thus, we see the requirement that all �d+1�� �d+1� minors

of Ĝ have zero determinant �denoted by M�d+1��, i.e.,

�M�d+1��Ĝ�� = 0 �11�

leads to fourth-order algebraic equations, involving the �m
− f� constrained distances. It is clear that each constrained
distance can be explicitly expressed as a function of the free
distances alone. For four-point configuration in R2, Eq. �11�
gives Eq. �4�. Note these equalities define curved hypersur-
faces in the D space. The intersection of these curved hyper-
surfaces as well as the partially bounded regions defined by
Eq. �6� gives the feasible region of the D space, i.e., when
any permutation of the m=n�n−1� /2 pair distances lies
within the feasible region, these distances can be assembled
into an n-point configuration in Rd.

C. General formulation: Necessary conditions of degeneracy

For the distances � to correspond to k-fold degenerate
point configurations �d,n

1 , �d,n
2 ,…, �d,n

k �k� f�, the feasibility
conditions for k distinct permutations of � should be satis-
fied simultaneously. The feasibility conditions associated
with any particular permutation of � include a set of equali-
ties, which would reduce the dimension of the feasible re-
gion in the D space. Suppose that for each distinct permuta-
tion, only one additional equality constraint is introduced.
Then we can obtain an upper bound on the order of the
degeneracy, i.e., kmax= f , which corresponds to a feasible re-
gion that has been reduced to a single curve �with one free
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dimension�. That is, only one distance can be chosen arbi-
trarily. However, different choices of the single free distance
correspond to trivial isotropic rescaling of the entire configu-
ration, which leads to no degeneracy based on our definition.
Note that if the permutation does not introduce new feasibil-
ity conditions, it corresponds to a permutation of the point
indices, which does not affect the structure of the configura-
tion.

The properties of the feasible regions have important im-
plications. As we have seen, the structural degeneracy would
reduce the dimension of the feasible regions, the volume of
which is proportional to the number of feasible distance sets.
For a particular n-point configuration, we could in principle
identify all feasible distance sets by exploring the whole fea-
sible region in the D space point by point. However, the
distance sets associated with degeneracies can only lie on a
hypersurface with lower dimensions than the feasible region.
The volume ratio of the hypersurface to the feasible region,
which is also the number ratio of the distance sets associated
with degeneracies to those without degeneracies, is vanish-
ingly small. In other words, although degeneracies exist they
are extremely rare. This might explain why perfect recon-
structions �identical match of the pair distances and the con-
figurations up to translations, rotations and mirror reflec-
tions� can be obtained numerically �18,23�. However, the
general conclusion that pair statistics alone would uniquely
determine the configurations could not be made only based
on those numerical results, as we will show in the next sec-
tion via a variety of examples of degeneracy.

III. EXAMPLES OF DEGENERATE POINT
CONFIGURATIONS

In this section, we construct a variety of degenerate point
configurations using the general scheme developed in Sec. II.
In particular, we study the degeneracies of simplices in Rd,
four-point configurations in R2, and specific n-point configu-
rations in Rd possessing twofold degeneracy.

A. Degenerate d-dimensional simplices

A simplex in Rd is the convex hull of a set of �d+1�
points �d,d+1 that do not all lie on the same
�d−1�-dimensional hyperplane. A simplex in R2 is a triangle
and in R3 is a tetrahedron. Simplices in Rd �d�4� can be
considered to be d-dimensional generalizations of the three-
dimensional tetrahedron. The simplex is so named because it
represents the simplest possible polyhedron in the given di-
mension. The volume a d-dimensional simplex is given by
Cayley-Menger determinant �6�.

A unique feature of simplex configurations �d,d+1 is that
their feasibility conditions only include the simplex inequali-
ties. These inequalities define a partially bounded region pos-
sessing the same dimensions as the D space. In other words,
the free dimension of the feasible region is not reduced due
to degeneracy. Thus, one should expect that it is much easier
to obtain highly degenerate simplices than other point con-
figurations.

Suppose we have a distance set �= �d1 ,d2 , . . . ,dm�
�m=d�d+1� /2�. It is clear that if we choose di= d̄+
i, where


i �i=1,2 , . . . ,m� are mutually distinct small numbers. they
will satisfy all the simplex inequalities and correspond to a
point in the vicinity of the centroid of the feasible region.
The maximum magnitude of the 
’s depends on the bound-
aries of the feasible region, which we need not to worry
about for the moment, as long as the 
’s are sufficiently
small and mutually distinct.

In R2 �d=2�, the three distances can be assembled into a
unique triangle, i.e., we have kmax

�2� =1. This can also be seen
from the following argument. Since configurations connected
by translations and rotations are considered identical, we
could pick any one of the three distances along one of the
coordinate axes starting from the origin and require the same
for the corresponding distance of all possible degenerate con-
figurations. In this way, we rule out translations and rotations
in a plane. There are only two distances left, which can be
assembled into a triangle in two ways. However, the two
resulting triangles are mirror image of each other. Thus, we
have kmax

�2� =2! /2=1, where “!” indicates factorial.
In R3 �d=3�, we similarly choose one of the six distances

as the reference distance, and the remaining five are assigned
to different edges of a tetrahedron, which results in 5! tetra-
hedra. However, among these tetrahedra there are pairs that
are connected by mirror reflection, which has to be excluded.
Two mirror reflection plane can be identified: one perpen-
dicular to the reference distance and the other contains the
reference distance. This further reduces the number of dis-
tinct tetrahedra by a factor of 1/4. Thus, we obtain kmax

�3�

=5! / �2�2�=30.
Generally, in d dimensions when one of the m=d�d

+1� /2 distances is chosen as the reference distance, there are
�m−1�! ways to assemble the remaining �m−1� distances
into a simplex in Rd. However, �d−1� hyperplanes �among
which one contains the reference distance and the others are
perpendicular to it� can be identified that are mirror reflection
hyperplanes of the simplex. Each mirror reflection reduces
the number of distinct simplices by a factor of 1/2. Thus, we
have

kmax
�d� =

�m − 1�!
2�d−1� =

�d�d + 1�/2 − 1�!
2�d−1� . �12�

We can see that for simplex configurations in Rd with d
�3, kmax

�d� is significantly larger than the dimension of the
feasible region f =d�d+1� /2, which indeed implies a high
level of degeneracies associated with these configurations.

B. Two-dimensional four-point configurations

We show here how the conditions determining the fea-
sible region in D space can be employed to construct four-
point configurations �2,4 in R2 with k-fold degeneracy. As
pointed out in Sec. II, the feasibility conditions are only nec-
essary and the details of how the distances are permuted
must be considered.

The relations of the six distances of �2,4 are given by Eq.
�4� for the particular order �= �d1 ,d2 ,d3 ,d4 ,d5 ,d6�. For a
permutation ��, the variable di in Eq. �4� should be replaced
by the ith element of ��, which generally would lead to a
different equation for the six distances. As mentioned in the
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last section, we could choose d1 as the reference distance to
rule out translation and rotation and only consider the per-
mutations of the remaining five distances, which gives 5!
=120 distinct equations. Without loss of generality, we could
also choose d1=1, which corresponds to a trivial isotropic
rescaling of the entire point configuration.

In principle, a k-fold degeneracy �k�kmax=5� could be
constructed by requiring that the k equations for the five
distances corresponding to k distinct permutations hold si-
multaneously. However, we find that high level degeneracies
�those with k close to kmax� are difficult to realize. In particu-
lar, when k is large the equations for the distances possess
roots that are algebraically multiple, i.e., � contains two or
more equal valued distances, which leads to configurations
connected by rotations and mirror reflections. Thus, the num-
ber of distinct configurations associated with the distances is
smaller than k. For n-point configurations, the largest k that

we have realized is k̂=n−1. Due to space limitation, we
could not exhaust all degeneracies for each k �i.e., about C120

k

cases� in this paper and only provide a few specific ex-
amples.

For k=2, requiring the distance permutations �1
= �d1 ,d2 ,d3 ,d4 ,d5 ,d6� and �2= �d1 ,d2 ,d3 ,d6 ,d4 ,d5� to hold
simultaneously yields

D��1� = D�d1,d2,d3,d4,d5,d6� = 0,

D��2� = D�d1,d2,d3,d6,d4,d5� = 0, �13�

where D�x1 ,x2 ,x3 ,x4 ,x5 ,x6� is the multinomial given by

D�x1, . . . ,x6�

= � − 2x1
2 �x3

2 − x1
2 − x2

2� �x5
2 − x1

2 − x4
2�

�x3
2 − x1

2 − x2
2� − 2x2

2 �x6
2 − x2

2 − x4
2�

�x5
2 − x1

2 − x4
2� �x6

2 − x2
2 − x4

2� − 2x5
2 � .

�14�

Equations �13� reduce the free dimensions of the D space
from five to four. Without loss of generality, we choose d1
=1, d2=1.58114. . ., d3=0.70710. . ., d4=0.87228. . ., and
solve Eqs. �13� to obtain d5=1.32698. . ., d6=1.54551. . .. The
twofold-degenerate configurations are shown in Fig. 5. It
should be noted in passing that the kite-trapezoid example
shown earlier in Fig. 1 is a special case of this four-point
twofold degeneracy, for which the shapes each have a reflec-
tion symmetry. If we require the permutations �3
= �d1 ,d2 ,d3 ,d4 ,d6 ,d5� and �4= �d1 ,d2 ,d3 ,d5 ,d4 ,d6� to hold

simultaneously, the same degeneracy can be obtained be-
cause the apparently different groups of distance permuta-
tions ��1 ,�2� and ��3 ,�4� correspond to the permutation of
indistinguishable points.

Similarly, for k=3, we choose �1= �d1 ,d2 ,d3 ,d4 ,d5 ,d6�,
�2= �d1 ,d2 ,d3 ,d5 ,d6 ,d4�, and �3= �d1 ,d2 ,d3 ,d4 ,d6 ,d5� to
hold simultaneously, which reduces the free dimensions to
three. By choosing d1=1, d2=1.581144. . ., d3=0.70710. . .,
equations D��i�=0 �i=1,2 ,3� can be solved to yield d4
=1.34371. . ., d5=0.37267. . ., d6=0.68718. . .. The threefold
degenerate configurations are shown in Fig. 6.

C. d-dimensional n-point configurations with twofold
degeneracy

In general, the feasible region of k-fold degenerate n-point
configurations in Rd can be obtained by carrying out a simi-
lar calculation used in the previous section, which would be
extremely tedious. However, when the point configurations
possess certain symmetries, particular degeneracies can
readily be constructed. Here we provide constructions of
twofold-degenerate n-point configurations in Rd by taking
advantage of their symmetries.

Consider a centrally symmetric n1-point configuration
�d,n1

�1� in Rd, i.e., there exists a center O1 such that for every
point Pi

�1� in �d,n1

�1� there exists a point Pj
�1�, for which the line

segment Pi
�1�Pj

�1� passing O1 is bisected by O1 �note that i
= j is allowed�, i.e., Pi

�1� and Pj
�1� are points of inversion

symmetry about O1. Consider another centrally symmetric
point configuration �d,n2

�2� , in which all the n2 points are dis-
tributed symmetrically on a one-dimensional line l�2� embed-
ded in Rd. Denote the symmetry center of �d,n2

�2� by O2. We
require that the line segment O1O2 is perpendicular to l�2�.
Finally, consider the centrally symmetric point configuration
�d,2n3

�3� , the 2n3 points of which are also distributed symmetri-
cally on a one-dimensional line l�3� that is parallel to l�2� with
the symmetry center coinciding with O1. �d,2n3

�3� can be further
partitioned into two subsets: �d,n3

p which contains n3 points
in �d,2n3

�3� such that no two points in �d,n3

p are symmetric about
O1 �i.e., they are “primary” points�, and �d,n3

d , which con-
tains the remaining n3 points of �d,2n3

�3� �i.e., the “dual”
points�. It is clear that

�d,�n1+n2+n3�
p = �d,n1

�1� � �d,n2

�2� � �d,n3

p ,

�d,�n1+n2+n3�
d = �d,n1

�1� � �d,n2

�2� � �d,n3

d , �15�

form a degenerate pair, i.e., the distances from the n3 primary
points to the remaining �n1+n2� points in �d,�n1+n2+n3�

p are

(b)(a)

FIG. 5. �Color online� An example of twofold-degenerate four-
point configurations in R2. The distances are given by d1=1, d2

=1.58114. . ., d3=0.70710. . ., d4=0.87228. . ., d5=1.32698. . ., d6

=1.54551. . ..

(b)(a) (c)

FIG. 6. �Color online� An example of threefold-degenerate four-
point configurations in R2. The distances are given by d1=1, d2

=1.581144. . ., d3=0.70710. . ., d4=1.34371. . ., d5=0.37267. . ., d6

=0.68718. . ..
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identical to those from the n3 dual points to the remaining
�n1+n2� points in �d,�n1+n2+n3�

d , while the two resulting con-
figurations are not connected by translation, rotation, mirror
reflection, or any of their combinations. Specific twofold de-
generacy examples in R2 and R3 are shown in Figs. 7 and 8,
respectively.

IV. DISCUSSION

The D space concept can be applied to reconcile a variety
of problems in statistical physics, such as the reconstruction
of atomic structures from experimentally obtained g2, and
the decorrelation principle, which we will discuss in the en-
suing subsections.

A. Reconstruction of atomic structures from experimentally
obtained g2

As mentioned in Sec. I, a knowledge of atomic structures
of condensed matter can be obtained via x-ray scattering ex-
periments. In particular, the two-body distribution function
g2�r� is related to the Fourier transform of the structure factor
S�k�, which is proportional to the scattering intensities �with
the atomic structure function removed�. For ideal crystalline
structures �without any thermal agitation of the atomic cen-
ters�, g2 consists of a series of Dirac delta functions at spe-
cific distances. For disordered structures �lack of long-range
order�, g2 is generally a continuous damped oscillating func-
tion that decays to its long-range value very quickly. Inter-
estingly, it seems that though the pair information contained
in g2 of the crystalline matter would determine the structures

to high accuracy, it is not the case for disordered structures.
The reason can be easily seen if we consider the D space.

For an ordered point configuration �i.e., a lattice�, there are
strong dependencies among the distances besides those re-
quired by the feasibility conditions. For example, consider a
d-dimensional Bravais lattice whose basis vectors are
a1 ,a2 , . . . ,ad. The vector connecting any two points in the
lattice can then be expressed as

d = n1a1 + n2a2 + ¯ + ndad, �16�

where ni �i=1, . . . ,d� are integers. Thus, the distance d be-
tween any two lattice points is given by

d2 = �
i=1

n

ni
2
ai,ai� + �

i�j

n

ninj
ai,a j� , �17�

where 
 , � denotes the inner product of two vectors. Note that

ai ,a j�= 1

2 �
ai ,ai�+ 
a j ,a j�− 
ai−a j ,ai−a j��. Thus, Eq. �17�
implies that every distance of an ordered point configuration
can be obtained if the lengths of the basis lattice vectors and
the distances between the end points of different basis lattice
vectors are specified. In other words, Eq. �17� further reduces
the free dimensions of the D space of the ordered point con-
figuration in Rd to f =d�d+1� /2. The additional conditions
given by Eq. �17� significantly reduce the number of feasible
permutations of the distances. A unique feature of the dis-
tances for lattices is that the basis lattice vectors are associ-
ated with the smallest distances. To completely reconstruct
the lattice configuration, the smallest d�d+1� /2 distances are
selected to be assembled into a simplex in Rd defined by the
common origin and the end points of all the lattice vectors,
which in turn determines the fundamental cell of the lattice.
In R2, three feasible distances uniquely determine a triangle
and, thus, the rhombical fundamental cell. In R3, there are
maximally 30 ways that the six distances could be assembled
into a tetrahedron. However, even for a twofold degeneracy,
the number of equality constraints introduced by Eq. �17�
�i.e., for two permutations of the 6 distances, Eq. �17� should
hold simultaneously� is much larger than the free dimensions
of the system, which generally rules out all nontrivial solu-
tions. Indeed, it is known that for d�3, pair distances are
sufficient to uniquely determine Bravais lattices. However, in
high dimensions, degeneracies of Bravais lattices can be con-
structed �9�.

For a disordered structure, Eq. �17� does not hold and the
values of distances would form a continuous spectrum in the
infinite-volume limit. We consider the idealized case that
there are a finite number of well-defined distances and try to
reconstruct the configuration from them. An important point
is that no matter how carefully experiments might be carried
out, there would still be small but finite errors associated

with the distances, i.e., di= d̂i+�i, where d̂i denotes the real
value of the distance and �i denotes the error. Thus, instead
of a single point in the D space, the distances correspond to
a small uncertainty region with same dimensions as the D
space. As we have pointed out, the presence of degeneracies
corresponds to a feasible region with reduced free dimension
and thus has vanishing “volume” compared with the feasible
region free of degeneracies, which leads us to the conclusion

(b)(a) (c)

FIG. 7. �Color online� An example of twofold-degenerate con-
figurations in R2 constructed as described in the text. �a� The points
in �d,n1

�1� are shown in blue �dark gray�, the points in �d,n1

�1� are shown
in yellow along the right most dashed vertical line, and the points in
�d,2n3

�3� are shown as void circles. �b� and �c� show the degenerate
configuration pair.

(b)(a) (c)

FIG. 8. �Color online� An example of twofold-degenerate con-
figurations in R3 constructed as described in the text. �a� The points
in �d,n1

�1� are shown in blue �dark gray�, the points in �d,n1

�1� are shown
in yellow along the dashed line on the right surface of the cubic
box, and the points in �d,2n3

�3� are shown as void circles. �b� and �c�
show the degenerate configuration pair.
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that degeneracies are rare in general. However, due to the
uncertainties of the measured distances, we see that the fea-
sible regions now are “finite” in size compared with those
free of degeneracies. This explains why in the reconstruc-
tions it is hard to exactly recover the target configurations,
i.e., all configurations associated with the distances corre-
sponding to the points in the feasible region should be con-
sidered with equal probability for a “fair” reconstruction pro-
cedure.

B. Decorrelation principle

Recently, Torquato and Stillinger �42� proposed a decor-
relation principle concerning the disordered hard-sphere
packings in high-dimensional Euclidean space Rd. In particu-
lar, the decorrelation principle states that unconstrained spa-
tial correlations vanish for disordered packings as the spatial
dimension becomes large. In other words, as d increases, the
short-ranged order beyond contact that exists in low dimen-
sions must diminish. This principle has been explicitly ob-
served in a variety of disordered packings in high dimensions
�45�.

The centroids of the hard spheres completely determine a
packing, which can be considered as a point configuration in
Rd, in which there is a minimum value of pair separation
distances D �i.e., the diameter of the spheres� due to the
nonoverlapping condition. The decorrelation principle
amounts to the following statement concerning the D space
of the configuration: the requirement that the distances can-
not be smaller than D does not affect the occurrence fre-
quency of distances with values greater than D in very high
dimensions. Note the above should be true for any disor-
dered packings, including both dilute and jammed packings.
It is known that in low dimensions, g2=H�r−D� can only be
maintained for packings with densities less than a critical
value �26� and for disordered jammed packings g2 shows
strong short-ranged oscillations �46�, which is the manifesta-
tion of local spatial correlations due to the nonoverlapping
constraint. In other words, for the jammed disordered pack-
ings, the requirement that a desired number of distances of
value D must be realized in the configuration strongly con-
strains the possible values of other distances in low dimen-
sions, especially those on the same magnitude of D. In high
dimensions, the above requirement becomes less significant
in determining the local arrangements of points. Consider the
construction used in deriving the feasibility conditions to
completely determine the position of a point in Rd, a “refer-
ence” structure containing at least d points is used. The po-
sitions of the points in the reference structure can be chosen
almost freely subject to the mild constraint that no two points
can be closer than D. As d increases, larger local structures
�containing more points� can be constructed before the con-
straints on the separation distances between the points begin
to play an important role. In addition, there are �d−m� ways
to arrange a point that has fixed distances to m �m�d� points
in Rd. Thus, as d→�, the constraints on the pair-distance
values imposed by the requirement that a desired number of
distances with value D must be realized become insignifi-
cant, which is consistent with the decorrelation principle.

C. Additional structural information

As we have shown, pair-distance statistics in general is
not sufficient information to completely determine the point
configuration. A natural question is what additional informa-
tion could be used to further reduce the compatible configu-
rations associated with identical radial distribution functions.
A conventional choice is the three-body correlation function
g3 �6,8�, which provides information how the pair distances
should be linked into triangles. Though in certain circum-
stances g3 could provide additional information on the point
configuration, its determination requires additional effort ei-
ther theoretically or computationally.

It has been suggested in Ref. �47� that instead of incorpo-
rating information contained higher-order versions of g2,
namely, g3, g4, etc., one might be better served to seek other
descriptors at the two-point level, which can be both man-
ageably measured and yet reflect nontrivial higher-order
structural information. One such quantity is the pair-
connectedness function P2 �2�, �i.e., the connectedness con-
tribution to g2�, which contains nontrivial topological con-
nectedness information of the point configuration. Note the
“connectedness” in a point configuration can be defined in
many ways, e.g., one could circumscribe spheres around
each of the points and then define that two points are con-
nected if the two associated spheres are either contacting or
overlapping, for example. Connectedness information con-
tained in P2 is distinct from the “triangular” information em-
bodied in g3, e.g., P2 is sensitive to clustering effects,
whereas g3 is not.

D. Generalization to two-phase media

As pointed out in Sec. I, two-phase media can be con-
structed by decorating point configurations. For example,
one can construct sphere packings by assigning to each point
a sphere centered at the point with diameter equal to the
minimal distance in the configuration. In this sense, two-
phase media are more general than point configurations. The
degeneracy of discrete point configurations implies the exis-
tence of degenerate two-phase media. The corresponding
pair-distance information for two-phase media is the two-
point correlation functions S2 �2�. The degeneracy of two-
phase media and the nonuniqueness issue of their reconstruc-
tion will be discussed in a sequel �Part II�. Here we only
provide an example of a twofold-degenerate two-phase me-
dium constructed from the kite-trapezoid example given in
Sec. I.

As shown in Fig. 9, suppose we have two large solid
circles, in which small circular holes are made. One large
circle contains the kite holes and the other contains the trap-
ezoid holes. Since initially the two solid large circles are
characterized by identical infinite distance set and the same
subset of distances are then removed to make the holes, the
remaining sets of distances for the two large circles with
holes are still identical.

V. CONCLUDING REMARKS

In this paper, we discussed various aspects of the geo-
metrical ambiguity of pair-distance statistics associated with
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general point configurations in Rd. In particular, we intro-
duced the idea of the D space and derived the feasibility
conditions of the distances, which are equivalent to the real-
izability conditions of g2 and the necessary conditions for
degeneracy. We applied the conditions to construct explicit
examples of degenerate point configurations and showed that

though degeneracies are rare, one could not exclude their
existence merely based on numerical reconstruction studies.
We also applied the D space to problems in statistical phys-
ics, such as the reconstruction of atomic structures from ex-
perimentally obtained g2, and the decorrelation principle.

As pointed out in Sec. IV D, the degeneracy of point con-
figurations implies the existence of degenerate random media
and a simple example is provided there. In a sequel to this
paper �43�, we will study the structural degeneracy of general
random media and the nonuniqueness issue in the recon-
struction of heterogeneous materials �2,3,5,48�.
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