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We present a unified formulation for quantum statistical physics based on the representation of the density
matrix as a functional integral. For quantum statistical (thermal) field theory, the stochastic variable of the
statistical theory is a boundary field configuration. We explore the properties of an effective theory for such
boundary configurations and apply it to the computation of the partition function of an interacting one-
dimensional quantum-mechanical system at finite temperature. Plots of free energy and specific heat show
excellent agreement with more involved semiclassical results. The method of calculation provides an alterna-
tive to the usual sum over periodic trajectories: it sums over paths with coincident end points and includes
nonvanishing boundary terms. An appropriately modified expansion into modified Matsubara modes is

presented.
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I. INTRODUCTION

Quantum statistical physics provides the conceptual and
computational framework for the treatment of interacting
many-body systems in thermal equilibrium with a heat bath.
It describes a great variety of systems and phenomena over a
wide range of scales, thus covering practically all areas of
physics, from cosmology to particle physics, with an exten-
sive number of examples in condensed matter.

Its broad spectrum of applications includes special-
relativistic systems. For those, the quantum statistical treat-
ment is known as finite-temperature field theory [1], which is
synonymous to quantum statistical field theory. In fact, just
as quantum statistical mechanics adds stochastic probabili-
ties to the quantum probabilities of quantum mechanics,
finite-temperature field theory does likewise with respect to
quantum-field theory, the natural combination of special rela-
tivity, and quantum mechanics.

Quantum statistical physics can be formulated in the lan-
guage of Euclidean (imaginary-time) functional integrals,
quite natural for finite-temperature field theories but also ap-
plicable in nonrelativistic contexts since quantum mechanics
can be viewed as a field theory in zero spatial dimensions.
Functional integrals thus furnish a powerful unifying formal-
ism to compute correlations.

Indeed, the formalism expresses the partition function of a
given system as a generating functional of euclidean Green’s
functions (correlations), similarly to zero-temperature field
theory, but with the time direction made compact, and spe-
cific boundary conditions that constrain the domain of field
configurations in the functional integral.

In order to best exploit the unifying aspect of the formal-
ism, we propose to view the partition function as an integral
of the diagonal density matrix element of the theory. The
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integral is performed over the stochastic variable which char-
acterizes the Schrodinger representation of the matrix ele-
ment (position representation for quantum mechanics, field
representation for second-quantized quantum mechanics or
field theory). The density matrix is just the Boltzmann op-
erator, whose Hamiltonian operator may either come from
(second-quantized) quantum mechanics or from field theory.

The density matrix element may be written as a functional
integral in euclidean time 7 which starts from a given con-
figuration (a point in quantum mechanics, a field configura-
tion in field theory) at 7=0 and returns to that same configu-
ration at 7= Bh. Clearly, there is a sum to be performed over
configurations which coincide at the end points of the Eu-
clidean time interval. Those boundary configurations are
identified as the stochastic variable of the remaining integral.

This density matrix method for deriving an effective sto-
chastic problem was already used in [2], where it led to the
construction of dimensionally reduced effective actions.
Likewise, in Ref. [3] we used the density matrix method, and
a semiclassical approximation, to investigate the thermody-
namics of scalar fields. In the latter reference, the boundary
configuration of the field (considered as a fluctuation around
a homogeneous background) played a very nontrivial role in
the semiclassical formulation for the partition function of
scalar fields.

Different approximation schemes can be used in order to
obtain an effective theory for the stochastic field. Our prior
uses of the density matrix method drew upon generalizations
of a thermal semiclassical treatment previously developed
and applied to quantum statistical mechanics, which pro-
duced excellent results for the ground-state energy and the
specific heat of the anharmonic (quartic) oscillator [4—6]. In
those prior uses, however, the connection with the stochastic
variable was indirect, through classical solutions of equa-
tions of motion. In this paper, we have built a simple effec-
tive stochastic theory by expanding the action directly
around the stochastic variable. Besides providing a realiza-
tion of new conceptual ideas, we believe that this approach
may be physically relevant to the discussion of infrared prob-
lems in several applications of quantum statistical physics.
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We perform an explicit calculation of the free energy and
specific heat for the anharmonic oscillator (for references in
the literature, see [7-18]) from the partition function of an
interacting one-dimensional quantum-mechanical system at
finite temperature from a path-integral representation for the
density matrix. The method of calculation that we propose
provides an alternative to the usual sum over periodic trajec-
tories: it sums over paths with coincident end points, and
includes the contribution of nonvanishing boundary terms.

The paper is organized as follows: in Sec. II, we introduce
our formulation for quantum statistical field theory, in order
to clarify the multiple role of our boundary fields, which are
at the same time field eigenstates for the subjacent field
theory problem, and stochastic variables for the ensuing sta-
tistical integral; in Sec. III, we particularize the discussion to
quantum mechanics, presenting the contribution of nonperi-
odic trajectories in the density matrix formalism which lead
us to a modified series expansion in Matsubara frequencies;
besides, we review the high-temperature limit of the quan-
tum theory as a classical effective theory for the boundary
variable; in Sec. IV, using a simple effective theory for the
stochastic variable, we compute several thermodynamic
quantities for the quadratic and the quartic potentials, and
compare the results to the semiclassical findings of [4], and
to some exact results; and Sec. V contains our conclusions
and outlook.

II. DENSITY MATRIX FOR SCALAR THEORIES

In statistical mechanics, the partition function for a sys-
tem in contact with a thermal reservoir at temperature’ 7T
(B=1/T) is expressed as a sum (integral) over a stochastic
variable, whose probabilistic weight is given by the density
matrix.

For a system described by a (self-interacting) scalar field
theory, the stochastic variable is the field eigenvalue in the
functional Schrédinger picture, given by the function ¢y(x),
which satisfies ¢|¢o(x))=@(x)|¢o(x)).

The partition function is then a functional integral over
the field eigenvalue of the diagonal element of the density
matrix functional Pg

Z(,B)=f[DQDO(X)]Pﬁ[QDo(X),QDo(X)]’ (1)

pplo(x), 9o(x)] = (@o(x)[exp(= BH)|@o(x)).  (2)

The Hamiltonian in the preceding formula specifies the un-
derlying dynamics. In the present case, it is the dynamics of
a (self-interacting) scalar field ¢(z,x).

As is well known [19], pg can also be expressed as a
functional integral over dynamical fields ¢(7,x) defined for
Euclidean time 7, subject to the boundary conditions

@(0,%)=¢(B,%) = @y(x),

'In order to simplify the notation, we will adopt natural units
where =1, c=1, and kz=1.
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#(BXx)=¢((x)
[De(rx)Je e (3)
#(0.x)=¢p(x)

pB[‘PO(X)’ @o(x)] =

The boundary conditions relate the stochastic variable of the
integral in Eq. (1) to the dynamical fields that are integrated
over in Eq. (3). The Hamiltonian
1 1 m* 5\
H[IL ¢]==I1>+ =(Vo)> + —¢* + —¢*, 4

[ILe]=ZIF+ 2 (Vo) + —¢ ¢ 4)
which involves the time-dependent field ¢(¢,x) and the con-
jugate momentum I1(z,x), leads to the Euclidean action (we
assume d spatial dimensions),

B
Sle]= f dr f d'xclel, (5)
0
1 1 2
Lle1= 50+ 5T+ S s g (6)

The density matrix is a functional of ¢y(x) only. The remain-
ing integral over ¢,(x) which is required to obtain the parti-
tion function is unrestricted (except for the vacuum boundary
conditions that must be imposed at spatial infinity).

We may write p=e™54, S, being a certain 7-dependent
dimensionally reduced action. The field ¢y(x) which is the
argument of S; depends only on the d spatial coordinates; all
the 7 dependence of the original d+1 theory has been elimi-
nated through the ¢ integration.

The fields ¢ (x) are the natural degrees of freedom of the
reduced theory. Any thermal observable can be constructed
by integrating over the fields ¢,(x) an appropriate functional
of ¢y(x) weighed with the corresponding diagonal element
of the density matrix. The Euclidean time evolution can be
viewed as an intermediate step which calculates the weights.

Notice that the density matrix is not, in general, of the
form e Pf¢ with H, being independent of B as in ordinary
statistical mechanics; its 8 dependence is far more compli-
cated. This had already been pointed out in the analogous
discussion of the transfer matrix carried out in Ref. [20]. The
density matrix provides a direct but alternative way of deriv-
ing a dimensionally reduced theory.

In previous works, we calculated the density matrix ele-
ment functional given by the integral in Eq. (3) either from a
perturbative expansion [2] or from a semiclassical expansion
[3] around the extremum of the integrand for the special case
of a homogeneous (x-independent) field ¢y,

The semiclassical approximation corresponds to the usual
saddle-point approximation with Gaussian fluctuations. For
the general case, one has to obtain the extrema of the euclid-
ean action in Eq. (3); in other words, classical solutions sub-
ject to the boundary conditions ¢(0,x)=¢(8,X)=¢y(x).
Since the density matrix can only depend on ¢(x), it should
be clear that the classical solution is itself a functional of
®o(x).

Thus, the semiclassical expansion would lead to a some-
what indirect dependence of the density matrix on ¢@y(x).
Furthermore, the general problem of finding classical solu-
tions for arbitrary boundary conditions ¢y(x) does not have a
general solution. To circumvent these difficulties, in the
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present work we have chosen to expand our dynamical fields
¢(7,x) directly around ¢y(x),

@(7,X) = @y(x) + 7(7,x), (7)

instead of using the standard semiclassical expansion

o(7,%) = el @o(x)] + &(7.%). (8)

Using ¢y(x) as a background eliminates the 7 dependence
that would be present in the classical solution, and provides
expressions that depend directly on ¢y(x). On the other hand,
we are forced to deal with linear terms when we resort to a
quadratic approximation to the integral over 7(7,x) which
would be absent in a quadratic approximation to the integral
over &(7,x). We emphasize that our alternative expansion is
not a saddle-point approximation. However, when 7 is much
bigger than any other scale of the theory, @[] is approxi-
mately given by ¢g[x]

Dealing with a linear term is not a problem within a qua-
dratic approximation, and can be handled by the usual shift
in the integration variable. As for the validity of the expan-
sion, it should be clear that it should be quite reliable at high
temperatures, where 7(7,x) cannot differ appreciably from
zero since the Euclidean time interval 8 is too small for
deviations from the boundary values to become large. In fact,
in a high-temperature regime, the classical solution is not
very different from ¢g(x).

For the sake of simplicity, we have chosen to test our
strategy for computing the density matrix element in quan-
tum mechanics, which can be viewed as a field theory in zero
spatial dimension. By doing so, we do not have to deal with
the subtleties of renormalization. We also need not worry
about the infrared problems that plague various treatments of
field theories at finite temperature [1,21,22]. Furthermore, we
can compare the outcome our proposal with previous calcu-
lations done using ordinary perturbation theory, as well as to
a semiclassical treatment of the #» integral.

In the sequel, we calculate the partition function over a
range of temperatures where we believe that our approxima-
tion will hold. In fact, we even estimate a lower bound on
temperature above which we expect our computations to be
valid and verify that this is indeed the case through numeri-
cal calculations.

Before proceeding in the calculation, we discuss some
important features of the present approach: the inclusion of
nonperiodic configurations and its exact high-temperature
limit.

III. SPECIAL FEATURES OF THE METHOD

A. Inclusion of nonperiodic configurations

If we repeat the steps of the previous section, the partition
function Z for a one-dimensional quantum-mechanical
system in contact with a thermal reservoir at temperature
T=1/p will be written as

Z=fdxop3([3;x0,x0), (9)

where ps(B;x0,%0) is the diagonal element of the density
matrix. Note that the role of the field ¢y(x) of the previous
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section is now played by a mere point x,, and that accord-
ingly functional integrals become ordinary integrals.

In the path-integral formulation, the density matrix pg is
obtained from the imaginary-time evolution of the trajectory
x(7):[0,8]— R [which replaces ¢(7,x)] determined by the
Euclidean action S,

x(B)=x(
pp(xo,X0) = [Dx]e~, (10)
x(0)=x¢
£ o1
S[x]zJ d me2(7)+V[x(T)] , (11)
0

where V is the potential, and the dot refers to differentiating
in 7. As we have emphasized for ¢,(x), it is natural to regard
Xo as the effective stochastic degree of freedom of the theory,
and to compute the distribution of the variable x, by integrat-
ing over the dynamical variable x(7), with boundary condi-
tions determined by x,.

Integrating action (11) by parts, we obtain,

B 1 d2
S[x] = fo dr{— me(T)d_; + V[X(T)]} + %xo[J&(,B) -x(0)].
(12)
Among the trajectories with boundary value x, at 7=0 and S3,

the one which contributes the most for the partition function
is the (classical) solution of

d*x,
md; ~V'(x,)=0, (13a)
x(0) =x(B) = xo. (13b)
In the special case of the harmonic oscillator
(V(x)=mw?x?/2), it is a simple matter to show that
cosh| - B2
XC(T) =XOM’ (14)

cosh(wp/2)

which is not a periodic function of 7. As a consequence, one
is led to deal with boundary terms in the action [see Eq.
(12)]. We stress that, as long as the only condition over paths
in the path integral is to have coincident values at O and S,
nonperiodicity is allowed.

In order to see that nonperiodic trajectories are a general
feature of the present approach, let us now decompose the
path x as

x(7) = xo+ y(2) (15)
where
y(B) =y(0)=0. (16)

Clearly, fluctuations obeying Eq. (16) can be expanded in a
sine-Fourier series,
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X(t)

i -
\/

FIG. 1. (Color online) Schematic plot in [-83, 8] of series (18)
of a configuration x defined originally in [0, 8].

y(1) = X x, sin &,7, (17)
n=1

where @,=nm/B. The notation with a dot is a reminder that
the r.h.s. of Eq. (17) is a Fourier approximation of the Lh.s.
The complete path is, then, given by

©

x(T)ix0+2xn sin @, 7, (18)
n=1

which does not correspond to a periodic function in [0, 8]
(see Fig. 1).

Series (18) does not impose conditions on the derivative
of x. It is easy to convince oneself that evaluating the euclid-
ean action S with the r.h.s. of Eq. (18) one obtains exactly
S[x(7)]. In particular, we have for the classical solution,

2

4o
xc(T) i)CO_)CO E 2

- Sosin @, 7 (19)
n odd n7T(wH+w)

so that the quantity x.(8)—x.(0) is given by

. 2xgw(cosh Bw —1)
A2 2 (COS wn,B_ 1)= . s
n odd ”W(wn + o) sinh Bw

2 A
—4dxyw- @,

(20)

leading to the correct result. Obviously, the series defined by
Eq. (18) does not correspond to the most general trajectory in
Z. In particular, that series imposes a serious restriction on
the second derivative of x by forcing it to vanish at 0 and 3.
However, at least for the calculation of usual action function-
als, the boundary terms do not involve second derivatives
and the aforementioned restriction is actually unimportant.
A remarkable property of decomposition (18) is that the
boundary value x, plays the role of the zero, static compo-
nent of x(7).> Likewise, ¢o(x) is the static component of

2Rigorously speaking, x is not a true Fourier mode since it is not
orthogonal to sin @, in [0, 8] but in [-8, B]. With this caveat in
mind, we will continue to refer to x; as a mode of x.
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¢(7,Xx) in the context of thermal field theories, which thus
suggests that it plays a special role in the infrared (low-
momentum) limit of the theory.

B. Exact high-temperature limit

When the typical spacing between quantum levels, A, is
such that

(or Bw<<1, in natural units), we are in the classical limit of
the theory. It is a known fact that the classical regime is
correctly described by the effective theory for the static
modes. Indeed, let us consider x,, the solution of the equation
of motion (13). In the high-temperature regime (Bw<1),
thermal fluctuations dominate. In this limit, x,—x, and
S(x,)— BV(x,), and we obtain for the partition function

lim Z=N f dxge PV (22)
T—oo

where N is a normalization factor which incorporates quan-
tum fluctuations. A proper normalization of Z leads to
N*=mkgT/(27h?), rendering the semiclassical expression

. dp _
lim Z=f _Zﬂ'ﬁf dxge kT (23)

T—o

with H=p?/2m+V(x,), with m being the particle mass.

As discussed in [23], for Bw<<1 the correlation {(x*(7))
follows the classical linear scaling with 7. This behavior is
entirely associated with the static component of x, and rep-
resents a problem for the high-temperature limit of the usual
perturbative expansion. In contrast, the subtracted thermal
propagator (without the contribution from the static mode)
goes to zero as T increases so that one should strongly im-
prove the convergence of the perturbation expansion by cal-
culating diagrams with that subtracted propagator.

From the aforementioned reasons, we conclude that a
separate treatment of the boundary (static) modes is conve-
nient. The main advantage of the density matrix approach is
to provide this separation in a natural fashion. In terms of y
defined in Eq. (16), one can express Z conveniently as

Z= J dx f [Dyle~SLrow], (24)
y(0)=y(B)=0

and different strategies can be used to handle S[x,+y] in
order to obtain an effective theory3 for x,

de
7= f = BVerix0) (25)
N27h?/(mkyT)

IV. HIGH-TEMPERATURE EXPANSION

In the last section, we have shown that the high-
temperature limit of the theory is an effective theory for the

*With the normalization factor used in Eq. (25), one has the prop-
erty: Veg(xg) — V(xg) when T— o, as follows from Eq. (23).
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boundary static variable x,. In the sequel, we use a very
simple expansion around x; in two cases: the harmonic po-
tential, as a consistency check, and the single-well quartic
potential, in order to verify the quality of our alternative
approach when we extrapolate the high-temperature regime.

A. Quadratic case

The action in this case is given by
A1 1
S[x] = J dr mez(r) + Emwzxz(T) ) (26)
0

Without any loss of generality, one can take m=1 in the
previous equation by rescaling x by a factor 1/\m.

Now, we use the decomposition of x given by Eq. (16) to
obtain

B
S[x] = —xo

dedT {»G;y Yy + 207y}
Bo’ , 1 / 2 -1 2
=% + 2 drd7{(y + 0°x(G,)G, (y + 0°xG,)}

42
_ “’2 0 f drd7 G (27)

where Gy is the solution of

d2
[_d_72+w :|Gy(7',7',)=5(7'— ), (28a)
G,(0,7)=G,(B,7) = (28b)
A simple calculation gives
Gy(r7) = sinh[ w( 7~ - B)]sinh(B7.) ’ (29)
w sinh(wp)
[where 7~=max(7,7') and 7.=min(r,7')], and
2 h -1
dedT'G‘,(T,T,)=£2—M- (30)
’ w w’ sinh Bw
Shifting the variable of integration to
{(T):y(r)+w2xof dr'G(7,7), (31)

which obeys £(0)=¢(8)=0, and performing the Gaussian in-
tegration, we obtain

7= (det Gy)l/ZJA dxoe—w(cosh Bw-1)/ sinh Bw)xg. (32)

Integrating over x, and taking the logarithm, one reproduces
the known result for the free partition function. Therefore,
for quadratic theories the present high-temperature expan-
sion is exact.

B. Anharmonic oscillator

Let us now consider the following action:

PHYSICAL REVIEW E 81, 011103 (2010)

S[x] = f dr[ —mx2(7) + —mw 2x2(7) + %x“(r)} (33)

It is convenient to define the dimensionless variables:
g=V\/(mw?)x, 6=w1, O=wp, and g=\/(m’w’). The asso-
ciated action for the variable g is

1(® (1, 1, 1,
Slgl=—| do{ 547 () + g7 () +~4"(0)]. (34)
¢)y T\2 2 4
Using the decomposition g(6) =g+ Vg 7(0), we write for the

action

S[(]] = SZ[‘]O? 7]] + Sl[qu 7]]’ (35)

where S, contains S[q,], the kinetic term, and those which
are linear or quadratic in 7. The remaining contributions to
S[q] are collected in S;. It is a simple matter to show that

Salq0. 11 = Slqo]

lf(a 6 & 78 L 6
*+3 7(6)| - 02+wo ()+\EU()’
(36)

and

0
Silqo.ml= J dﬁ[ \ECIO 7]3(9) + i”’f(@] s (37)
0

where @3(qo)=3¢3+1 and ay(gy)=¢3+qo (here and in the
sequel, the subscript is a reminder of the dependence on ¢).
One obtains a quadratic approximation for the partition func-
tion by considering

Zz=jd‘10f [DleS2lao), (38)
0)=7(0)=0

Proceeding as in the previous section, we perform the Gauss-
ian integration over the variable

)
5(0)=77(0)+TT§J d6'Gy(6,0'), (39)
lgJo

where the Green’s function G, (again, the subscript is a re-
minder of the dependence of this 7 propagator on g), de-
fined by

&~
{ d02+w0}G0(60) S6-6"), (40a)
Go(o, 0,) = G0(®, 61) = O, (40b)
is given by
Go(6.6) = sinh[ @y( 6= — O)]sinh(wy6-) , 41)

(T)O Slnh((1_)0®)

where the g, dependence comes through @g(g,). The result
for Z, is then
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Z,= f dqo(det Go)"?exp{- S[qo] + =0} (42)

where
o)
det Goy=————— 43
7 21 sinh(,0) “3)
and
2 O
@ ’ ’
Eoz—f dodo' Gy(6,0'). (44)
2¢Jy

From Eq. (42), one directly obtains an expression for
p(B:4q0.90)- The positive function py is peaked at go=0 and
decays to zero around gy=2g.

To go beyond the quadratic order in 7, we use the follow-
ing approximation:

(]
6—81[4007] ~1]1- f d0|: \Eq(ﬁf'(ﬁ) + §n4(0):| . (45)
0

Therefore, Z=Z,+ 6(1)2, where

(€]
§z=- f dq(det Go)"%exp{~ Slqo] + Zol[jT} f do
0

X { Veaol 7 (0) + j—:<774(0)>} , (46)
with

[Dyle=SL0a(0,) ... 7(6).
2(0)=7(©)=0

(n(61) ... n(6) =

(47)

As usual, we can introduce a linear coupling of # with an
external current j:

Z[jl= j dqq f [D7]
20)=n7(©)=0

XGXP{—Sz[%a n]+fd9j(9)n(9)}, (48)

and obtain the correlations [Eq. (47)] as functional deriva-
tives of Z,[j] with respect to j. With minor modifications on
the recipe for Z,, one obtains

201 f day(det Go) Pexpl— Slaol + S, (49)

where
1 [©
20U]=5J d0do' oo(0)Gy(0,6')oy(6'), (50)
0
and oy(0)=ay/\g—j(6). Finally, we use
| & ] .
Sl ——— Solil = P
e =0 - e 0 =13(0) + 31,(0)Gy(6,0) (51)
[513(0) =0 o

and
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FIG. 2. (Color online) Plot of ®,;, as a function of the dimen-
sionless coupling constant g. Each approximation is applicable for
temperatures larger than the associated ® ;.. The inset is the same
plot for smaller values of g.

6—20[7]|: } e*Ul=13(0) + 6I2(0)Go(6,0) + 3G2(6.6),
j=0

5i*(6)
(52)

where I,(60) plays the role of an expectation value of 7(6),

(G
1,(6) = - “—QJ d6'G(6,0")

VgJo
a cosh wyf — sinh @y 0 tanh wy6/2 — 1
== - . (53)
V8 @

The remaining integrations over 6 can be done analytically,
providing all the ingredients for the calculation of the first
correction to Z,.

From Eq. (45), we read that corrections to the quadratic
approximation become important when the expectation value
of interaction (37) is about 1. As the integrand of Eq. (46) is
dominated by the vicinity of ¢y,=0, where the quadratic ac-
tion reaches its minimum value, one can estimate the impor-
tance of corrections using (S,(0, 7)). We have

0>1

38 (C 350
<81(0,77)>— 4]0 dﬁGO(ﬁ,é’)H 16 (54)

The temperature ©,;, where (S,(0, 7)) goes to 1 provides a
rough estimate for the validity of the quadratic approxima-
tion. Figure 2 displays O, as a function of the dimension-
less coupling constant g for the high-temperature and the
usual saddle-point approximation (see Ref. [4]). From Fig. 2,
we conclude that the two methods have almost the same
range of applicability. In particular, we see that @, is of
order 1 for g as large as 50.

The results for the free energy when g=0.4 are displayed
in two plots with different ranges of temperature: Fig. 3
shows the high-temperature region, while Fig. 4 is devoted to
low temperatures, according to the criterium used in Fig. 2.
The results for the specific heat are displayed in Fig. 5. In the
figures, classical corresponds to calculation using Eq. (23),
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FIG. 3. (Color online) Free energy of the anharmonic oscillator
as a function of the dimensionless temperature for g=0.4 in the
high-temperature region (see text for details).

high-temperature uses Eq. (42), improved includes the cor-
rection corresponding to Eq. (46), semiclassical refers to the
semiclassical result obtained in Ref. [4], perturbative stands
for the usual first-order perturbative result, and exact corre-
sponds to results from Refs. [13,14] combined with WKB
estimates.

The first remarkable thing in the plots is the failure of the
first-order perturbative result in the high-temperature region
(T> w). As discussed in [23], the static component of the
usual thermal propagator spoils the convergence of the per-
turbative series for temperatures large compared with w. As
seen in Ref. [4], the high-temperature region is well de-
scribed by the semiclassical curve, and asymptotically, by the
classical one. This is evident from the plots. It is interesting
that, for g=0.4, the agreement extends to temperatures down
to @~ 1/2, a region where the character of the system is far
from classical. However, it is surprising that our simple cal-
culation using Eq. (42) works as well as the semiclassical
one in that region.

Indeed, the cited semiclassical calculation is based on a
quadratic expansion around exact solutions of Eq. (13) for
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FIG. 4. (Color online) Free energy of the anharmonic oscillator
as a function of the dimensionless temperature for g=0.4 in the
low-temperature region (see text for details).
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FIG. 5. (Color online) Specific heat of the anharmonic oscillator
as a function of the dimensionless temperature for g (see text for
details).

the quartic potential. In practice, one has to deal with rather
involved Jacobi elliptic functions [4,24]. In contrast, using
expansion (15) no knowledge of classical solutions is de-
manded. This simplification represents an economic alterna-
tive which can be crucial in contexts where exact classical
solutions are not available. From the plots, one also con-
cludes that, in the region where the approximation is sup-
posed to be good, the improved calculation exhibits a stron-
ger convergence, indicating that the approximation is
consistent.

A detailed look at the quadratic curve in the free-energy
plot (Fig. 4) reveals a nonmonotonic behavior for low tem-
peratures: the free energy passes by a maximum and de-
creases toward the free value 0.5. This is a general feature
regardless of the value of g, and it is a clear signal of the
breakdown of the approximation below O, (see Fig. 2).
The improved free energy diverges at ®,;, because at this
value the sum Z,+&"Z vanishes. The exact curve for the
free energy reaches its maximum value at the ground-state
energy, where it rests down to ®=0. Using the maximum
value assumed by the quadratic curve as an approximate
value for the ground-state energy, we obtain unexpectedly
reasonable results, as shown in Table I. A path-integral gen-
eral method for deriving the ground-state wave function and
energy can be found in Ref. [25].

Figure 5 compares different predictions for the specific
heat for g=0.4. Notice that all curves, except for the pertur-
bative one, have the correct high-temperature limit. The
anomalous behavior of the quadratic approximation near
O,.in is even more evident in this plot. The improvement
obtained in the low-temperature regime when one corrects
the quadratic calculation with Eq. (46) is also clearly shown.

V. CONCLUSIONS AND OUTLOOK

The theoretical description of the thermodynamics of a
given interacting many-body system kept in thermal equilib-
rium with a heat bath is an issue of capital importance in
most realms of physics, from cosmology to condensed-
matter settings.
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TABLE I. Ground-state energy of the quartic oscillator for dif-
ferent values of the coupling N (m=w=1). Exact data were ex-
tracted from Ref. [14], whereas E (quadratic) was obtained using
Eq. (42).

Error

N E, (exact) E, (quadratic) (%)
0.008 0.501 0.505 0.8
0.04 0.507 0.518 2.2
04 0.559 0.584 4.5
1.2 0.638 0.662 3.8
2.0 0.696 0.718 32
4.0 0.804 0.818 1.7
8.0 0.952 0.958 0.6
200.0 2.500 2.450 2.0

A very convenient framework is provided by finite-
temperature field theory, where one can use the imaginary-
time formalism and make a direct connection to the powerful
formulation of thermal averages in terms of functional inte-
grals.

Rigorously speaking, the paths need not be periodic in the
path-integral representation of the partition function. Indeed,
the necessity of paths which are not periodic is particularly
clear in the formulation of the partition function as an inte-
gral of the diagonal density matrix element of the theory.

In this paper, we have followed our alternative strategy in
the case of quantum statistical mechanics, viewed not only as
a toy model for the case of finite-temperature field theory,
but also as a prototype for various relevant systems in statis-
tical physics. More specifically, we have explored an alter-
native way of computing the partition function in the path-
integral formalism that includes nonperiodic trajectories. As
was shown above, one can properly incorporate the contri-
bution of nonperiodic paths by using a modified Matsubara
series expansion in which the static mode is identified with
the boundary value of the path. The latter turns out to be the
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stochastic variable that survives in the final effective theory
which has the character of a high-temperature approxima-
tion.

We built a very simple effective theory in the nontrivial
problem of the anharmonic oscillator, obtaining very precise
results for practically the whole range of temperatures with-
out any information about classical solutions. We expect that
other potentials can profit from the simplicity of the present
method in quantum-mechanical systems.

When more than one classical solution is present (such as
in the case of double-well potentials), the method probably
would still apply in the high-temperature regime down to the
first bifurcation point (a discussion on caustics in the semi-
classical approximation is given in [6]). However, we do not
expect the method can correctly describe zero-temperature
features such as tunneling driven by instantonlike solutions.

As mentioned previously, the infrared physics of bosonic
theories is not accessible to plain perturbation theory, and
resummation techniques are required in order to produce
sensible results. In common, all such techniques render a
special treatment to the static mode. Therefore, we expect
that in field theory the physics of ¢y(x) will play a prominent
infrared role, although this is still under investigation.

In the case of finite-temperature field theory there are, of
course, subtle issues of renormalization, which are absent in
the quantum-mechanical setting, that will have to be ad-
dressed. Nevertheless, the results obtained in quantum statis-
tical mechanics are encouraging, and we hope that this new
perspective may shed light on the problem of infrared diver-
gences. Results in this direction will be presented elsewhere
[26].
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