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We study, using exact numerical simulations, the statistics of the longest excursion lmax�t� up to time t for the
fractional Brownian motion with Hurst exponent 0�H�1. We show that in the large t limit, �lmax�t���Q�t,
where Q��Q��H� depends continuously on H. These results are compared with exact analytical results for a
renewal process with an associated persistence exponent �=1−H. This comparison shows that Q��H� carries
the clear signature of non-Markovian effects for H�1 /2. The preasymptotic behavior of �lmax�t�� is also
discussed.
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In the last few years, there has been a growing interest
in the study of anomalous dynamics �1,2�, where by
contrast with Brownian motion �BM�, long-range temporal
correlations induce nonstandard dynamical behaviors. In-
stead of diffusive behavior, anomalous dynamics typically
displays a nonlinear growth of the mean-square displacement
�x2�t��� t2H, where H�1 /2 is the Hurst exponent. Such be-
haviors have been observed in various experimental situa-
tions including polymer networks �3�, intracellular transport
�4�, two-dimensional rotating flows �5�, or porous glasses
�6�. To describe theoretically such situations, various sto-
chastic processes have been proposed and studied. Among
them, the fractional Brownian motion �fBm�, initially intro-
duced by Mandelbrot and van Ness �7�, is currently playing
an increasing role. For instance, the fBm was recently pro-
posed to model the stochastic dynamics of a polymer passing
through a pore �translocation� �8,9�.

The fBm x�t� is a Gaussian stochastic process character-
ized by the following two-time correlations:

�x�t1�x�t2�� = C�t1,t2� = t1
2H + t2

2H − �t1 − t2�2H. �1�

This implies that the incremental correlation function is sta-
tionary, i.e., ��x�t1�−x�t2��2�=2�t1− t2�2H. For H=1 /2, the
process x�t� is just BM. For H�1 /2 the dynamics is subdif-
fusive, while it is superdiffusive for H�1 /2. For 0�H�1,
fBm is a nonsmooth process, i.e., it has an infinite density of
zero crossings. A relevant quantity characterizing these zero
crossings is the distribution ���� of the time intervals be-
tween consecutive zeros. In many cases, which are relevant
in statistical physics, this distribution has a power-law tail
������−1−�, with � as the persistence exponent �10,11�. A
remarkable result for processes, Gaussian or non-Gaussian,
obeying Eq. �1� is the exact relation �=1−H �12–14�. Such
processes �1� appear naturally in various interesting models
of statistical physics. For instance, the fBm with H=1 /4
arises as a scaling limit of a tagged particle in a one-
dimensional symmetric exclusion process �15�. It also de-
scribes the equilibrium temporal fluctuations of the height
field of a d-dimensional Edwards-Wilkinson interface, and in
that case H= �1−d /2� /2 �13�. Another example where such a
process as in Eq. �1�, albeit non-Gaussian, appears is the

Matheron-de Marsily model of hydrodynamic flows in po-
rous media. There it describes the longitudinal position of a
particle in a �d+1�-dimensional layered random velocity
field and in that case H=max�1−d /4,1 /2� �16�.

For H�1 /2, fBm is a non-Markovian process �7�. How-
ever the zero-crossing properties of the fBm which have
been investigated up to now have not convincingly shown
the signatures of these memory effects. For instance, assum-
ing that the intervals between crossings are independent and
identically distributed �renewal process� yields the correct
behavior for the tail of the distribution ���� with �=1−H
�17�. More recently, on the basis of a numerical computation
of the correlation function of the intervals between succes-
sive zeros, the authors of Ref. �18� claimed that the zero-
crossing properties of fBm are actually described by a re-
newal process, which contradicts our theoretical
understanding of this process �7,13�. One goal of the present
Rapid Communication is thus to exhibit a property of the
fBm which instead shows that temporal correlations clearly
affect the zero-crossing properties of this process.

To this purpose, following a recent work �19�, we study
here the statistics of the longest excursion up to time t, de-
noted lmax�t�. For a typical realization of the fBm x�t� with
N�N�t� zeros in the fixed time interval �0, t� �see Fig. 1� let
	�1 ,�2 , . . . ,�N
 denote the interval lengths between succes-

FIG. 1. Intervals between zero crossings �excursions� for the
fBm in the particular case H=0.75, which was generated numeri-
cally using the Levinson algorithm. The longest excursion lmax�t�,
studied in this Rapid Communication, is defined in Eq. �2�.
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sive zeros and let A�t� denote the length �or age� of the last
unfinished excursion. Note that with fBm being a nonsmooth
process, we only consider excursions �i’s larger than some
cutoff �	. The extreme observable we focus on is the length
of the longest excursion up to t,

lmax�t� = max��1,�2, . . . ,�N,A�t�� . �2�

We show here that the average �lmax�t�� is a quantity sen-
sitive to the non-Markovian character of fBm. In Ref. �19�, it
was shown that �lmax�t�� can be conveniently computed using
the exact relation

d�lmax�t��/dt = Q�t� , �3�

where Q�t� is the probability that the last unfinished excur-
sion, A�t� in Fig. 1, is the longest one,

Q�t� = Prob�lmax�t� = A�t�� . �4�

It was then shown that for a renewal process characterized by
a persistence exponent ��1, one has the exact result �19�

lim
t→�

Q�t� = Q�
R ,

Q�
R � Q�

R��� = �
0

� dx

1 + x�ex�0
xdy y−�e−y , �5�

where the superscript “R” refers to renewal process. In this
Rapid Communication, we compute numerically Q�t� �4� for
fBm defined as in Eq. �1� for different values of 0�H�1.
We show that, in all these cases, Q�t�→Q� for large time t,
as predicted in Ref. �19� for nonsmooth processes with
0���1, which is the case for fBm with 0�H�1. We then
extract precisely the asymptotic value Q��Q��H�: any de-
viation from the value Q�

R��=1−H� in Eq. �5� can thus be
identified as a signature of non-Markovian effects.

For the purpose of numerical simulations we need to
discretize the fBm path into a set of Gaussian numbers
correlated through Eq. �1�. Generating a sequence
x= 	x1 , . . . ,xi , . . . ,xT
 of Gaussian numbers with prescribed
correlations �xixj�=Ci,j is a two-step procedure: �i� it is first
necessary to compute the matrix A, the square root of the
correlation C, and �ii� each discrete path is then given by
x=A
, where 
= 	
1 ,
2 , . . . ,
T
 is an uncorrelated normally
distributed set of random variables. It is easy to check that
paths obtained from this procedure have the required corre-
lation matrix,

�xixj� = 

k1,k2=1

T

Ai,k1
Ak2,j�
k1


k2
� = Ai,j

2 = Ci,j . �6�

Compared to the standard Brownian motion, building a fBm
is numerically cumbersome and various algorithms have
been proposed �20�. The Brownian motion has a linear cost
in T and is easy to simulate paths of size T�106. For fBm,
the first step involves the full diagonalization of matrix Ci,j
and limits to T�1000 the size of the path. The second step is
faster and the matrix-vector product needs T2 operations. A
better performance can be obtained for fBm thanks to the
stationarity of the incremental correlation function. The in-
crements �i=xi+1−xi are correlated according to a Toeplitz

matrix. For Toeplitz matrices special numerical methods al-
low us to build paths without going through the full diago-
nalization of C. Here, we use the Levinson algorithm, which
is not the fastest algorithm but is exact for any value of T �for
a practical implementation, see �21��. In this Rapid Commu-
nication we show the results obtained for fBm of size
T=10 000.

We now discuss our results for Q�t� defined in Eq. �4�,
which was computed by averaging over 106 samples. In Fig.
2 we show a plot of Q�t� as a function of t for different
values of H=0.1, 0.5, and 0.9. In all these cases our numeri-
cal data are consistent with an asymptotic behavior

lim
t→�

Q�t� = Q� � Q��H� . �7�

We also notice that this asymptotic value is approached from
above for H=0.1 and 0.5 and from below for H=0.9. In this
same figure �Fig. 2� we also plot, with dotted lines, the value
of Q�

R for a renewal process given in Eq. �5� with �=1−H.
These two values Q� and Q�

R are clearly different as H de-
viates significantly from 1/2. We have also checked that, for
all these values of H, the persistence probability
p0�t�� t−1+H displays a well-developed power-law behavior
for t�1000, so that a comparison with Q�

R��=1−H� is
meaningful. Therefore, we can conclude safely that Q�

carries the signature of memory effects of the fBm for
H�1 /2.

Although the curves for Q�t� shown in Fig. 2 indicate an
asymptotic behavior as in Eq. �7� with a value for Q��H�
different from Q�

R�1−H�, a precise estimate of this
asymptotic value Q��H� requires more effort. The time de-
pendence of Q�t� is due to the discretization of the paths and
this can be understood by studying the case of BM. It is well
known that the density of zero crossings of BM is infinite:
this means that, if the BM crosses zero once, it will recross
zero infinitely many times immediately after the first cross-
ing. Therefore, a proper definition of the excursions requires
a regularization procedure. A convenient way to implement it
is to impose that the maximal distance from the origin during
an excursion should be bigger than x0, where x0 plays the
role of a spatial cutoff. To compute the finite time behavior
of Q�t� we recall that the probability p0�t ,x0� that a BM
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FIG. 2. �Color online� Q�t� as a function of t for H=0.1, 0.5,
and 0.9. The straight lines correspond to the value of Q�

R�1−H� for
a renewal process given in Eq. �5�. This clearly illustrates that the
fBm is not a renewal process.
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starting from x0 at t=0 remains positive up to time t �persis-
tence probability� is given by

p0�t,x0� � p0� t

x0
2� = Erf� x0

�2t
� =�2x0

2


t
+ O� x0

2

t3/2� . �8�

Following the derivation of Ref. �19� we can compute the

Laplace transform Q̂�s� of Q�t� in the limit x0
2� t �23�,

Q̂�s� =
1

s
�

0

�

dx
p0�x/s�e−x

p0�x/s�e−x + �0
xdy p0�y/s�e−y . �9�

For small s, it was shown in Ref. �19� that

Q̂�s��Q�
R�1 /2� /s, where Q�

R�1 /2�=0.626 508. . . �22�. To
understand the effects of the discretization, one needs to
compute the first correction to this leading 1 /s behavior
when s→0. This has to be done carefully because a naive
expansion of the persistence probability p0�y /s� beyond the
leading order as suggested by Eq. �8� in the denominator of
Eq. �9� yields a diverging integral over y. Handling this sin-
gular behavior with care yields

Q̂�s� =
Q�

R�1/2�
s

+ ã
x0

�s
+ O�1� , �10�

where ã is given by

ã = �
0

� e−xx1/2

�x−1/2e−x + �
 Erf��x��2
dx = 0.23970 . . . . �11�

Going back to real time this yields finally

Q�t� = Q�
R�1/2� + ã�x0

2/t + O�x0
2/t� . �12�

Motivated by this result for Brownian motion �12�, we
propose to describe the data for Q�t� in Fig. 2 by

Q�t� � Q��H� + a�H�t−b�H�. �13�

In particular, from Eq. �12�, one expects b�1 /2�=1 /2. We
have checked that this form �13� describes very well our data
for Q�t� for all the values of 0�H�1 that we have studied.

In the inset of Fig. 3, we show a plot of Q�t�−Q��H=0.9� as
a function of t on a log-log scale, while the main figure
shows a plot of Q�t� as a function of t on a linear-linear plot.
This fitting procedure �13� hence provides a reliable way to
estimate the asymptotic value Q��H�. In Fig. 4 we have plot-
ted these values as functions of �=1−H. For comparison, we
have also plotted the values of Q�

R��� for the renewal process
�5�: these two curves are clearly different �except for
H=1 /2, which corresponds to Brownian motion�.

In Fig. 5, we show our numerical data for a�H� and b�H�.
These indicate that the exponent b�H� exhibits a maximum
for H�0.5, where b�1 /2�=1 /2. On the other hand, one finds
that b�H�→0 for H→0 and H→1; therefore, it becomes
very difficult to extract a reliable value for � close to 0 and 1.
For H=1, the fBm is simply a linear function of time t,
x�t�=�t, where � is a Gaussian random variable of unit vari-
ance. It is thus easy to see that Q�=1 in that case. Although
it is very difficult to extract a reliable value of Q��H� for
H�0.95, one expects that Q��H�→1, smoothly, when
H→1. Similarly, our data suggest that Q��H� vanishes
smoothly as H→0. Finally, we notice that a�H� changes sign
for H�0.7: it is positive for H�0.7 and negative for
H�0.7.

To conclude, we have presented a numerical computation
of the mean longest excursion �lmax�t�� for the fBm with
Hurst index 0�H�1. We have shown that �lmax�t��
�Q��H�t for large t, where Q��H� is an interesting feature
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FIG. 3. �Color online� Plot of Q�t� as a function of t on a
linear-linear scale for H=0.9. The solid line indicates the fit as in
Eq. �13� with a�0.9��−0.1 and b�0.9��0.3. Inset: plot of
Q��H=0.9�−Q�t� �same data as in the main figure� as a function of
t in a log-log plot. The solid line corresponds to −a�0.9�t−b�H�: this
suggests a good quality of the fitting procedure in Eq. �13�.

1

0.75

0.5

0.25

0
10.750.50.250

Q
∞(

H
)

θ = 1 − H

Renewal process
fBm process

FIG. 4. �Color online� The symbols indicate the numerical esti-
mate of Q���=1−H�, extracted from the fitting procedure in Eq.
�13�. For comparison, we have also plotted Q�

R��=1−H� for a re-
newal process �5�. This plot clearly shows that, except for H=1 /2,
the fBm is not a renewal process.
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FIG. 5. �Color online� Plot of a�H� and b�H� as functions of
H=1−�.
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of fBm. We have also demonstrated that this quantity is very
sensitive to temporal correlations characterizing this process.
Therefore, at variance with the recent claim of Ref. �18�, our
numerical results clearly show that the zero crossings of fBm
cannot be described by a renewal process. We point out that
the quantity studied here is sensitive to the full joint distri-
bution of the time intervals between crossings, while the nu-
merical work presented in Ref. �18� only studied the corre-
lation function between two such intervals. Finally, we hope
that the nontrivial dependence of Q��H� as well as a�H� and

b�H� shown in Figs. 4 and 5 will stimulate further analytical
progress on the study of fBm.
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