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Evidence for internal structures of spiral turbulence
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We present several observations into spiral turbulence in a Taylor-Couette geometry gained through a
three-dimensional direct numerical simulation. Conditionally averaged flow statistics show the persistence of
an azimuthal gradient of the mean flow across both the turbulent and laminar spirals, and distinct distribution
features of the turbulent intensity. The data provide a physical picture qualitatively different from the existing
model of spiral turbulence. Certain aspects of the spiral pattern are observed to bear similarities to the station-

ary laminar-turbulent pattern in plane Couette flow.
DOI: 10.1103/PhysRevE.80.067301

The coexistence of turbulent and laminar domains in
space and time is one of the most fascinating phenomena in
fluid dynamics. Spatiotemporal intermittency and pattern for-
mation in such flows have been observed for a variety of
systems [1]. Particularly intriguing is the spiral turbulence
regime (barber-pole pattern) in the Taylor-Couette setting
where intertwined helical turbulent and laminar stripes
propagate between counter-rotating concentric cylinders
[2,3]. On the largest scale spiral turbulence is observed to
relate to a finite-wavelength modulation of turbulent intensi-
ties, and aspects of the spiral pattern can be qualitatively
described by model equations [3]. In other systems related
patterns are the stationary laminar-turbulent pattern in plane
Couette flow and the torsional flow between a stationary and
a rotating disk [4].

In this Brief Report we present several observations into
spiral turbulence gained from a three-dimensional (3D) di-
rect numerical simulation. By employing conditional averag-
ing techniques, we have obtained flow statistics of a single
turbulent or laminar spiral for a range of Reynolds numbers.
The data demonstrate large-scale spatial variations of the
flow internal to the turbulent and laminar spirals, and unique
characteristics in the mean flow and turbulent intensity.

We consider the incompressible flow between two con-
centric cylinders with periodic boundary conditions in the
axial direction. The cylinder axis is aligned with the z axis of
the coordinate system. The geometry is characterized by the
radius ratio 7=R;/R, (R; and R, are, respectively, the inner-
and outer-cylinder radii) and the aspect ratio I'=L_/d (L, is
the domain axial dimension and d is the gap width, with d
=R,—R;). The inner cylinder rotates counterclockwise (view-
ing toward the —z direction) at an angular velocity ();, and
the outer cylinder rotates clockwise at an angular velocity
Q,. All length variables are normalized by R;, the velocity by
a natural velocity U, (leading to Q,R,/U,;=-1.08), and the
pressure by prl (p is the fluid density). The inner- and outer-
cylinder Reynolds numbers are defined by Re;={);R;d/ v and
Re,=Q,R,d/v (v is the kinematic viscosity).

Our computational algorithms have been documented in
detail in previous works [5]. In brief, we numerically solve
the 3D Navier-Stokes equations employing a Fourier spectral
expansion of flow variables along the axial direction and a
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high-order spectral-element discretization of the annular do-
main. The effectiveness of spectral-element-based approach
has been evidenced in previous studies [6]. The time discreti-
zation is based on a stiffly stable scheme [7]. No-slip bound-
ary conditions are applied on the inner and outer cylinders to
reflect their rotation velocities.

We consider a radius ratio 7=0.89, comparable to those
of previous experiments [2,3]. We fix Re, at —1375 and vary
Re; between 530 and 900. In light of the computational cost,
we aim to simulate only one complete turbulent spiral. For
this purpose we consider several aspect ratios ranging from
I'=6 to 25. At I'=12 and higher we have observed com-
plete turbulent spirals, while at a low I' no spiral can be
observed. Results reported herein are for '=25.1. To ensure
convergence of the simulation results, we have varied the
resolutions systematically. The number of Fourier planes in
the axial direction is varied between 384 and 512. In the
annular domain 640 quadrilateral spectral elements are em-
ployed; and the element order is varied from 6 to 9. By
comparing profiles of the time-averaged mean and root-
mean-square (rms) fluctuation velocities at different resolu-
tions, we have confirmed the convergence of our simulation
results. Our application code has been extensively validated
for Taylor-Couette turbulence by comparing the computed
flow quantities with those determined from experiments; see
[5] for details on the validations. We have also compared the
turbulent fraction of spiral turbulence obtained from the cur-
rent simulation and the experiment of Goharzadeh and Mu-
tabazi [2], and good agreement has been observed.

We start by exploring the Reynolds number dependence
of the patterns. Figure 1(a) is a composite plot of a long
simulation spanning 530=Re; =900, with Re; increased in
discrete steps and Re, fixed at —1375. Shown are the stable
patterns at each Re; (transients at the change in Re; are not
shown). We record time histories of the velocity over points
along a line parallel to the z axis and fixed in the midgap.
Plotted are the azimuthal velocity contours in spatial-
temporal (z-f) plane. Distinct patterns can be identified with
increasing Re;. At Re;=530 turbulent patches (bursts) are ob-
served to emerge from the laminar background, persist for a
while, and then disappear into the flow; some aspects of the
turbulent bursts are described in [8]. At Re;=560, we mostly
observe complete spirals which appear quite regular; how-
ever, from time to time the spiral becomes broken, with two
or more pieces. At Re;=611-700, one can observe regular
turbulent-laminar spirals, characterized by regularly spaced
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FIG. 1. (Color online) Turbulent-laminar patterns. (a) Contours
of azimuthal velocity in spatial (z) and temporal (7) planes. Time
evolves horizontally with changes in Re; indicated at the top. Dark
and blank regions, respectively, represent turbulent and laminar
flows. (b) Instantaneous azimuthal velocity contours in a cylindrical
grid surface showing the turbulent spiral at Re;=700. (c) Isosurface
of conditionally averaged rms velocity magnitude u'/U;=0.14
(Re;=611).

inclined stripes in Fig. 1(a). As Re; increases to 750 and 800,
the pattern becomes less recognizable, and turbulent fluctua-
tions increasingly dominate the flow. At Re;=900 the entire
flow becomes turbulent, and no apparent large-scale pattern
can be discerned.

We next focus on Re; values with well-defined spiral pat-
terns. Figure 1(b) shows a typical turbulent-laminar spiral
pattern from the simulation. We plot here the instantaneous
azimuthal velocity contours in a grid surface (essentially cy-
lindrical) near the midgap. One can observe that the turbu-
lent and laminar regions form right-handed spirals. This plot
is reminiscent of the photographs of turbulent spirals in pre-
vious experiments [2]. For all Re; considered here, the spiral
pattern rotates clockwise, in the same direction as the outer
cylinder, a point consistent with previous experiments [2,3].
Left-handed spirals have also been observed (e.g., at Re;
=611). In current simulations, because both Re; and Re, are
fixed and |Re,| is low, we do not observe both types of spi-
rals simultaneously in stable coexistence (transient coexist-
ence has been observed). Andereck et al. [2] noted that stable
coexistence of both types might occur for large Re, values
and with rapid increase in Re;.

To explore the statistical features of turbulent spirals, we
have employed two types of conditional averaging tech-
niques. The first type involves a whole-field averaging. Spe-
cifically, for a given Re; the rotation period of the spiral
pattern is first determined by a Fourier transform of the ve-
locity history data. The flow field at an instant #, is consid-
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ered as the base flow. We consider a moving coordinate sys-
tem which coincides with the laboratory system at 7, and
revolves around the z axis at the same angular frequency as
the pattern. At time ¢, we rotate the flow field back to the
base configuration (i.e., that at #y) based on (t—¢,) and the
angular frequency. The rotated field is then accumulated to
the base flow for averaging. With this technique the spiral
pattern is essentially frozen in space, and its key statistical
features can be exposed. Figure 1(c) shows an isosurface of
the conditional rms velocity magnitude u'/U,; where u'
=yu;2+u;,2+uz'2 (u,, ug, and u denote the conditional rms
velocity in radial, azimuthal, and axial directions). The isos-
urface reflects the shape of the 3D interface between the
turbulent and laminar spirals. The domain enclosed by the
isosurface marks the turbulent region, a helical band wrap-
ping around the inner cylinder with certain subtle features.
For example, its leading edge [the lower edge in Fig. 1(c) as
it rotates clockwise] is radially nearer to the outer cylinder,
while the trailing edge is closer to the inner one, a topologi-
cal feature that will become clearer later.

The other type is a spatiotemporal conditional averaging.
It is applied to the spatial-temporal data [see Fig. 1(a)],
which provides a velocity time history at each axial location
z. The turbulent (laminar) phases in the velocity histories at
different z’s are not aligned in time, thus leading to the in-
clined stripes in Fig. 1(a). For a given Re;, the average incli-
nation angle of the stripe pattern in Fig. 1(a) is first deter-
mined, which provides the phase-shift information. The
velocity history at a location z; is considered as the base
history. We then shift in time the velocity history at any z to
align the turbulent phases with the base history, based on
(z—2z0) and the stripe average inclination angle. The shifted
data are accumulated to the base velocity history for averag-
ing. This results in a velocity history, conditionally averaged
over the points along the z direction. It is a periodic signal,
with the rotation period of the spiral pattern as its period. We
then shift in time this conditionally averaged velocity history
and average over different periods.

The conditionally averaged statistics indicate the exis-
tence of internal structures of the spiral turbulence. First, an
azimuthal velocity gradient, Kug)/rd6 ((ug denotes condi-
tional mean azimuthal velocity, and r and @ are radial and
azimuthal coordinates), persists across the turbulent and
laminar spirals. Figure 2(a) shows several periods of the spa-
tiotemporally averaged conditional mean and rms azimuthal
velocity, together with an instantaneous base history at z.
Alternating turbulent and laminar phases can be clearly dis-
tinguished. Most striking is the large systemic variation of
the conditional mean velocity in the turbulent and laminar
phases. Note that the onset of turbulent phase corresponds to
the passing of the leading edge of a turbulent spiral over a
fixed point in space, and the end of turbulent phase corre-
sponds to the passing of the trailing edge. Therefore, Fig.
2(a) indicates that along the azimuthal direction the mean
velocity experiences a substantial variation across the turbu-
lent and laminar spirals. The trailing edge of a turbulent spi-
ral has a notably higher mean velocity magnitude than the
leading one. It is the reverse for a laminar spiral. This obser-
vation applies to all Re; studied here with well-defined spiral
patterns.
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FIG. 2. (Color online) Spa-
tiotemporal conditional mean [red
(dark) solid line], rms (purple
dashed line), and instantaneous
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This observation has a connection to the Hayot and
Pomeau model [9] of spiral turbulence. When modeling the
coexistence of stable laminar and turbulent domains of spiral
turbulence using the Ginzburg-Landau equation, Hayot and
Pomeau introduced a crucial nonlocal term, which leads to a
stable domain structure, whereas without such a term no
stable domains coexist. The model is based on two crucial
assumptions: (1) the azimuthal dependence of the mean azi-
muthal velocity and (2) the presence of a mean azimuthal
pressure gradient. It concludes that (1) the mean azimuthal
pressure gradient has large magnitudes in both the laminar
and turbulent regions and (2) a large Poiseuille flow compo-
nent is present in the mean azimuthal velocity due to the
mean pressure gradient. The large Poiseuille component has
also been argued by Hegseth et al. [3].

Our observation above is consistent with the first assump-
tion that underpins the Hayot and Pomeau model. However,
simulation results provide a physical picture qualitatively
different than the model. To examine the pressure, we show
in Fig. 2(b) the spatiotemporal conditional mean and rms
pressure, and the instantaneous pressure history at zo. The
conditional mean pressure is essentially constant in the lami-
nar phase and exhibits notable variations only in the turbu-
lent phase. That is, the mean pressure is essentially constant
across the laminar spiral and has a significant azimuthal gra-
dient only in the turbulent spiral region. This is very different
from the conclusion of the Hayot and Pomeau model. Figure
2(c) shows profiles (across the cylinder gap) of the condi-
tionally averaged mean azimuthal velocity at several azi-

muthal locations: the leading edge, trailing edge, and the
core of the turbulent spiral, as well as the core of the laminar
spiral. Examination of these mean velocity profiles shows
that the variation of the mean azimuthal velocity along the
azimuthal direction has a rather involved characteristic and is
not of Poiseuille flow type. Significant changes in the mean
velocity tend to occur in only part of the cylinder gap. For
example, from the turbulent spiral core to the trailing edge
the mean azimuthal velocity has a significant increase in
magnitude in the outer half of the gap, but essentially no
change toward the inner half, while from the leading edge to
the turbulent core the largest change occurs in the inner por-
tion of the gap. Therefore, our simulation results suggest that
significant mean azimuthal pressure gradient exists only in
the turbulent spiral region, and that the azimuthal Poiseuille
flow component from the Hayot and Pomeau model is not
evident.

The second main observation about spiral turbulence is
that the cores of turbulent and laminar spirals are demarca-
tions of axially opposite flows in the mean sense. The mean
axial flow tends to be away from the core of a turbulent
spiral and toward the cores of adjacent laminar spirals. This
is demonstrated in Figs. 3(a) and 3(b), which, respectively,
show contours of the conditional mean axial velocity and
conditional rms velocity magnitude u'/U, in a radial-axial
plane. One can observe that the core of the turbulent spiral
marks an interface; on both sides the flow tends to be away
from this interface. Similarly, the laminar spiral core marks
another interface at which flows on both sides tend to be
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FIG. 3. Contours of (a) conditional mean axial velocity {u_)/ Uy,
(b) conditional rms velocity magnitude u'/U,; in a radial-axial
plane, and (c) of u'/U, in a horizontal plane (Re;=611).

toward each other. This observation is generic to all Re; stud-
ied here with both left- and right-handed spirals. It is, how-
ever, somewhat counterintuitive. For example, because a
left-handed turbulent spiral propagates axially along the —z
direction, intuitively the leading and trailing edges would
have a negative mean axial velocity. This is true for the lead-
ing edge. Contrary to intuition, however, the trailing edge
has actually a positive mean axial velocity. A similar situa-
tion occurs to right-handed spirals.

Third, the distribution of turbulent intensity exhibits a dif-
ferent characteristic in spiral turbulence than in fully devel-
oped turbulence. This is demonstrated in Figs. 3(b) and 3(c)
which show contours of u’/U, in a horizontal x-y plane at
midheight of the cylinder. In spiral turbulence the most en-
ergetic intensity appears at the core of turbulent spiral, to-
ward the middle of the gap. In contrast, in fully developed
Taylor-Couette turbulence at high Reynolds numbers the
strongest turbulent intensity tends to be located near both
walls rather than in the midgap [5]. Figures 3(b) and 3(c)
also clearly illustrate our previous point that the leading edge
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of the turbulent spiral has a proximity to the outer wall while
the trailing edge has a proximity to the inner one, a point also
noted by Atta [2].

The observations discussed above for spiral turbulence
can be contrasted with, and oftentimes, can find their coun-
terparts in the stationary turbulent-laminar pattern in plane
Couette flow. Here, we refer to the work of Barkley and
Tuckerman [10], which provides a detailed analysis of the
mean flow and force balance of the patterns in plane Couette
flow. The negligible mean pressure gradient in laminar spiral
region [Fig. 2(b)], the phase difference between mean and
rms velocities as shown in Fig. 2(a), and the sense of mean
axial flow relative to spiral cores [Fig. 3(a)] are consistent
with the data for plane Couette flow [10]. The similarity
between spiral turbulence and the pattern in plane Couette
flow is noted by several studies (see Prigent et al. [3], among
others). Prigent ef al. experimentally showed the long wave-
lengths in both types of patterns.

On the other hand, we also note marked differences be-
tween the two patterns. First, in spiral turbulence due to wall
curvature and the fact that the pattern is propagating, a pro-
found asymmetry exists between the leading and trailing
parts of the pattern, regarding their shape, turbulent intensity
distribution, and wall proximity; see Fig. 3 and also Atta [2].
In plane Couette flow no such asymmetry exists between the
pattern boundaries. Second, in the counter-rotating setting of
spiral turbulence, the region near inner wall is linearly un-
stable and more susceptible to instabilities. This leads to an
asymmetry in flow features near the two walls. This asym-
metry has been discussed at length in large-gap simulations
[5]. It also imprints on the spiral turbulence. For example,
the mean velocity profile in the turbulent spiral core is asym-
metric with respect to the two walls [Fig. 2(c)]; in contrast,
the plane Couette flow is linearly stable everywhere, and the
mean profile in the center of turbulent region is symmetric
between the two walls [10].
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