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Ubiquity of chaotic magnetic-field lines generated by three-dimensionally crossed
wires in modern electric circuits
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We investigate simple three-dimensionally crossed wires carrying electric currents which generate chaotic
magnetic-field lines (CMFLs). As such wire systems, cross-ring and perturbed parallel-ring wires are studied,
since topologically equivalent configurations to these systems can often be found in contemporary electric and
integrated circuits. For realistic fundamental wire configurations, the conditions for wire dimensions (size) and
current values to generate CMFLs are numerically explored under the presence of the weak but inevitable
geomagnetic field. As a result, it is concluded that CMFLs can exist everywhere; i.e., they are ubiquitous in the

modern technological world.
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It is commonly believed that the magnetic-field lines
(MFLs) generated by a wire carrying electric current always
have simple closed-loop structures such as the examples
cited in many textbooks [1,2]. However, this belief is wrong
because chaotic magnetic-field lines (CMFLs) may emerge
from simple as well as complex wire configurations as
pointed out by Ulam [3]. While CMFLs in coil or ring cur-
rents were well investigated in the context of plasma con-
finement for nuclear fusion [4-7], most of unperturbed sys-
tems in the theoretical treatment were limited to straight
plasma currents, diverter currents, unbent (straight) helical
currents, and their combinations and no investigations were
made on cross-ring, parallel-ring wires and other topologi-
cally equivalent configurations as unperturbed systems. Al-
though recent works [8—10] numerically showed that a
rippled ring wire can produce CMFLs, the proposed wire
configurations were rather complex. Furthermore, there has
been no report on the likelihood of CMFLs emerging from
actual electrical and electronic devices in our daily life.

Here, with the use of several simple wire configurations,
we show behaviors of the CMFL generation, which comes
from homoclinic intersections near an unstable fixed point
[6,11-16]. We also investigate other topologically equivalent
simple wire configurations which are encountered in realistic
electric and electronic circuits with taking account of the
inevitable geomagnetic field (GF) in the real world, and then
we reveal general existence of the CMFL in these systems.

In the analysis of systems in Figs. 1 and 2, we assume the
zero-GF condition in which we use a unity current. For the
other systems, we apply GF and use realistic current values.
The used currents are equivalent for all wires in a given
system. The three-dimensional simulations of the magnetic-
field lines for simple configurations such as straight and ring
wires are performed by using analytical expressions of mag-
netic fields [2]. For some finite-length wires for which we
cannot derive analytical forms of the magnetic fields, we use
the Biot-Savart law for numerical integrations.

Figure 1 shows the simplest two-wire system which gen-
erates CMFLs. The system is composed of two perpendicu-
larly crossed rings of the same radius @ with their centers
also separated by a. For this system, the analytic expression
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of the magnetic field can be easily derived by a superposition
of the complete elliptic integrals [2], and we have used this
explicit expression (not shown) for numerical integrations.
As shown in Fig. 1(a), when an MFL starts from a certain
area, it has a complex trajectory. The trajectory changes dras-
tically with a slight deviation of the initial coordinates of the
MFL. This is a well-known property of chaotic orbits. Fig-
ures 1(b) and 1(c) show the Poincaré map and Lyapunov
exponent of the CMFL, respectively. The collapse of tori in
the Poincaré surface of section and the positive value of
Lyapunov exponent imply that the MFL is chaotic [11,14],
i.e., CMFL.

To overview the behavior of the CMFLs, we tracked the
development of the trajectory. Figure 1(a) shows the progres-
sive sequence of a CMFL. The MFL first starts from the
position 1, twines the A-ring (1-3), travels around the ring
and returns back to the central area (4), changes its twine to
the B-ring (5-8), and then irregularly repeats the alternation
of the wrapping ring, i.e., sequences (8—16) for A-ring,
(16-20) for B-ring, and (20-28) for A-ring. This sort of be-
havior is well known as the itinerancy of the orbit in chaos
theory, which is also observed in the restricted three-body
problem studied by Poincaré as the complex orbit of a planet
traveling around a binary star [15,16]. One of the generation
mechanisms of CMFLs in this system is considered to be the
homoclinic intersections around unstable fixed points, which
are created by perturbed parallel current-carrying rings
shown in Fig. 2. Although the detailed analysis has already
been reported in the context of plasma physics [6,17,18], we
restate the phenomenon of the homoclinic intersections
briefly by using a simple wire model in the following
paragraph:

To begin with, we consider a single-coil system in Fig.
2(a). Its rotational symmetry around the Z axis makes it pos-
sible to decompose the system into a one-degree-of-freedom
Hamiltonian system with an extra independent variable
[4-7]:

JoH OH )
g=—(q.p), p=——(qp), ¢=0, (1)
dp dq

where the canonical variables g and p are related to the cy-
lindrical coordinates (r, ¢,z) as g=z and p=r2, respectively.
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FIG. 1. (Color) (a) Perpendicularly crossed ring structure (blue),
a CMFL (black), and progression of a CMFL (red numbers). [(b)
and (c)] Poincaré map (b) and Lyapunov exponent (c) of a CMFL in
the cross-ring system (a=2.5 m). The cross-section plane of the
Poincaré map is the X-Y plane and the axis unit is meter. The red
circle and two red dots indicate the positions of the ring wires. The
horizontal axis in (c) is orbital length of the CMFL with calculation
steps of 107> m.

The Hamiltonian H(g,p) is given by H(q,p)=2rA, where
A, is the ¢ component of the vector potential [2]. This kind
of decomposition into an integrable Hamiltonian system and
a noncanonical variable is always possible for three-
dimensional ordinary differential equations with divergence-
free vector fields, e.g., incompressible fluid flows and mag-
netic fields, if the system has a continuous symmetry [12].
The one-degree-of-freedom systems are integrable and,
hence, there is no CMFL. As shown in Fig. 2(a), the phase
space of this system forms a single nested structure of MFLs
(torus). By contrast, when another coil is placed as displayed
in Fig. 2(b), the phase-space structures change qualitatively.
Here, the second coil is parallel to the X-Y plane and its
center is located on the Z axis. Again, a reduction to an
integrable Hamiltonian system is possible thanks to the rota-
tional symmetry and, in the phase space of this reduced sys-
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FIG. 2. (Color) (a) Single-ring coil system (silver) and its phase
space (red curves). (b) A system composed of two parallel rings
(silver) and its phase space (red curves). The green arrow indicates
the unstable fixed point. (c) Poincaré surface of the parallel-ring
system with a straight wire on the Z axis perturbed by a uniform
magnetic field along the X axis.

tem, there is a separatrix and an unstable fixed point [13,14]
as shown in Fig. 2(b). Moreover, in order to ensure the non-
resonant condition, we placed a straight wire on the Z axis,

which changes the equation for ¢ into ¢p=Q(p) with a func-
tion Q(p) but does not alter the Hamiltonian H(q,p). Con-
sequently, the breaking of symmetry due to small perturba-
tions can generate chaos through the mechanism known as
homoclinic intersections [6,11-14] as shown in Fig. 2(c),
where the system is subjected to a weak uniform magnetic
field. In general, the type of perturbation is not important for
the generation of chaos as long as it can break the rotational
symmetry.

Hereafter, we present more realistic wire configurations
under a weak but nonzero GF. Figure 3(a) shows a system of
mutually perpendicular separated rings. Figures 3(b) and 3(c)
show a CMFL in the system and a Poincaré map. Figure 3(d)
shows the vanishing of CMFL under a weak wire-current
condition. Since the magnetic field is composed of a weak
magnetic field from the wire and a relatively stronger GF, the
MFL is dominantly pulled or washed out by the GF and
escapes to infinity. We should note that this escaping behav-
ior is interpreted as an example of chaotic scattering [6]. This
suggests that the observation of CMFL in small systems with
weak current intensity is difficult and this fact was also over-
looked in Refs. [9,10]. In fact, many systems composed of
single-wire coils need greater than 10* A current to overcome
the GF in our simulation for the 5-cm-diameter coils in Fig.
1. By contrast, the separate-ring system is optimum for ex-
perimental verification of CMFL, because the rings can be
composed of multiturn coils so as to generate a strong mag-
netic field that overcomes the GF flow. In other words, for
example, 100 A current in a single wire can be replaced by 1
A in the 100-turn coils in Fig. 3. We should also note that it
is difficult to make multiturn coils in the cross-ring system in
Fig. 1.

Under the ideal conditions, i.e., zero or small GF, CMFLs
can localize in a bounded region and fill it everywhere
densely. This is due to the barriers of the torus surrounding
CMFLs [for example, see Fig. 2(c)]. In general, however,
CMFLs drift due to the effect of GF and gradually escape to
infinity as shown in Fig. 3(d). This unboundness of MFLs
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FIG. 3. (Color) (a) Separated perpendicular rings. Ring radius r,
their separation, and the current value are 2.5 cm, 2.5 cm, and 100
A, respectively. The center coordinates of the rings are (0, 0, 0) and
(7.5, 0, 0) in units of centimeters. [(b) and (c)] Generated CMFL (b)
(red curves) and a Poincaré map (c) at the X-Y plane under 0.5 G
GF along the X axis. (d) Vanishing of the CMFL (red) due to wash-
ing out of the MFL by the GF under a weak wire-current condition
(10 A). The GF direction is along the X axis. The calculation meth-
ods are equivalent to those in Fig. 1.

can be understood as transient chaos. In spite of this tran-
sience of CMFLs under GF, however, MFLs still have com-
plex structures and temporally exhibit a chaotic nature as
indicated by the Poincaré surfaces. This transient chaos per-
sists for long, when the wire separation is close and the cur-
rent is sufficiently large.

Next, we proceed to study a variety of realistic wire con-
figurations in conventional electrical products under the GF
and examine the possible existence of CMFL there. Some of
these wire configurations have a topology similar to the
above-mentioned systems. Figure 4 shows some realistic ex-
amples of generating a CMFL in our simulation with realistic
dimensions (size and separation) and current values under
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FIG. 4. (Color) (a) Schematic figure of a realistic system, which
corresponds to circuits on two-layer PCBs or a multilayer intercon-
nection in ICs. The solid and dashed lines indicate wires deposited
on the front and back surfaces of the PCB, respectively. Right figure
of (a): a generated CMFL. The wire dimensions are indicated by the
numbers near the arrowed lines in millimeter and micrometer units
for PCB and IC, respectively. The current and the vertical separa-
tion of the wires are 1 A and 1 mm for PCB and 1 mA and 1 um
for IC, respectively. (b) Schematic figure of a curved twisted-pair
wire (black) and its CMFL (red) (right figure). The separation of the
wires and the current value are 2 mm and 20 A. (c) Two separated
cross wires (black) and their CMFL (red), and its Poincaré map at
the X-Y plane (right figure). The wires do not contact each other but
are separated slightly at the crossing point (0, 0, 0) toward the X
direction of the figure. The wire separation and current are 1 mm
and 1 A for PCBs, which are values equivalent to 1 um and 1 mA
for ICs. The normalized GF vector components are (0, \m V1/2).

0.5 G GF; such sub-Gauss GF is typical in many countries.

Figure 4(a) shows systems composed of two rectangular
wires and a normal straight wire and a generated CMFL
(right figure). The system has similar topology to that in Fig.
2, since the rectangles correspond to the rings and the sym-
metry is broken (half circle rings). This wire configuration is
frequently used to cross different lines in multilayer printed
circuit boards (PCBs) and multilayer integrated circuits
(ICs). We note that the electric resistors in Fig. 4(a) are
equivalent to wires, since current flows through them. We
also note that the smaller the separation of the wires, the
smaller the necessary current intensity to overcome the GF
effect. This comes from the scaling law of magnetic-field
equations. For example, regarding the separate-rings system
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in Fig. 3, when the coil diameter is reduced to 50 um, i.e.,
1073 times 5 c¢m, the necessary current is reduced to 1 A
(10> AX1073). Since the separation of wires on two layers
(for example, front and back surfaces of PCBs) is very short,
i.e., on the order of 1 mm for PCBs and 1 um or much less
for ICs, the necessary current to generate a CMFL under the
GF can be small. For example, currents greater than or equal
to 1 A frequently exist on 1-mm-thick PCBs of power regu-
lators in common personal computers and digital home elec-
tronics, and several tens of amperes are frequent for a 3 V
power supply used by modern desktop personal computers.
Moreover, in modern power electronics, switching regulators
are common and their instantaneous currents may exceed 10
A with thin pattern widths on PCBs. For ICs, 1 mA current is
sufficient to cause CMFLs, which is also possible as continu-
ous current in many power ICs or surge currents for digital
signal transmission in many high-speed ICs. Therefore, the
system in Fig. 4(a) is realistic and, thus, CMFLs can be
generated in many modern electric and electronic products.

Figure 4(b) shows a CMFL generated by a curved
twisted-pair cable, which is frequently encountered in some
power supply cables (power wires), as well as local area
network cables and universal serial bus cables. This twisted-
pair system might be interpreted as a consecutive topological
extension of the breaking cross-ring system. For power wires
in modern personal computers, currents of several tens of
amperes are frequent with separation of only a few millime-
ters. This condition might also be seen in household wiring
for ac power supply. We should note that this might also be
the case for parallel-wire cables, which are occasionally
twisted and curved. Consequently, it is possible that CMFL
exists everywhere in our lives.

The system in Fig. 4(c), which is composed of two sepa-
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rated straight wires, has an interesting feature: the system
shows no CMFL under zero GF. The chaos in this system
only emerges with the assistance of the GF. The two wires
are crossed but slightly separated from each other; for ex-
ample, one wire is on the Z axis and the other is parallel to
the Y axis but slightly away from the YZ plane. From our
numerical simulation, this system has a separatrix [cf. Fig.
2(b)]. Therefore, a perturbation by the GF can generate CM-
FLs. Without GF, each MFL forms a spiral along the wires
and tends to escape from the central crossing area to infinity.
Therefore, from another viewpoint, GF plays the role of roll-
ing back these MFLs to the central area. The needed direc-
tion of the North or South Pole to generate CMFL was about
45° to the wires, and we found from our simulation that the
tolerance of the angle for the CMFL generation was about
30° in all three-dimensional directions. Therefore, conven-
tional electric circuits with a similar configuration, for ex-
ample, double-layer PCBs having a wire on the front layer
and another on the back layer, can generate CMFLs with the
help of the GF when the circuits in the PCB face in the
proper direction robustly. Since the relevant dimensions
(size) and currents are typical values in the modern techno-
logical world, the chaos in this system arises occasionally
and is also ubiquitous depending on the direction of electri-
cal and electronic products (e.g., portable computers, ICs in
cell phones, and car electronics) toward the North Pole.

In summary, we showed CMFLs emerging from some
simple current-carrying wire configurations. We also re-
vealed the existence of CMFLs in a variety of realistic wire
configurations under the GF, and thus, it is concluded that the
CMEFL is ubiquitous in the modern technological world.
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