
Graphics processing unit implementation of lattice Boltzmann models for flowing soft systems

Massimo Bernaschi and Ludovico Rossi
Istituto Applicazioni Calcolo, CNR, Viale Manzoni 30, 00185 Rome, Italy

Roberto Benzi and Mauro Sbragaglia
University of Tor Vergata and INFN, via della Ricerca Scientifica 1, 00133 Rome, Italy

Sauro Succi
Istituto Applicazioni Calcolo, CNR, V. dei Taurini 9, 00185 Rome, Italy and Freiburg Institute for Advanced Studies, Freiburg, Germany

�Received 23 September 2009; published 30 December 2009�

A graphic processing unit �GPU� implementation of the multicomponent lattice Boltzmann equation with
multirange interactions for soft-glassy materials �“glassy” lattice Boltzmann �LB�� is presented. Performance
measurements for flows under shear indicate a GPU/CPU speed up in excess of 10 for 10242 grids. Such
significant speed up permits to carry out multimillion time-steps simulations of 10242 grids within tens of
hours of GPU time, thereby considerably expanding the scope of the glassy LB toward the investigation of
long-time relaxation properties of soft-flowing glassy materials.

DOI: 10.1103/PhysRevE.80.066707 PACS number�s�: 83.10.�y

I. INTRODUCTION

The rheology of flowing soft systems, such as emulsions,
foams, gels, slurries, colloidal glasses, and related complex
fluids, is a subject of increasing importance in modern non-
equilibrium thermodynamics, with a broad range of applica-
tions in fluid dynamics, chemistry, and biology. From the
theoretical standpoint, flowing soft systems are challenging
because they do not fall within any of three conventional
states of matter, gas-liquid-solid, but live rather on a moving
border among them. Foams are typically a mixture of gas
and liquids, whose properties can change dramatically with
the changing proportion of the two; wet foams can flow al-
most like a liquid, whereas dry foams may conform to regu-
lar patterns, exhibiting a solidlike behavior. Emulsions can
be paralleled to biliquid foams, with the minority species
dispersed in the dominant �continuous� one. The behavior
and, to same extent, the existence itself of both foams and
emulsions are vitally dependent on surface tension, namely
the interactions that control the physics at the interface be-
tween different phases/components. Indeed, the presence of
surfactants, i.e., a third constituent with the capability of
lowering surface tension, has a profound impact on the be-
havior of foams and emulsions. By lowering the surface ten-
sion, surfactants can greatly facilitate mixing, a much sought
for property in countless practical endeavors, from oil recov-
ery to chemical and biological applications. Living, as they
do, out of equilibrium, these materials exhibit a number of
distinctive features, such as long-time relaxation, anomalous
viscosity, aging behavior, which necessitate profound exten-
sions of nonequilibrium thermodynamics �1�. The study of
these phenomena sets a pressing challenge for computer
simulations as well, since characteristic time lengths of dis-
ordered fluids can escalate tens of decades over the molecu-
lar time scales. Among a variety of numerical methods for
complex flows, both atomistic and macroscopic, mesoscopic
lattice Boltzmann models have recently been developed,
which prove capable of reproducing a number of qualitative
features of soft-flowing materials, such as slow relaxation,

dynamical heterogeneities, aging and others �2�. These mod-
els are based on suitable generalizations of the multicompo-
nent Shan-Chen scheme for nonideal fluids, with multirange
competing interactions, namely, short-range attractions �stan-
dard Shan-Chen� plus midrange repulsion. The competition
between short-range attraction and midrange repulsion lies at
the heart of the very rich behavior of the density field. Owing
to this complexity, and particularly the slow relaxation prop-
erties, the investigation of the dynamical behavior of these
systems requires very long time integrations, typically of the
order of tens of million of time steps �as a reference, one
lattice Boltzmann �LB� time step can be taken of the order of
100–1000 molecular-dynamics time steps�. As a result, even
if the extended LB code, per se, is not particularly more
demanding than a standard Shan-Chen version, this need of a
very long simulation span sets a strong incentive for efficient
implementations. In this work, we discuss the implementa-
tion of this extended LB model on graphics processing unit
�GPU� architectures and provide a few examples of the very
significant CPU time gains versus the corresponding CPU
implementations.

II. MODEL

The kinetic lattice Boltzmann equation takes the follow-
ing form �3�:

f is�r� + c�i�t,t + �t� − f is�r�,t� = −
�t

�
�f is�r�,t� − f is

�eq��r�,t��

+ Fis�t , �1�

where f is is the probability of finding a particle of specie s at
site r� and time t, moving along the ith lattice direction de-
fined by the discrete speeds c�i with i=0, . . . ,b. The left-hand
side of Eq. �1� stands for molecular free streaming, whereas
the right-hand side represents the time relaxation �due to col-
lisions� toward local Maxwellian equilibrium on a time scale
� and Fis represents the volumetric body force due to inter-
molecular �pseudo-� potential interactions.

PHYSICAL REVIEW E 80, 066707 �2009�

1539-3755/2009/80�6�/066707�7� ©2009 The American Physical Society066707-1

http://dx.doi.org/10.1103/PhysRevE.80.066707

The pseudopotential force within each species consists of
an attractive �a� component, acting only on the first Brillouin
region �belt, for simplicity� and a repulsive �r� one acting on
both belts, whereas the force between species �X� is short
ranged and repulsive,

F� s�r�,t� = F� s
a�r�,t� + F� s

r�r�,t� + F� s
X�r�,t� ,

where

F� s
a�r�,t� = − Gs

a�s�r�,t� �
i�belt1

wi�s�r�i,t�c�i,

F� s
r�r�,t� = − Gs

r�s�r�,t� �
i�belt1

pi�s�r�i,t�c�i

− Gs
r�s�r�,t� �

i�belt2
pi�s�r�i,t�c�i,

F� s
X�r�,t� = −

1

�0
2�s�r�,t� �

s��s

�
i�belt1

Gss�wi�s��r�i,t�c�i. �2�

In the above, the groups “belt 1” and “belt 2” refer to the first
and second Brillouin zones in the lattice and c�i, pi, and wi are
the corresponding discrete speeds and associated weights.
Also, Gss�=Gs�s, s��s, is the cross coupling between
species, �0 a reference density to be defined shortly, and
finally, r�i=r�+c�i�t are the displacements along the c�i velocity
vector. The first belt is discretized with nine speeds,
whereas the second with 16 for a total of b=24 connections,
plus a rest particle. The weights are chosen in such a
way as to fulfill the following normalization constraints �4�:
w0+�i�belt1wi= p0+�i�belt1pi+�i�belt2pi=1, �i�belt1wicix

2

=�i�belt1picix
2 +�i�belt2picix

2 =cs
2, cs

2=1 /3 being the lattice
sound speed. The pseudopotential �s is taken in the form
first suggested by Shan and Chen �5�,

�s��� = �0�1 − e−�/�0� , �3�

where �0 marks the density value, at which nonideal effects
come into play. Full details of the model and its continuum
limit are provided in �6�. Here we shall just remind that a
proper tuning of the couplings G�s as well as �0 permits to
realize a vanishingly small surface tension.

Due to the intrinsically slow relaxation of soft-glassy ma-
terials, the simulations entail very long time spans, covering
several millions of time steps. This motivates the migration
from CPU to GPU architectures.

III. GPU IMPLEMENTATION

The features of the NVIDIA graphics hardware and the
related programming technology named CUDA are thor-
oughly described in the NVIDIA documentation �7�. Here,
we report just the key aspects of the hardware and software
we used.

Most of the simulations ran on a NVIDIA Tesla C1060
equipped with 30 multiprocessors with eight processors
each, for a total of 240 computational cores that can execute
at a clock rate of 1.3 GHz. The processors operate integer
types and 32-bit floating point types �the latter are compliant

with the IEEE 754 single-precision standard�. Each multipro-
cessor has a memory of 16 Kbyte size shared by the proces-
sors within the multiprocessor. Access to data stored in the
shared memory has a latency of only two-clock cycles allow-
ing for fast nonlocal operations. Each multiprocessor is also
equipped with 16 384 32-bit registers.

The total on-board global memory on the Tesla C1060
amounts to 4.0 Gbyte with a 512-bit memory interface to the
GPU that delivers 102.4 Gbit/s memory bandwidth. The la-
tency for the access to this global memory is approximately
200 cycles �two orders of magnitude slower than access to
shared memory� with any location of the global memory
visible by any thread, whereas shared memory variables are
local to the threads running within a single multiprocessor.

For the programming of the GPU, we employed the
CUDA Software Development Toolkit, which offers an ex-
tended C compiler and is available for all major platforms
�Windows, Linux, Mac OS�. The extensions to the C lan-
guage supported by the compiler allow starting computa-
tional kernels on the GPU, copying data back and forth from
the CPU memory to the GPU memory and explicitly manag-
ing the different types of memory available on the GPU.

The programming model is a single instruction multiple
data �SIMD� type. Each multiprocessor is able to perform the
same operation on different data 32 times in two clock
cycles, so the basic computing unit �called warp� consists of
32 threads. To ease the mapping of data to threads, the
threads identifiers may be multidimensional and, since a very
high number of threads run in parallel, CUDA groups threads
in blocks and grids.

One of the crucial requirements to achieve a good perfor-
mance on the NVIDIA GPU is that global memory accesses
�both read and write� should be coalesced. This means that a
memory access needs to be aligned and coordinated within a
group of threads. The basic rule is that the thread with id n
��0, ,N−1� should access element n at byte address:

StartingAddress+sizeof�type��n where sizeof �type� is
equal to either 4, 8, or 16 and StartingAddress is a multiple
of 16�sizeof�type�.

Although NVIDIA last generation hardware �such as the
C1060 at our disposal� has better coalescing capability with
respect to previous generations, the performance difference
between fully coalesced memory accesses and uncoalesced
accesses is still remarkable.

Functions running on a GPU with CUDA have some limi-
tations: they cannot be recursive; they do not support static
variables; they do not support variable number of arguments;
function pointers are meaningless. Nevertheless, CUDA
makes GPU programming much more simple as compared to
other approaches such as that described in �8� where the
Lattice Boltzmann method was implemented using directly
the graphics operations provided by the hardware.

The porting of our multicomponent Lattice Boltzmann
code for flowing soft systems to the GPU entailed some
changes to the original code. First of all, the routines in
charge of the LB update have been ported to CUDA and
modified to better adapt to the GPU architecture, while ad-
ditional routines were added to initialize and shutdown the
CUDA module. All the CUDA routines have been integrated
into the original code without modifying its structure, thus

BERNASCHI et al. PHYSICAL REVIEW E 80, 066707 �2009�

066707-2

maintaining compatibility with other code components �for
instance, the I/O parts� and facilitating future updates to both
the CUDA and the Fortran modules.

The initialization routine copies the data needed for ex-
ecuting the LB update from the CPU main memory to the
GPU global memory. In the original Fortran code, the nine
fluid populations of a lattice node are stored contiguously in
memory �following the conventionally called array-of-
structures layout�, but using such layout on the GPU would
force the threads to access global memory in an uncoalesced
fashion, that is to violate the already mentioned best
practices for GPU memory access patterns. Therefore, when
copied to the GPU global memory, data are reordered fol-
lowing the structure-of-arrays layout �9,10�, thus allowing
coalesced accesses to the global memory. As a consequence
the fluid populations of a lattice site are not contiguous in the
GPU global memory. Data not modified during the simula-
tion, such as coefficients, are precomputed during the initial-
ization phase and stored in the GPU constant memory, which
has performances analogous to those of registers if, as in our
case, all the threads running on the same SIMD processor
access the same constant memory location.

After the initialization phase, all the computation required
for the LB update is performed on the GPU. A single step of
the simulation is implemented through a sequence of CUDA
kernels guaranteeing the correct sequential order of the sub-
steps. Each CUDA kernel implements a substep of the up-
date procedure �e.g., collision, streaming� by splitting the
work among a configurable number of threads and blocks,
which was fine tuned to achieve optimal performances, with
respect to occupancy �11�, on the CUDA devices available to
us. Each thread works sequentially on a group of lattice
nodes assigned to it. For each lattice node, the thread copies
data from the global memory into registers, performs the
computation and writes the results back in the global
memory. In order to manage the parallelization of the stream-
ing phase without causing conflicts among multiple threads,
fluid populations are stored in the global memory using a
double buffer policy �9,10�. At the end of the simulation,
final results are copied back to the CPU main memory in
order to be saved on a secondary storage device. Through a
configuration file it is possible to require also the saving of
partial results of the simulation at regular intervals �e.g., for
check-pointing purposes�.

Most of the global memory read and write operations are
coalesced, with the exception of few read operations relative
to the computation of the interaction forces and few write
operations relative to the streaming phase. In the first case,
the calculation of the force for a lattice node depends on
values related to other lattice nodes, which must be loaded
from global memory even if alignment requirements that al-
low coalesced accesses are not satisfied. In the second case,
target locations of the streaming phase are defined by the
lattice topology, and in general they do not comply with
memory alignment requirements. In both cases, however,
techniques that employ the GPU shared memory as a tempo-
rary buffer could be applied, in future versions of the code,
to mitigate the overhead due to uncoalesced accesses.

For the function that computes the value of the hydrody-
namic variables all memory operations are local, meaning

that only the fluid populations of a lattice site are required
and that the resulting hydrodynamic variables belong to the
same lattice site. As a consequence, there is not a single
uncoalesced memory access.

Finally, as already mentioned, the fluid populations once
uploaded on the GPU memory do not need to be copied back
to the main memory unless a dump of the whole configura-
tion is required. However, hydrodynamic variables might be
written back to the main memory much more frequently
since they represent the main physical output of the simula-
tion. Although the number of hydrodynamic variables per
lattice site is small compared to the number of fluid popula-
tions �there are four hydrodynamic variables vs nine fluid
populations� so that the run time overhead of the copy from
the GPU memory to the CPU memory is small compared to
the initialization overhead, better speedups, with respect to
the CPU version of the code, are obtained by reducing the
number of these copy-back operations. In Table I, we report
a comparison of the timings required by the CPU and GPU
version of the code for different domains.

Profiling a code on a GPU has been a bit tricky for a long
time but NVIDIA has recently introduced a visual profiler
that makes easier to find out which kernels take more time.
Table II shows data produced by such profiler for a typical
run. What we found is that the breakdown of the time among
the different GPU computational kernels is very similar to
the CPU case were profiling can be easily done by using the
gprof tool.

Other authors �12–14� proposed high-performance imple-
mentations of the lattice Boltzmann method for GPUs. To the
best of our knowledge, all those implementations focus on
the classic and general formulation of the lattice Boltzmann
method �albeit they consider the possibility of having a dif-
ferent number of populations�, whereas our code deals with
the specific case in which the pseudopotential force within
each species consists of two components and the force be-
tween species is short ranged and repulsive. The effect of
more complex interactions on the speedup that is possible to
achieve by using a GPU can be indirectly assessed by mak-
ing a comparison between the speedup we obtain on the
largest test case �20482�, which is approximately 13.5, and
the speed up reported in �12� for the plain D2Q9 method on
a mesh of the same size, which is approximately 20. It is
worth noting that we did not resort to the technique proposed

TABLE I. Timing �in seconds� required for 1000 iterations on
different domains of increasing size. CPU timings were obtained on
an Intel Xeon CPU E5462 at 2.80 GHz. GPU timings were obtained
on a Tesla C1060 whose features are described in the text. Note that
a typical run of one million time steps on a 10242 lattice requires
about 3 weeks on a CPU and only less than 2 days on a GPU.

Domain size CPU time GPU time

1282 13 6.6

2562 77 16.5

5122 429 48.5

10242 1740 145

20482 7050 533

GRAPHICS PROCESSING UNIT IMPLEMENTATION OF… PHYSICAL REVIEW E 80, 066707 �2009�

066707-3

in �12� to improve the performance of the propagation phase
of the LB update mainly because, as already mentioned, the
NVIDIA card we used has better coalescing capability than
the hardware used in �12�. In the near future we may experi-
ment that approach but we do not expect a major change in
the scenario.

Good performance are useless if the results of a simula-
tion are not reliable. It is well known that GPU support for
double precision is still in infancy stage �using double preci-
sion increases the GPU computing time of almost one order
of magnitude� and all applications running on GPU make use
of single-precision arithmetic. So it does our code. For an
iterative method, such as the lattice Boltzmann, it is crucial
to double check that long simulations do not produce �sig-
nificantly� different results by using single and double preci-
sion arithmetic. To this purpose we ran a set of tests on the
CPU since it was much simpler to switch from single to
double precision and then we ran the same set of tests in
single precision on the GPU. The result is that, on average,
the percentage of mass/momentum loss due to the usage of
the single precision corresponds, for the test cases described
in the present study, to �0.5�10−4.

IV. NUMERICAL RESULTS

We next proceed to present the results of numerical simu-
lations. The baseline simulations are performed on a two-
dimensional grid Nx�Ny =1024�1024. The two fluids are
initialized at zero speed and random initial conditions for the
two densities �A and �B. More specifically, after a prelimi-
nary tuning process, we choose �A=�B=0.612, with a stan-
dard deviation �0.01 from the background density value.
The reference density is taken as �0=0.7. The couplings have
been set to the following values �in lattice units�:

GA
a = − 15.0, GA

r = 14.1,

GB
a = − 14.0, GB

r = 13.1,

GAB = 0.045. �4�

These parameters secure that both components A and B are
in the dense �liquid� phase. The relaxation time is fixed to
�=1, corresponding to a kinematic viscosity �=1 /6. The
corresponding value of the surface tension is approximately
	AB�0.01. All values are given in lattice units.

The fluid is subject to a periodic forcing F0sin�2
ky /Ny�
along the streamwise direction, x where F0
=0.5�����2
ky /Ny�2sin�2
ky /Ny� and ��� is the average
density. For a normally flowing fluid, such forcing would
produce a sinusoidal flow with amplitude U0. The effective
viscosity of the flow is monitored through the ratio
�response function� R�t�=U�t� /U0, where U�t�
= (2 / �NxNy�)�x,ysin�2
ky /Ny�u�x ,y ; t� is the average flow
speed projected upon the forcing. By definition, R=1 identi-
fies standard flow conditions, whereas R�1 denotes en-
hanced effective viscosity, �ef f =� /R, due to caging effects

TABLE II. A sample of the data produced by the CUDA Visual Profiler for a typical run. The third and
fourth column report the number of coalesced �i.e., optimal� load and store operations �for these routines
there are no uncoalesced memory accesses�. The fifth column reports the number of so-called divergent
branches that are particularly bad for the performance. We managed to remove all of them from the most time
consuming routines.

Method %GPU time gld_coherent gst_coherent Divergent_branch

Hydro 24.88 1.32096�108 2.10125�108 0

Colli 22.84 3.31776�107 7.74144�107 0

ExtForce 12.28 1.8432�107 5.16096�107 0

Move 12.09 1.42848�107 6.88128�107 0

Equil 11.31 4.3008�106 7.74144�107 0

Force AB 5.52 1.3068�106 5.2272�106 180

Force BB 5.45 653400 2.6136�106 180

Force AA 5.44 653400 2.6136�106 180

1

2

0
3

4

566

7 8

22 1015 2114

23 24

16

17

11

13

20

9

1218 19

1 st belt 2 nd belt

FIG. 1. �Color online� The two-belt 25-speed lattice used for the
force evaluation. Each component experiences an attractive interac-
tion in the first Brillouin zone and a repulsive one acting on both
Brillouin zones. The integers refer to the square of the correspond-
ing discrete velocity. Each of these interactions is controlled by a
separate coupling constant.

BERNASCHI et al. PHYSICAL REVIEW E 80, 066707 �2009�

066707-4

and dynamic heterogeneities. In the present study, we have
taken U0=0.01. In previous studies, it was shown that, de-
pending on initial conditions, forcing strength and surface
tension, the system shows evidence of nearly arrested states,
characterized by an effective flow speed much lower than U0
�typically two to three orders�. Since the occurrence of these

arrested states is a prime signature of soft-glassy behavior, it
is of great interest to investigate whether it still survives for
systems of larger sizes. To this purpose, we have performed
a number of simulations at grid resolution 10242, i.e., 82

times larger than our own previous simulations �Fig. 1�.
These simulations do indeed confirm the existence of such
arrested states even in larger systems. A typical example of
response function for the case of a flowing and arrested sys-
tem is given in Fig. 2. The set of physical parameters is the
same in the two cases, the only difference being a different
realization of the random initial conditions. This figure
shows that after an initial stage, where the fluid builds up a
macroscopic speed under the effect of the external forcing,
both realizations enter a nearly arrested state with an effec-
tive response R�10−4. For realization N, such arrested state
persists till the end of the simulation �1 million time steps�,
whereas for realization F, around t=7�105, the system re-
gains motion, although still at a much lower speed �R
�10−3, three orders below the normal-fluid value�. Visual
inspection of selected snapshots of the density configuration
provides a valuable insight into the physics of the problem.
In top panel of Figs. 3 and 4, we report the density contours
of both realizations at t=3�105, i.e., in a early, nonflowing,
stage of the evolution. As it is well visible, the density field
shows a granular morphology, with droplets of dense fluids

-0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
(t

)

Time Steps (1:100)

Non flowing realization
Flowing realization

FIG. 2. �Color online� Time evolution of the response function
for the case of a flowing �F, blue or dark gray line� and nonflowing
system �N, red or light gray line�, respectively.

(b)

(a)

FIG. 3. �Color online� Contour plots of the density of fluid A for
realization N at t=3�105 �top panel� where a large number of
cages is well visible and t=106 �bottom panel� where cages are still
visible.

(b)

(a)

FIG. 4. �Color online� Contour plots of the density of fluid A for
realization F at t=3�105 �top panel� where cages are visible and
t=106 �bottom panel� where most cages have disappeared, and the
fluid can regain a flowing state.

GRAPHICS PROCESSING UNIT IMPLEMENTATION OF… PHYSICAL REVIEW E 80, 066707 �2009�

066707-5

surrounded by a sea of light fluid, itself entrapped by a thin
belt of dense fluid �cages�. The macroscopic motion of such
foamlike configurations is highly frustrated by the presence
of these dynamic cages, which have been identified as the
prime cause for enhanced viscosity.

Such an interpretation is confirmed by visual inspection of
the density field configurations at t=1�106, when the con-
figuration F has regained significant motion. For the case of
realization N �bottom panel of Fig. 3�, no qualitative change
is visible, with cages still alive. For the case of realization F,
however, bottom panel of Fig. 4 clearly shows that cages
have mostly disappeared, thereby allowing the system to re-
gain a flowing state, if only at a much reduced speed than a
normal fluid.

The process of cage formation/annihilation is a highly
complex phenomenon, whose statistical dynamics depends
on the physical parameters, as well as on initial conditions
and system size. A quantitative characterization of such phe-
nomenon calls for intensive and systematic computational
investigations, involving long-time simulations over a sub-
stantial ensemble of realizations, for a broad range of physi-
cal parameters. As shown in this work, GPU implementa-
tions prove instrumental in cutting down the computational
costs of such investigations, thereby opening the way to sys-
tematic computational studies of the statistical dynamics of
flowing soft-glass systems using the glass-LB scheme.

V. CONCLUSIONS

Summarizing, we have described the implementation on a
GPU architecture of a Lattice Boltzmann model recently in-
troduced for the study of soft-glass flowing systems. The
GPU version is shown to provide major savings �more than
an order of magnitude� in elapsed time over the correspond-

ing CPU version, with a growing trend with increasing sys-
tem size. This opens the way to systematic LB studies of the
statistical dynamics of soft-glass flowing systems, typically
from months to days elapsed time.

VI. SUMMARY AND OUTLOOK

A GPU implementation of the multicomponent lattice
Boltzmann equation with multirange interactions for soft-
glassy materials has been discussed. Performance measure-
ments for soft flows under periodic shear indicate a GPU/
CPU speed up ranging from 2 to 12 for grids from 1282 to
10242, respectively. Such major speed up permits to handle
multimillion time-steps simulations of 10242 grids within
very few days of GPU time, thereby considerably expanding
the scope of the glassy LB toward the investigation of long-
time relaxation properties of soft-flowing glassy materials.
Based on these results, the present GPU-LB implementation
is expected to offer an appealing computational tool for fu-
ture investigations of the nonequilibrium rheology of a broad
class of flowing disordered materials, such as microemul-
sions, foams and slurries, on space and time scales of experi-
mental interest.

Finally, we expect to develop, in the near future, a com-
bined �MPI+GPU� version that will allow to exploit the
huge computational capabilities of GPU clusters as we al-
ready did for another code described in �10�.

ACKNOWLEDGMENTS

S.S. wishes to acknowledge financial support from the
project INFLUS �Grant No. NMP3-CT-2006-031980� and
SC financial support from the ERG EU grant and consorzio
COMETA. Fruitful discussions with A. Cavagna, L. Biferale,
and M. Cates are kindly acknowledged.

�1� W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal
Dispersion �Cambridge University Press, Cambridge, England,
1989�; P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stan-
ley, Nature �London� 360, 324 �1992�; P. Sollich, F. Lequeux,
P. Hébraud, and M. E. Cates, Phys. Rev. Lett. 78, 2020 �1997�;
R. G. Larson, The Structure and Rheology of Complex Fluids
�Oxford University Press, New York, 1999�; T. Eckert and E.
Bartsh, Phys. Rev. Lett. 89, 125701 �2002�; F. Sciortino, Na-
ture Mater. 1, 145 �2002�; K. N. Pham et al., Science 296, 104
�2002�; H. Guo et al., Phys. Rev. E 75, 041401 �2007�; P.
Schall et al., Science 318, 1895 �2007�; P. J. Lu, E. Zaccarelli,
F. Ciulla, A. B. Schofield, F. Sciortino, and D. A. Weitz, Nature
�London� 453, 499 �2008�; M. P. Allen and D. J. Tildesley,
Computer Simulations of Liquids �Oxford University Press,
New York, 1990�; D. Frankel and B. Smith, Understanding
Molecular Simulation �Academic Press, San Diego, 1996�; K.
Binder, and D. W. Herrman, Monte Carlo Simulation in Sta-
tistical Physics �Springer, Berlin, 1997�; W. Kob, in Slow Re-
laxation and Nonequilibrium Dynamics in Condensed Matter,
edited by J.-L. Barrat, M. Feigelman, and J. Kurchan �Les

Houches, Summer School Session LXXVII, 2003�.
�2� R. Benzi, S. Chibbaro, and S. Succi, Phys. Rev. Lett. 102,

026002 �2009�.
�3� R. Benzi, S. Succi, and M. Vergassola, Phys. Rep. 222, 145

�1992�; S. Chen and G. D. Doolen, Annu. Rev. Fluid Mech.
30, 329 �1998�.

�4� S. Chibbaro, G. Falcucci, X. Shan, H. Chen, and S. Succi,
Phys. Rev. E 77, 036705 �2008�.

�5� X. Shan and H. Chen, Phys. Rev. E 47, 1815 �1993�.
�6� R. Benzi, M. Sbragaglia, S. Succi, M. Bernaschi, and S. Chib-

baro, J. Chem. Phys. 131, 104903 �2009�.
�7� NVIDIA CUDA Compute Unified Device Architecture Pro-

gramming Guide, http://www.nvidia.com/cuda.
�8� W. Li, X. Wei, E. Arie, and A. E. Kaufman, Image Vis. Com-

put. 19, 7 �2003�.
�9� G. Wellein, T. Zeiser, G. Hager, and S. Donath, Comput. Flu-

ids 35, 910 �2006�.
�10� M. Bernaschi, M. Fatica, S. Melchionna, S. Succi, and E. Kax-

iras. A flexible high-performance Lattice Boltzmann GPU code
for the simulations of fluid flows in complex geometries. Con-

BERNASCHI et al. PHYSICAL REVIEW E 80, 066707 �2009�

066707-6

currency: Practice and Experience �2009�.
�11� M. Harris, Optimizing CUDA. Part of the High Performance

Computing with CUDA tutorial held at SUPERCOMPUTING
2007 on Sunday, November 11, 2007, slides available at http://
gpgpu.org/static/sc2007/
SC07_CUDA_5_Optimization_Harris.pdf.

�12� J. Tölke, Implementation of a lattice Boltzmann kernel using

the Compute Unified Device Architecture developed by
NVIDIA. Computing and Visualization in Science �2008�.

�13� J. Tölke and M. Krafczyk, Int. J. Comput. Fluid Dyn. 22, 7
�2008�.

�14� A. Kaufman, Z. Fan, K. Petkov, J. Stat. Mech.: Theory Exp.
2009, P06016.

GRAPHICS PROCESSING UNIT IMPLEMENTATION OF… PHYSICAL REVIEW E 80, 066707 �2009�

066707-7

