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We analyze the method for calculation of properties of nonrelativistic quantum systems based on exact
diagonalization of space-discretized short-time evolution operators. In this paper we present a detailed analysis
of the errors associated with space discretization. Approaches using direct diagonalization of real-space dis-
cretized Hamiltonians lead to polynomial errors in discretization spacing �. Here we show that the method
based on the diagonalization of the short-time evolution operators leads to substantially smaller discretization
errors, vanishing exponentially with 1 /�2. As a result, the presented calculation scheme is particularly well
suited for numerical studies of few-body quantum systems. The analytically derived discretization errors
estimates are numerically shown to hold for several models. In the follow up paper �I. Vidanović, A.
Bogojević, A. Balaž, and A. Belić, Phys. Rev. E 80, 066706 �2009�� we present and analyze substantial
improvements that result from the merger of this approach with the recently introduced effective-action scheme
for high-precision calculation of short-time propagation.
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I. INTRODUCTION

In the standard operator formulation of quantum mechan-
ics, the description of a physical system is based on con-

structing the Hamiltonian operator Ĥ. Properties of quantum
systems are obtained by solving the corresponding
Schrödinger equation,

Ĥ��� = E��� . �1�

Exact solutions can be found only for a very limited set of
simple models. A wide variety of analytical approximation
techniques has been developed in the past for treatment of
such problems. In addition, the last two decades have seen a
rapid growth in the application of different numerical meth-
ods for solving the Schrödinger equation. In this paper we
focus on approaches based on real-space discretization,
which usually start from some given finite-difference pre-
scription. Such methods have been extensively studied in the
past, and the main difficulties follow from the finite-
difference representations of the kinetic operator.

A numerical approach based on diagonalization of the
evolution operator, introduced in Ref. �2�, does not suffer
from problems with the representation of differential opera-
tors on real-space grids, and has substantial advantages in
practical applications to few-body problems. Effectively, in
this way the problem is transferred from that of representing
the kinetic operator on a real-space grid to the calculating of
corresponding transition amplitudes. Detailed analysis of the
errors associated with the implementation of this approach
has not been presented before, and is the main result of the
current paper. It provides full understanding of the method
and allows its optimal use, as well as further significant im-
provements within a generalized calculation scheme, pre-
sented in our follow up paper �1�.

The advantages of the method discussed in this paper
�2–5� follow from two key properties. First, the objects being
diagonalized are transition amplitudes, which are well-
defined irrespective of discretization scheme, i.e., the expo-
nential of the Hamiltonian effectively regularizes the kinetic
operator, making possible representations of the evolution
operator that do not depend on the space grid. Second, the
successful diagonalization of the evolution operator

exp�−tĤ� for any time of propagation t immediately gives
the solution of the eigenproblem for the Hamiltonian. Thus,
the time of propagation in this approach is just an auxiliary
parameter. Said another way, we use the time-dependent evo-
lution operator to extract time-independent information re-
garding the quantum system. If one could calculate transition
amplitudes exactly, then the obtained results for the energy
eigenproblem would not depend on the time of propagation.
However, in practical applications one uses some approxima-
tion scheme to calculate the amplitudes, and in this case the
precision of the obtained results for energy eigenvalues and
eigenstates does depend on time t. The general applicability
of the outlined method follows from the fact that one can use
short-time propagation amplitudes to obtain high accuracy
results.

In order to complete this numerical method and make it
generally applicable, it is necessary to address the following
key questions:

�1� How to analytically estimate the effects of spatial dis-
cretization?

�2� How to optimize the choice of evolution time t, so as
to minimize errors?

�3� How to accurately calculate transition amplitudes?
The authors in Ref. �2� have only briefly commented on

the first two questions, and numerically determined the val-
ues of parameters that can be used for precise calculations of
energy eigenvalues and eigenstates for several models. To
numerically calculate transition amplitudes, they exclusively
relied on the naive short-time approximation formula,*aleksandar.bogojevic@scl.rs
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�x�e−tĤ�y� �
1

	2�t
e−�x − y�2/2t−t�V�x�+V�y��/2, �2�

which is correct only to order O�t� for energy eigenvalues.
In this paper we address the above questions, which have

not been fully answered before. In Sec. II we present the
method and notation, and identify the sources of the errors
present in real-space discretization approaches. In Sec. III we
analyze in detail questions 1 and 2, and discuss the effects of
discretization on the obtained properties of physical systems.
We analytically derive estimates for errors coming from
space discretization coarseness, finite size effects, and choice
of evolution time parameter t. All the analytically derived
results are numerically verified to hold on several instructive
models.

The follow up paper �1� continues this investigation and
significantly improves the method by applying the recently
introduced effective action approach �6–10� to completely
resolve the problem formulated in question 3. This has been
addressed recently �11–13� using various approaches. We
stress that use of higher-order effective actions represents an
efficient and numerically inexpensive way to calculate tran-
sition amplitudes that lead to many orders of magnitude in-
crease in precision of calculated properties of the system.

The expressions written throughout this paper are, for
compactness of notation, for one particle in one dimension.
Extension to more particles and dimensions is straightfor-
ward, just as with the above short-time transition amplitude.
Note that we are working in imaginary time, which is well
suited for numerical calculations and does not affect in any
way energy levels or other time-independent properties of
the system. We have also set � to unity.

II. SPACE-DISCRETIZED SCHRÖDINGER EQUATION

In the coordinate representation the time-independent
Schrödinger’s equation takes the form


 dy�x�Ĥ�y��y��� = E�x��� . �3�

The standard way to numerically implement exact diagonal-
ization is to go from continuous coordinates x to ones living
on a discrete space grid xn=n�, where � is a given spacing
and n�Z. Integrations in the above equation are performed
using the simple rectangular quadrature rule, or some higher-
order finite-difference formula. This completes the transition
to the space-discretized counterpart of the continuous theory,
however, to represent this on a computer we still have to
restrict the integers n to a finite range. This is equivalent to
introducing a space cuttoff L, or putting the system in a
infinitely high potential box. For example, the rectangular
quadrature rule leads to the following space-discretized
Schrödinger equation

�
m=−N

N−1

Hnm�m���� = E��,L��n���� , �4�

where Hnm=� · �n��Ĥ�m��, N= �L /��, and square brackets
represent the integer part of the argument. As a result, we

have obtained a 2N�2N matrix that represents the Hamil-
tonian of the system. The eigenvalues of this matrix depend
on the two parameters introduced in the above discretization
process: cutoff L and discretization step �. Continuous
physical quantities are recovered in the limit L→� and �
→0. The outlined procedure is very useful in dealing with
spatially localized physical problems, such as electronic
structure calculations in semiconductor and polymer physics
�14�.

The two approximations involved in the discretization
procedure, characterized by parameters � and L, are com-
mon steps in solving eigenproblems of Hamiltonians and as
such have been extensively analyzed. The imposed constraint
on the values of spatial coordinates to the finite interval
�−L ,L� is a valid approach for capturing information on lo-
calized eigenstates. In this approximation the system is ef-
fectively surrounded by an infinitely high wall, and as the
cutoff L tends to infinity, we approach the exact energy lev-
els always from above �15,16�, which is a typical variational
behavior. Therefore, we designate errors associated with the
cutoff L as variational. The effects of the discretization step
� are much more complex, and follow from the fact that the
kinetic energy operator cannot be exactly represented on fi-
nite real-space grids. For example, a typical naive discretiza-
tion of the kinetic energy operator gives in our notation the
following Hamiltonian matrix elements �17�

Hnm = �1/�2 + V�n�� if n = m

− 1/�2�2� if �n − m� = 1

0 otherwise.

 �5�

Note that in the absence of a potential term V in the Hamil-
tonian, the above definition corresponds to a tight-binding
model �17�. This prescription leads to numerical results for
eigenvalues which in the �→0 limit converge to the exact
continuum values as �2. The errors associated with this ap-
proach have non-variational behavior, i.e., the obtained re-
sults are not always upper bounds of the exact energy levels.
Several papers discuss this issue and analyze the behavior of
errors in the direct diagonalization approach �for more de-
tails, see Refs. �18–20� and references therein�. The state-of-
the-art in this approach is a set of systematically improved
prescriptions for discretization of the kinetic energy operator,
which speeds up convergence to the continuum limit to
higher powers of �2. However, within this approach conver-
gence is always polynomial in �. Some recent results �19,20�
also exist on extensions of this approach that provide effec-
tive variational behavior of the discretized kinetic energy op-
erator.

As outlined in the introduction, in this paper we focus on
an alternative approach, based on solving the eigenproblem
of the corresponding transition amplitudes as proposed in
�2�. The central equation is

�
m=−N

N−1

Anm�t��m���� = e−tE��,L,t��n���� , �6�

where Anm�t�=� ·A�n� ,m� ; t�=� · �n��e−tĤ�m��. In this ap-
proach the time of evolution t plays the role of an auxiliary
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parameter. This parameter is not related to the discretization,
and in a continuous theory it does not affect the obtained
eigenvalues and eigenstates. However, in a discretized theory
the numerically calculated eigenvalues and eigenstates will
necessarily depend on this parameter as well, as emphasized
by the right-hand size of Eq. �6�. Therefore, the original
problem is now transformed into the eigenproblem of the
matrix Anm�t�, whose indices take all integer values in the
range −N�n, m	N, where N= �L /��.

Figure 1 shows how a typical transition amplitude, in this
case that of a harmonic oscillator, depends on coordinates x
and y. As can be seen from the figure, transition amplitudes
are spatially well localized. This is particularly simple to
understand for the short times of propagation that we con-
sider. In this case the kinetic term exponentially localizes the
transition amplitude matrix to the vicinity of the main diag-
onal. Similarly, the potential brings about exponential local-
ization along the main diagonal around its minimum. The
localization of dominant values of the transition amplitude to
a small area in the x−y plane gives practical justification for
introduction of space cutoff L in this approach.

In continuum theory, the transition amplitude eigenprob-
lem is mathematically equivalent to the Schrödinger equa-
tion. It is important to stress, however, that the procedure of
space discretization introduces important differences be-
tween eigenproblems �4� and �6�. In particular, as we will
show in the next section, the procedure based on the diago-
nalization of transition amplitudes leads to much faster �non-
polynomial� convergence. An illustration of the relation of
these two calculation schemes is shown in Fig. 2 which com-
pares the exact parabolic dispersion of a free particle in a box
with numerical calculations based on the diagonalizations of
the Hamiltonian and of the transition amplitudes. From the
figure we see that the time parameter t in the transition am-
plitude approach plays an important role. Increase in t gives
better agreement with the exact dispersion relation.

III. DIAGONALIZATION OF SPACE-DISCRETIZED
TRANSITION AMPLITUDES

The free particle transition amplitude

Afree�x,y ;t� =
1

	2�t
exp�−

�x − y�2

2t
� , �7�

satisfies


 dxAfree�x,y ;t� = 1. �8�

The consequence of this is conservation of probability. In the
space-discretized analog of this model x=n�, y=m�, and
the transition amplitude is Anm

free�t�=�Afree�n� ,m� ; t�. Using
the Poisson summation formula

�
n�Z

exp�− 
n2� =	�



�
n�Z

exp�−
�2



n2� , �9�

we find that the space discretized free particle amplitude sat-
isfies

�
n�Z

Anm
free�t� = �

n�Z
e−2�2n2t/�2

� 1 + 2 exp�−
2�2

�2 t� .

�10�

Conservation of probability is thus obtained only in the con-
tinuum limit �→0. Note that the effect of discretization is
nonperturbative in discretization step �, i.e., it is smaller
than any power of �. The effect of discretization is also
universal in that it holds for all models, since the free particle
transition amplitude is the dominant term in the short time
expansion of the transition amplitude of a general theory.

To show this explicitly we use the short time expansion of
the transition amplitude of a general theory �6� to show that


 dxA�x,y ;t� =
1

	2�t

 dxe−x2/2t�

l

tlf l�x,y� , �11�

where f0=1 and the other f l are given functions of the po-
tential and its derivatives. Writing the even part of f l�x ,y� as
g�x2 ,y� we find
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FIG. 1. Harmonic oscillator transition amplitude as a function of
coordinates x and y for t=1, frequency �=1, and mass M =1.
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FIG. 2. �Color online� Eigenspectrum of a free particle in a box.
Eigenvalues Ek are given as a function of level number k. The solid
line gives the exact parabolic dispersion Ek=�2�k+1�2 /8L2, while
the dashed line presents results calculated in the tight-binding ap-
proximation. The graph also shows numerical results obtained by
the diagonalization of transition amplitudes for different values of
time of evolution t. All the numerical calculations are for L=6 and
�=0.25, hence N=L /�=24.
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 dxA�x,y ;t� =
1
	t

�
l

tlgl�2t2�t,y�	t . �12�

Similarly, using the above Poisson summation formula, we
find

�
n�Z

Anm�t� −
 dxA�x,y ;t�

=
2
	t

�
l

tlgl�2t2�t,y�	texp�−
2�2

�2 t� . �13�

Performing the indicated differentiations the right-hand side
becomes exp�− 2�2

�2 t� ·�lhl�y�tl. One could now calculate the
hl from the short-time expansions f l. The p-level effective
action gives a short time expansion that is truncated at order
tp. As a result �lhl�y�tl is a polynomial in time of order p.
The dominant short time behavior is thus given by the uni-
versal exponential term. As a result the transition of a general
model to its space discretized form is given by

�
n�Z

Anm�t� −
 dxA�x,y ;t� � exp�−
2�2

�2 t� . �14�

This universal and nonperturbatively small deviation from
the continuum indicates that one should center numerical
calculation schemes on transition amplitudes rather than the
Hamiltonian. By diagonalizing the transition amplitude for
any time of propagation t we obtain the energy eigenvalues
and eigenfunctions


 dyA�x,y ;t��k�y� = e−tEk�k�x� . �15�

To solve this numerically we first discretize space with dis-
cretization step �, and second we introduce a spatial cuttoff
L such that �x�	L. Amplitudes are now 2N�2N matrices
whose diagonalization leads to 2N eigenstates �k and eigen-
values e−tEk��,L,t�.

As we have seen, discretization introduces a nonperturba-
tively small error in transition amplitudes proportional to
exp�−2�2t /�2�. We should therefore expect the discretiza-
tion error for energy eigenvalues to be

Ek��,L,t� − Ek � −
1

t
exp�−

2�2

�2 t� . �16�

We have numerically investigated this for a diverse set of
models and have shown the above relation to hold in all
cases. It is also illustrative to verify this for analytically trac-
table models. Using the known analytical expressions for
transition amplitude and energy eigenstates for a free particle
in a box �21,22�, as well as the Poisson summation formula
in Eq. �9�, we find that the energy eigenstates of the space
discretized model satisfy

Ek��,L,t� − Ek = −
2

t
e−2�2t/�2

cosh��2�k + 1�t
L�

� , �17�

where Ek= �2�k+1�2

8L2 and k=0,1 ,2 , . . . As expected, the univer-
sal term gives the dominant � dependence. One obtains simi-

lar analytical results for the case of the harmonic oscillator.
The nonperturbatively small effect of spatial discretiza-

tion is the reason why the new method highly outperforms
direct diagonalization of the Hamiltonian and leads to much
smaller errors for the same size of discretization step �. In
addition to this the free parameter associated with the
method, the time of evolution t, can be used to further mini-
mize errors. As illustrated in Fig. 2, while keeping � fixed,
we can adjust time t to obtain much smaller errors and prac-
tically reproduce the exact spectrum of the theory. This is
also evident in Figs. 3�a� and 3�b�, where we see that by
adjusting t, errors can be reduced by orders of magnitude for
fixed value of discretization step �.

We next consider a harmonic oscillator. Figure 4 shows
how the presented method may be used to obtain energy
eigenvalues to high levels. The numerical calculations agree
well with the well known linear dispersion of the harmonic
oscillator. Figures 5�a� and 5�b� display, respectively, the �
and t dependence of the deviations �Ek�� ,L , t�−Ek�, showing
agreement with the analytically derived estimate of the dis-
cretization error given in Eq. �16�. In order to achieve such a
high accuracy of numerical results as presented on all graphs,
we have used the Mathematica software package �23�.
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FIG. 3. �Color online� �a� Plot of �E0�� ,L , t�−E0� for a free
particle in a box as a function of � for different values of time of
evolution t and L=6. For comparison, we also plot the correspond-
ing deviations of numerical results �designated by H� obtained us-
ing direct diagonalization of the space-discretized Hamiltonian, de-
fined by Eq. �5�. The inset gives a closer view of direct Hamiltonian
diagonalization errors, since they have much weaker dependence on
the spacing �. �b� This plot shows how the deviations �Ek�� ,L , t�
−Ek� depend on t for several energy levels k. The parameters used
are L=6, �=0.2. In both plots the dashed lines represent discreti-
zation error estimates given in Eq. �17�.
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Figure 5�b� shows how the deviations �Ek�� ,L , t�−Ek� de-
pend on t for several levels k. The plot corresponds to the
harmonic oscillator but is typical of a general theory. The
saturation of errors for large t comes about when the discreti-
zation error, given by the universal estimate in Eq. �16�, be-
comes smaller than the error due to space cutoff L. Analyti-
cal estimates for cutoff error are given at the end of this
section. At this point we just mention that the finite size
effects can already be seen in Fig. 4 where for high values of
level number k numerical results start to move away from the
linear dispersion characteristic of a harmonic oscillator to the
parabolic dispersion characteristic of a box potential.

So far we have considered only integrable models, i.e.,
models for which we know the exact transition amplitudes.
As a result we have thus far encountered and analyzed only
two sources of errors: those associated with discretization
step � and cuttoff L. The vast majority of models are not
integrable. The outlined method is still applicable if one uses
some approximation for calculating transition amplitudes. In
a previous series of papers we have used the method of ef-
fective actions to calculate short time expansions of transi-
tion amplitudes of a general theory to high-order p. For the
case of a general many particle theory in arbitrary number of
dimensions we have obtained closed form expressions for
expansions up to p=10. The analytical procedure is substan-
tially simplified for certain potentials. In particular, for poly-
nomial interactions we have obtained expressions to level
p=144. This high level of precision makes these short time
expansion formulas ideal for use in the method outlined in
this paper. Still, the diagonalization of approximate transition
amplitudes introduces a third source of error proportional to
tp.

The overall error is minimized when all three sources of
error are approximately equal. The key point is that we have
simple analytical estimates for all three errors. The universal
behavior of the discretization error substantially simplifies
the process by which one chooses the values of parameters
�, L, and t that minimize the overall error. The details of this
are presented in the follow up paper.

Figure 6 displays �E0�� ,L , t�−E0� as a function of dis-
cretization step � for the case of an anharmonic oscillator

with potential V= 1
2 M�2x2+ g

24x4. The parameters used in the
plot are L=6, �=1, M =1, and anharmonicity g=48. The
transition amplitude matrix elements were calculated using
p=18 effective actions �6�. The high precision value for the
exact ground energy that we compare to was calculated in
Ref. �24�. As we can see, even though we are dealing with a
relatively strong anharmonicity, the numerically calculated
values stay right on the dashed lines corresponding to the
universal discretization error just as in the case of the previ-
ously considered integrable models. This is in complete
agreement with our analytical derivation of the discretization
error. In the follow up paper we numerically investigate a
variety of different interacting models and in all cases docu-
ment the validity of this formula.

As can be seen from Fig. 6, the numerical results clearly
demonstrate that the � dependence of errors within our cal-
culation scheme highly outperforms the polynomial depen-
dence in �2 obtained by the direct diagonalization of the
Hamiltonian. This is true even for short times of propagation
t. Although interaction terms in the potential affect the nu-
merical values of errors, diagonalization of the transition am-
plitudes still substantially outperforms diagonalization of the
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FIG. 5. �Color online� �a� Plot of �E0�� ,L , t�−E0� for a har-
monic oscillator as a function of discretization step � for different
values of time of evolution t with L=12, �=1, and M =1. For a
comparison, we also plot the corresponding results �designated by
H� obtained using direct diagonalization of the space-discretized
harmonic oscillator Hamiltonian. The inset gives a closer view of
direct Hamiltonian results, since they have much weaker depen-
dence on the discretization step �. �b� Plot of the deviations
�Ek�� ,L , t�−Ek� given as a function of time t for several levels k.
The parameters used are L=12, �=0.1, �=1, and M =1. The ob-
served saturation of errors for large t comes about when the dis-
cretization error becomes smaller than the error due to space cutoff
L. In both plots the dashed lines correspond to the discretization
error estimate for E0 given in Eq. �17�.
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FIG. 4. �Color online� Harmonic oscillator dispersion relation.
The solid line gives the exact linear dispersion Ek=k+1 /2. The
points correspond to numerically calculated energy eigenvalues Ek

as a function of level k. We show the results of the diagonalization
of transition amplitudes for several values of t. In this plot L=12,
�=0.25, the frequency is �=1, and mass M =1.
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Hamiltonian and is the preferred method. This success is a
consequence of the nonperturbative behavior of the spatial
discretization error within this calculation scheme. This leads
us to the key conclusion that discretization parameters can be
always optimized so that presented approach of solving ei-
genvalue problem of space-discretized transition amplitudes
highly outperforms direct diagonalization of the space-
discretized Hamiltonian. The continuum limit �→0 is far
more easily approached in the first case and the correspond-
ing discretization errors are substantially smaller for the
same discretization coarseness. From the numerical point of
view, as the value of parameter � directly determines the size
of the matrix to be diagonalized, the computational cost for
the same precision is significantly reduced.

We end by looking at finite size effects, i.e., errors related
to introduction of space cuttoff L. For any theory with non-
trivial potential, the cutoff L is artificially introduced and it
affects the obtained energy eigenvalues, as we have already
discussed. To estimate the effects of the cutoff, we first note
that they are closely related to the spatial extent of the po-
tential V, as well as the spatial extent of eigenfunctions of the
system: errors in the corresponding energy eigenvalues can
be considered small only if the eigenstates �k�x� are well
localized in the interval �x�	L.

The effects of space cutoffs have been previously studied
for continuous-space theories �15,16�. The shift in energy
level Ek�L�−Ek is found to be positive in this case and ap-
proximately given by the formula

Ek�L� − Ek = Ck�a��

a

L dx

��k�x��2�−1

, �18�

where a is an appropriately chosen value of coordinate x
such that it is larger than and well away from the largest zero

of �k�x� but smaller than and well away from the space
cutoff L. The constant Ck�a� depends on the normalization of
eigenfunction and the choice of parameter a. For example,
the ground state has no zeros, and we can always choose the
value a=0. In that case, constant C0�0� is given by

C0�0� = �

−L

L

dx��0�x��2�−1

, �19�

where we assume that the eigenfunction �0�x� is normalized
as usual, �−�

� dx��0�x��2=1.
In practical applications, when we use diagonalization of

the discretized transition amplitudes, the errors in energy
level will necessarily also depend on the parameter t and
other discretization parameters. Here we give a simple esti-
mate of ground energy errors that follows from the spectral
decomposition of diagonal amplitudes. For large t we have
A�x ,x ; t����0�x��2e−E0t. Integrating this we find an approxi-
mate result for the ground energy of a system with cutoff L

E0�L,t� � −
1

t
ln


−L

L

dxA�x,x;t� . �20�

In the L→� limit we recover the exact ground energy, so
that a simple estimate of finite size effects on E0 is given by

E0�L,t� − E0 �
1

t



�x��L

dx��0�x��2. �21�

Although the above equation is just a rough estimate of the
errors introduced by a space cutoff L, Fig. 7 shows that it is
in good agreement with numerical results for the harmonic
oscillator. In order to clearly demonstrate L dependence of
errors in this graph, we have used small value of the discreti-
zation step �, such that discretization errors can be ne-
glected. The dashed line in the figure represents error esti-
mates given by Eq. �18�.

Using the data from Fig. 7 we can now fully explain the
saturation of errors observed in Fig. 5�b�. The value of the
cutoff L used to obtain this data was L=12. As can be seen
from Fig. 7, this value of the cutoff parameter yields an error
of the order 10−63 for the ground-state energy for t�0.1, and
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2 M�2x2+ g
24x4 given as a func-

tion of � for different values of time of evolution t. The parameters
used are L=6, harmonic frequency �=1, mass M =1, and anharmo-
nicity g=48. Transition amplitude matrix elements were calculated
using p=18 effective actions �6�. The high precision value for the
exact ground energy that we compare to was calculated in Ref. �24�.
Dashed lines correspond to the discretization error in Eq. �17�. For
comparison, we also plot the corresponding deviations of numerical
results �designated by H� obtained using direct diagonalization of
the corresponding space-discretized Hamiltonian. The inset gives a
closer view of direct Hamiltonian diagonalization errors, since they
have much weaker dependence on the discretization step �.
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of the order 10−40 for energy eigenlevel E14. These values
exactly correspond to the saturated errors in Fig. 5�b�.

Although in the general case the eigenstates that come
into Eqs. �18� and �21� are not known, we can still use them
in conjunction with other approximation techniques to esti-
mate finite size effects. We also see that, due to the larger
spatial extent of higher-energy eigenstates, the cutoff-related
errors are minimal for the ground energy. Note however that
one is not really interested in the precise calculation of finite
size errors, but only needs to estimate the minimal size of the
cutoff L for which finite size effects are negligible. For that
purpose one can use either of the above approximate
formulas.

IV. CONCLUSIONS

The current paper is the first in a series of two publica-
tions dealing with the properties of quantum systems calcu-
lated from the diagonalization of transition amplitudes. In
this paper we have focused on analyzing the errors associ-
ated with real-space discretization and finite-size effects. In
particular, we have shown that within this calculation scheme
spatial discretization leads to a universal and nonperturba-
tively small discretization error. This highly outperforms the
usual polynomial behavior of errors in approaches based on
the diagonalization of space-discretized Hamiltonians. In ad-

dition to providing a full understanding of the numerical
method based on diagonalization of the evolution operator,
we have also derived analytical estimates for all the errors
involved within this approach. In practical applications, the
derived analytical results make it possible to optimize pa-
rameters of the method so as to minimize errors in calculated
energy eigenvalues and eigenstates in the case of a general
theory.

The second paper in the series �1� builds on these results,
extending them through systematic improvement of short-
time propagation using the effective action approach �6�.
This effectively solves the problem of the accurate calcula-
tion of evolution operator matrix elements and significantly
reduces errors related to the time of evolution parameter.
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