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We present an algorithm for performing rigid-body Brownian dynamics that can take into account the
hydrodynamic properties �translational and rotational friction tensors and the coupling between them� of each
rigid body. In the zero temperature limit, the error term scales as �4 for time step �, while at nonzero
temperatures the error scaling is �5/2. We test the algorithm by applying it to a molecule of four-aminopyridine
in water. We intend to use the algorithm to model the interaction between biological ion channels and other
channel blocker molecules, but it may also have applicability to modeling other small particles such as colloids
or nanoparticles.
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I. INTRODUCTION

In this paper, we present an algorithm for performing
rigid-body Brownian dynamics. No spatial symmetries are
assumed in either the rotational or frictional specification of
the body. In addition, hydrodynamic terms that link the six
rotational and translational degrees of freedom of each body
may be taken into account through the appropriate specifica-
tion of the friction tensor for that body.

In the zero-temperature limit, the algorithm shows the
same O��4� error propagation and time reversibility as com-
monly used algorithms such as the velocity Verlet algorithm
�1�, to which our algorithm is closely related. At nonzero
temperature, the addition to the algorithm of stochastic terms
increases the local error at each step, which now scales as
O��5/2� �in Appendix B, we show how an error O��7/2� al-
gorithm could be developed�. This still compares favorably
with the O��3/2� scaling of the commonly used Euler algo-
rithm �2�. Note that such stochastic error terms might be
expected to exhibit better weak error scaling �i.e. scaling of
the probability distribution as a function of time� than they
do strong scaling �i.e. scaling of individual paths for a given
realization of Brownian motion, as treated here� �3�. See also
Greiner et al. �4� for a detailed treatment of error scaling.

We demonstrate the viability of the algorithm as well as
the error scaling by simulating the motion of a small ion-
channel-blocker molecule �four-aminopyridine �4-AP�� un-
der various test conditions.

Fernandes and de la Torre �5� have previously published a
rigid-body Brownian dynamics algorithm that works in the
diffusive limit, where the momentum terms are neglected.
This algorithm was later improved by Beard and Schlick �6�,
who showed how biases introduced in the rotational motion
could be removed. In the diffusive limit, the bodies undergo
a directed random walk in which the position at the next step
in the algorithm is independent of velocity. This limit is valid
on timescales that are longer than those of the velocity auto-
correlation functions; typically between 10 and 100 fs in the
kinds of molecular-scale systems that we are interested in

here. Although these timescales are appropriate for many
types of Brownian-dynamics simulations, if the forces in the
system fluctuate on shorter time scales, then it may be useful
to go beyond the diffusive limit �7�. For example, in our
experience with modeling biological ion channels, we have
found that employing Langevin dynamics, rather than diffu-
sive Brownian dynamics, can lead to a more realistic simu-
lation within the confined spaces of the ion-channel vesti-
bules and pores �8�. �In fact, there is some suggestion �9,10�
that, in cases involving narrow barrier crossings, memory
effects may play a role, and that therefore it might be appro-
priate to go further and use the generalized Langevin equa-
tion�. This use of shorter timescale Langevin dynamics in ion
channels and other similar cases can also help to avoid the
problems caused by unphysical collisions, or by the system
moving into regions of extremely high potential due to a
large time step. Therefore, it also seems desirable to have
available rigid-body Langevin algorithms that go beyond the
diffusive limit.

Recently, Sun et al. �11� have presented such a Langevin
dynamics algorithm for rigid bodies that makes use of the
operator splitting techniques used in the nonstochastic algo-
rithm of Dullweber et al. �12� The nondissipative parts of the
motion are treated in a time-symmetric manner that acts to
reduce the error by an order, as per the velocity Verlet algo-
rithm. The treatment of the rotation automatically preserves
the determinant of the rotation matrix, which may be advan-
tageous �12�. As well as employing a somewhat different
mathematical framework, our algorithm employs an implicit,
iterative scheme, under which the frictional terms gain an
extra order of accuracy. Likewise, we consider higher order
terms in the random forces.

Our work is closely related to the rotational algorithm of
Omelyan �13�, but with the addition of Brownian motion. In
the frictionless limit, the algorithm essentially reduces to the
velocity-Verlet equivalent of Omelyan’s rotational leapfrog
algorithm, plus the usual velocity Verlet algorithm for the
translational motion. Adding frictional and random forces
complicates the analysis, firstly by the fact that additional
frictional and stochastic terms must be considered, and sec-
ondly by the fact that hydrodynamic interactions can couple
translational and rotational degrees of freedom.

Also relevant is the algorithm of Ermak and McCammon
�14�, who have considered an arbitrary collection of interact-
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ing spherical particles, with a hydrodynamic coupling ap-
plied between the translational coordinates of the particles.
Typically, composite bodies are modeled as a collection of
spheres held together by a potential or using a constraint
algorithm. This algorithm has been used to simulate ion-
channel-blocker systems similar to the ones we are interested
�15�. Dickinson et al. �16� have extended the theory to in-
clude the rotational motion of the spherically symmetric par-
ticles. Our algorithm, in contrast, models rigid bodies as
monolithic objects having three translational and three rota-
tional degrees of freedom. The hydrodynamic frictional and
random tensors in our model couple together these six de-
grees of freedom for each rigid body; we do not consider the
hydrodynamic coupling between two or more rigid bodies
�17�. Of course, the bodies will typically be coupled together
using an ordinary potential. These differences, between our
model and the interacting spherical particle hydrodynamics
models �14,16�, mean that they will have somewhat different
domains of applicability. Our model is less general, in that it
would be poorly suited to modeling highly flexible mol-
ecules or tight complexes of molecules, or to predicting the
hydrodynamic properties of composite bodies based on
atom-scale parameters. It is, however, very well suited to
modeling the motion of possibly large, quite rigid molecules
at concentrations that are not too great, where the hydrody-
namic properties of the molecule as a whole �coupled rigid-
body hydrodynamic friction� are known or calculated in ad-
vance. This very well suits our aim, which is to model the
interactions between channel blockers and biological ion
channels.

Finally, our algorithm stands in contrast to the constraint
algorithms commonly used in molecular dynamics �18�,
which enforce bond-length and bond-angle constraints
through an iterative procedure. While this is most appropri-
ate for treating small molecules �such as water� in molecular
dynamics, we choose to use a geometric treatment of the
rigid-body motion, firstly to avoid complications brought
about by the use of internal coordinates and the need to avoid
performing multiple redundant calculations, and secondly to
provide a more direct link to rigid-body hydrodynamic fric-
tion tensors.

While we have developed our algorithm with a view to
modeling the interactions between biological ion channels
and “channel blocker” molecules, it is possible that it could
be applied to modeling other small particles in a fluid, such
as colloidal particles, liquid crystals or nanotechnology, al-
though this would require demonstration.

The geometric algebra paradigm �see Appendix A� is used
throughout the derivations, providing a comprehensive and
appropriate framework within which to work. Much of the
following notation and discussion makes use of material in
the book “Geometric Algebra for Physicists” by Doran and
Lasenby �19�, to which the reader is referred.

II. SPATIAL FRAMEWORK FOR RIGID-BODY
COMPUTATIONAL DYNAMICS

In the following section, we derive an equation of motion
for a rigid body moving under the influence of external

forces. In order to fully orient a rigid body in space, we need
to specify the location of a point in the body �say, the center
of mass�, and the rotational orientation R of the body relative
to this point. We define a “body reference frame” as the
frame whose origin is the center of mass of the body, and
whose axes are fixed relative to the body. We will generally
prefer to use this body reference frame, so points in the labo-
ratory frame will be distinguished by the addition of an apos-
trophe, e.g. y�. The body’s location and orientation in the
laboratory frame are then specified by the center of mass, x�,
and the rotor R �see Appendix A� that rotates the body from
the body reference to the laboratory frame. If y� is a point in
the body in the body reference frame, then

y� = RyR† + x�,

y = R†�y� − x��R .

In this scheme, there are seven parameters and six degrees of
freedom. There are three parameters for the center of mass of
the body, and four for the rotation R. There are only three
degrees of freedom for the four parameter object R because
of the normalization condition on R.

A. Rotational dynamics

Our starting point for deriving the rotational dynamics is
the rotor equation, which relates the rate of change of R to
the instantaneous angular velocity ��. In the context of geo-
metric algebra, angular velocity is usually viewed as a bivec-
tor, related to the familiar �axial vector� angular velocity �
by �= I� �20�.

The rotor equation, which can be derived by taking the
time derivative of the equation for the rotation of an arbitrary
vector �y�t�=Ry�0�R†�, is

Ṙ = −
1

2
��R , �1�

or, rotating �� to the body reference frame, we have

Ṙ = −
1

2
R� . �2�

Note that � is some function of t, which needs to be speci-
fied in order to derive any dynamics. The rotor equation is
analogous to the equation ẋ=v, but differs in that the deriva-

tive Ṙ explicitly depends on the position variable R as well
as the velocity variable �.

From basic mechanics, we know that the rate of change of
angular momentum is equal to the torque, analogous to f
= v̇. In the language of geometric algebra, we have

N� = L̇�. �3�

where N��x� ,R� is a bivector representing the torque about
the instantaneous center of mass x� as a function of the po-
sition and orientation of the body, and L� is a bivector rep-
resenting the angular momentum of the body about the in-
stantaneous center of mass. If the constituent particles of the
body have coordinates yi�, with corresponding body refer-
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ence coordinates yi and corresponding masses mi, then

L� = � mi�yi� − x�� ∧ ẏi�

= � mi�yi� − x�� ∧ ��yi� − x�� · �� + ẋ��

= R�� miyi ∧ �yi · ���R†. �4�

In deriving the final equality, the term involving x� disap-
pears because it is proportional to the center of mass in the
body reference frame, which is the origin. The term in brack-
ets is a bivector that depends only on � and on the yis, which
are fixed. It can, therefore, be represented as a constant ten-
sor i.e. a linear map from bivectors to bivectors:

L = I��� . �5�

I��� gives the angular momentum for a given angular ve-
locity of the reference body.

If the reference body is chosen so that its principal axes
correspond to the basis vectors ei, then I will be diagonal;
that is, its basis expansion will be of the form

I�Iei� = IiIei, �6�

and we can define an inverse I−1 as

I−1�Iei� =
1

Ii
Iei. �7�

From Eqs. �3� and �5� we therefore have

N��x�,R� = L̇�

= R�I��̇�R† + ṘI���R† + RI����Ṙ†

= R�I��̇� −
1

2
��,I����	R†,

N�x�,R� = I��̇� −
1

2
��,I���� , �8�

where the third line follows from the rotor equation, Eq. �2�,
and we have introduced the commutator product �A ,B�
ªAB−BA. Therefore,

�̇ = I−1�N�x�,R� +
1

2
��,I����	 , �9�

which defines the body reference angular acceleration �̇ as a
function of R and �. The first term is a force divided by
mass term, and the second is a geometric term, like the Co-
riolis force.

In components, the equations of motion can, therefore, be
written as

�̇n = an�x�,R� + bnml�m�l, �10�

Ṙn = cnmlRm�l, �11�

where

an�x�,R� ª
1

In
N�x�,R� , �12�

bnml ª
Im

In
�nml, �13�

cnmlRm�l = −
1

2
�R��n, �14�

define the angular acceleration an and the tensors bnml and
cnml.

B. Center of mass dynamics

It can be shown that the center of mass of the body obeys
Newton’s laws for a point particle:

v̇� = a��x�,R� =
1

m
f��x�,R� , �15�

ẋ� = v�, �16�

where m is the total mass of the body and f��x� ,R� is the
total external force:

f��x�,R� = �
i

fi��yi��x�,R�� , �17�

with fi� being the external force on the ith particle as a func-
tion of its position yi�. Obviously, we do not consider forces
between the individual particles in the body, firstly because
the body is rigid, and secondly because such forces do not, in
any case, affect the center of mass motion.

When we later come to add frictional and random forces
to this equation, we will find it easiest to transform v� into
the body reference frame. Recalling that v=R†v�R, and using
the rotor Eq. �2�, we find

v̇ = Ṙ†v�R + R†v̇�R + R†v�Ṙ

=
1

2
�v + a�x�,R� −

1

2
v�

= a�x�,R� +
1

2
��,v� , �18�

in complete analogy to Eq. �9�.
The equation for ẋ� is accomplished by a simple rotation:

ẋ� = RvR†. �19�

In components, these equations are:

v̇i = ai�x�,R� + bijnv j�n, �20�

ẋi� = dinmjRnRmv j , �21�

where

bijn ª �ijn, �22�

dinmjRnRmv j = �RvR†�i, �23�

define the tensor bijn and the rotation tensor dinmj.

III. RANDOM AND FRICTIONAL FORCES

The effects of a surrounding, implicit medium can be
taken into account by introducing random and frictional
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forces to Eqs. �16� and �9�. Consider an irregularly shaped
object. It will experience the usual translational frictional
force as it moves through the medium, and rotational friction
as it spins. In addition, translational motion can exert a
torque, and conversely, rotation of the object can exert a
translational force, as would be the case for a propeller-
shaped object. Other coupling forces can be present, for ex-
ample lift forces where a translational velocity in one direc-
tion can give rise to translational forces in a different
direction. Finally, an angular velocity about one axis can
give rise to a torque about a different axis. These forces can
be encapsulated in a hydrodynamic frictional acceleration
tensor, which resembles a tensor version of the usual scalar
friction coefficient used for spherically symmetric particles,
except that the six degrees of freedom may be coupled to-
gether. In order to develop a general algorithm, we will not
make any assumptions about the frictional acceleration ten-
sor.

At this point, the reason for writing the translational ve-
locity in the reference frame of the object becomes apparent.
For an irregularly shaped object moving in a given direction,
the friction will depend on the orientation of the object rela-
tive to that direction. However, if we measure the friction in
the reference frame of the body, the friction can no longer
depend on the orientation, as the orientation of the reference
object is fixed. This simplifies the analysis, but at the cost of
adding additional geometric terms, namely, the commutator
terms in Eqs. �9� and �18� that need to be added to the equa-
tions of motion to account for the continuous change of basis
that occurs as the particles move.

We begin by writing combined generalized position and
velocity variables:

X = �x�,R� , �24�

V = �v,��, . �25�

A. Rotational stochastic equation (the Euler-Langevin
equation)

The rotational equations Eqs. �10� and �11� can be modi-
fied by adding frictional and random torques. The equation
we arrive at for � is essentially the Euler-Langevin equation,
with some additional coupling to the translational degrees of
freedom. In order to employ the tools of stochastic calculus
�21�, we work in differential form for the equations of mo-
tion.

d�n = �an�X� + bnml�m�l − �n�V��dt + sn�dW� �26�

where �n� is the frictional acceleration tensor, sn� is the
random acceleration tensor, and the W��t�’s are uncorrelated
Wiener processes i.e. W��0�=0 and �W��t�−W��t��� obeys
the normal distribution with mean 0 and variance �t−s�.

The equation for R, Eq. �11�, is still the unchanged rotor
equation:

dRn = cnmlRm�ldt . �27�

B. Center of mass stochastic equation (the Langevin equation)

To Eq. �20� we add frictional and random forces:

dvi = �ai�X� + bijnv j�n − �i�V��dt + si�dW�. �28�

This is essentially the Langevin equation, but with coupling
to the rotational degrees of freedom via the frictional and
random forces. �i� is a frictional acceleration tensor. Note
that the translational frictional force can depend on both the
translational and rotational velocities. si� is a tensor that
scales the strength of the random force. We shall see below
that � and s are related by the fluctuation-dissipation theo-
rem.

The equation for dx�, Eq. �21�, is unchanged:

dxi� = dinmjRnRmv jdt . �29�

C. Combined equations

Comparing Eq. �26� with Eq. �28� and Eq. �27� with Eq.
�29�, we see that there are many similarities. In order to
simplify the analysis, we can write combined equations of
motion:

dV� = �a��X� + b��nV�Vn − ���V��dt + s��dW�, �30�

dX� = �c�nmXnVm + d�nmjXnXmVj�dt . �31�

Remember that the indices i , j ,k range over the translational
degrees of freedom, the indices n ,m , l range over rotational
degrees of freedom, and the indices � ,� ,� range over both.
The externally applied acceleration and angular acceleration
is a, b is defined by Eqs. �13� and �22� for rotational and
translational variables respectively, � and s are the general-
ized friction and random force tensors, c is defined by Eq.
�14�, and d is defined by Eq. �23�.

This is a convenient point, at which to introduce the fric-
tional force tensor, 	,

	�� = M����, �32�

and the random force tensor, u,

u�� = M�s��. �33�

M� are the generalized mass/moment of inertia components,
equal to the mass of the body for translational coordinates
and to the moments of inertia I� for rotational coordinates.
Note that, unlike the corresponding acceleration tensors �
and s, 	 and u are symmetric tensors.

D. Measuring the frictional force tensor

In theory, it should be possible to use simulation, such as
molecular dynamics, to calculate the friction tensor �22�.
However, in reality, the multiple degrees of freedom for mol-
ecules of arbitrary shape make this computationally prohibi-
tive. Instead, hydrodynamic calculations may be employed.
For example, a program, HYDROPRO �23�, is available for
free download �24�. It uses hydrodynamics to calculate the
friction on a body specified that is specified by atomic coor-
dinates. It outputs a diffusion tensor D, which can easily be
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transformed into the frictional force tensor 	 by applying
Einstein’s relation,

	�� = kT�D−1���. �34�

We use results obtained from HYDROPRO, applied to the four-
aminopyridine molecule, in our numerical example.

E. Fluctuation dissipation relations

The second fluctuation-dissipation �22� theorem allows us
to relate the frictional force tensor 	 to the random force
tensor u. We find

u��u�� = 2kT	��. �35�

In practice, we will usually know the frictional force ten-
sor 	 but not the random force tensor u. In order to obtain the
latter, we need to numerically solve Eq. �35�, which is a
matrix equation of the form AAT=B. The solution is not
unique, and a triangular matrix for u can be obtained by
Cholesky decomposition �25�.

IV. A STOCHASTIC ALGORITHM FOR RIGID-BODY
BROWNIAN DYNAMICS

Below, we give a derivation of an algorithm for rigid-
body Brownian dynamics. The algorithm is most closely re-
lated to the popular velocity Verlet algorithm �1�. Stochastic
forces are included, and are treated using stochastic calculus.
The inclusion of velocity-dependent frictional and rotational
terms makes it necessary to solve an additional system of
equations at each step, similar to Omelyan �13�. This is done
relatively simply by a process of iteration.

In Appendix B, we give a sketch of a slightly more com-
plicated algorithm, which provides a better error scaling for
the stochastic terms. However, we have not implemented the
more complicated algorithm in our numerical tests.

In the derivations below, we use the following notation in
order to make our equations more compact: For a function

f�V�t� ,X�t� , t� we write �f�t�ª f�V�t�� ,X�t�� , t�� and �f�t�
t�

ª �f�t�− �f�t� �the latter form being the same notation often
used in the evaluation of definite integrals�.

A. Preliminary theory: Stratonovich stochastic Taylor series

Our algorithm will be developed by using Taylor expan-
sions of the stochastic differential equations of motion Eqs.
�30� and �31�. As stochastic calculus is most easily presented
in integral form, we use the Stratonovich Taylor expansion
�26�, which is summarized below in a form relevant to our
algorithm.

Consider a system of equations of the form:

dV� = g��V,X�dt + s��dW�, �36�

dX = h��V,X�dt , �37�

where V and X are functions of t. We define operators L1 and
L2� such that

L1 = g��V,X�
�

�V�

+ h��V,X�
�

�X�

, �38�

L2� = s��

�

�V�

. �39�

Then, by applying the chain rule of calculus �which is also
valid for the Stratonovich stochastic integral�, we find that,
for any function F�V ,X�, we have

dF = L1Fdt + L2�FdW�, �40�

Or, in integral form �using the notation described above�:

�F�b = �F�a + D1 + D2, �41�

where we define the remainder terms D1 and D2 by

D1 = 

a

b

dtL1F ,

D2 = 

a

b

dW�L2�F .

This expansion can be iterated. So for example, by expand-
ing the integrands in the expression above in the same man-
ner, we arrive at a second-order series:

�F�b = �F�a + C1 + C2 + D11 + D12 + D21 + D22, �42�

where

C1 = �L1F�a

a

b

dt ,

C2 = �L2�F�a

a

b

dW�,

D11 = 

a

b

dt

a

t

dt�L1
2F ,

D12 = 

a

b

dt

a

t

dW��L2�L1F ,

D21 = 

a

b

dW�

a

t

dt�L1L2�F ,

D22 = 

a

b

dW�

a

t

dW��L2�L2�F .

The C�s are defined to be those terms where the final inte-
grand is a constant, due to the first term on the RHS of Eq.
�41� that can be moved out of the integral. The D�s are
remainder terms, where the final integrand is an implicit non-
constant function of time, resulting from the second and third
terms on the RHS of Eq. �41�. The subscript 1 indicates an
integration over time, and the subscript 2 indicates an inte-
gral over Brownian motion.
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By systematically repeating such expansions, we can eas-
ily write down the expression for the Taylor series of any
order. The order of error of the remainder terms can be de-
termined by noting that each integral over t contributes a full
order and each integral over W contributes half an order. So
for example, the D12 term is O��3/2�.

B. Algorithm

Finally, we are ready to describe the algorithm itself. Our
starting point for the algorithm is the combined translational
and rotational equations of motion, Eqs. �30� and �31� de-
rived in the previous sections. In order to simplify the analy-
sis, we write these equations of motion for a single rigid
body in general form as

dV� = g��V,X�dt + s��dW�, �43�

dX = h��V,X�dt , �44�

where X and V are the generalized position and velocity vari-
ables, defined in Eqs. �24� and �25�, and we have defined

g��V,X� ª a��X� + b��nV�Vn − ���V�, �45�

h��V,X� ª c�nmXnVm + d�nmjXnXmVj . �46�

We will also find it useful to know the following partial
derivatives of g and h:

�g�

�V�

= �b��n + b�n��Vn − ���, �47�

�h�

�V�

= c�n�Xn + d�nm�XnXm, �48�

�h�

�Xn
= c�nmVm + �d�nmj + d�mnj�XmVj . �49�

Recall our rule that the indices i , j ,k range over the transla-
tional degrees of freedom, the indices n ,m , l range over the
rotational variables freedom, and the indices � ,� ,� range
over both. There are three translational and three rotational
degrees of freedom for the generalized velocity variables V,
and three translational and four rotational degrees of freedom
for generalized position variables X, since one of the rota-
tional degrees of freedom is redundant. Finally, recall the
definitions of the various tensors: a��X� is the generalized
force-torque term, b��n describes geometric effects resulting
from the change of basis as the particle moves �see Eqs. �13�
and �22��, � is the frictional acceleration tensor, which may
couple together the six degrees of freedom of the generalized
velocity, s is the random acceleration tensor, related to � as
described in Sec. III, c parametrizes the rotor equation, in
tensor form, see Eq. �14�, and d parametrizes a rotation de-
scribed by a rotor R, see Eq. �23�.

Note that we can easily write down expressions for any
derivative of g that involves V, and for any derivative of h,
because these functions are polynomials in X and V. We wish
to avoid calculating X only derivatives of g, because this

would involve multiple force evaluations of a, which has
proved to be inefficient in typical simulations �22�. In prac-
tice, such evaluations turn out not to be required in the algo-
rithm.

We assume that at the current time step, t=0, we know X
and V. We derive the new values for these quantities at time
t=�. The usual velocity Verlet algorithm is accurate to an
error tolerance of O��4� in position. �In fact, the story is a bit
more complicated than that: the error at each time step is
O��3�, but the �3 terms cancel at alternate time steps.� Due
to the presence of the stochastic terms, we are unable to
maintain this accuracy without increased complexity in the
algorithm. However, we work to an accuracy such that, in the
limit where the frictional and random forces approach zero,
this O��4� accuracy is regained. In order to keep track of the
error for both stochastic and nonstochastic versions of the
algorithm, we use the special notation O��n ,�m� where
O��n� is the error for the stochastic algorithm and O��m� is
the error for the nonstochastic algorithm.

The steps in the algorithm are summarized below:
�1� Begin with initial generalized positions and velocities,

�X�0 and �V�0.
�2� Generate random variables W and Y, as explained in

Sec. IV B 4.
�3� Evaluate g and h, using Eqs. �45� and �46�, and the

relevant partial derivatives, using Eqs. �47�–�49�.
�4� Use the values from steps 1–3 to propagate X to the

next time step, �X��, as explained in Sec. IV B 1.
�5� Evaluate the new potential, �a�X���.
�6� Use the values from steps 1–5 to define the coeffi-

cients of the nonlinear equation for V, as explained in Sec.
IV B 2.

�7� Solve this equation for V by iteration as explained in
Sec. IV B 3.

�8� Update variables to the new time step and repeat from
step 1.

1. Equation for X

We first calculate �X�� from �X�0 and �V�0. We work to an
error tolerance of O��5/2 ,�3� �see above�. In fact, we can
relatively easily carry the expansion further and derive terms,
involving stochastic processes such as twice integrated
Brownian motion, to achieve an error of O��7/2 ,�3� �see
Appendix B�, but in practice we prefer to utilize the simpler,
lower order expressions given below.

Performing a stochastic Taylor expansion of X, Eq. �44�,
as described in Sec. IV A, we find that

�X��� = �X��0 + C1 + C11 + C12 + O��5/2,�3� , �50�

where

C1 = �h��0� , �51�

C11 = �g�

�h�

�V�

+ hn
�h�

�Xn
�

0

�2

2
, �52�
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C12 = s��� �h�

�V�
�

0
�Y��0

�, �53�

where these expressions can be evaluated by substituting
from Eqs. �45�–�49�. We define Y as integrated Brownian
motion:

�Y�a
b
ª 


a

b

dt�W�a
t , �54�

for Brownian motion defined as

�W�a
b
ª 


a

b

dW . �55�

We have not indicated terms in the expansion that turn out to
be zero: C2. . . are all zero because there is no stochastic term
in Eq. �44�. Also, the stochastic term C122, which would have
error O��2�, is zero because �2h� /dV�dV�=0. All other non-
zero terms in the expansion that are not explicitly indicated
are part of the error term. Combining the terms in the expan-
sion gives:

�X��� = �h��0� + �g�

�h�

�V�

+ hn
�h�

�Xn
�

0

�2

2
+ s��� �h�

�V�
�

0
�Y��0

�

+ O��5/2,�3� . �56�

2. Equation for V

If the substitutions Eqs. �45�–�49� are made in Eq. �56�,
then it will be seen that in order to emulate the accuracy of
the usual Verlet algorithm, we require values for �V�0 up to
error O��3/2 ,�3�. Therefore, having derived �X��, we now
derive �V�� to this accuracy.

We perform an integration that is reminiscent of the ve-
locity Verlet algorithm. Performing stochastic Taylor expan-
sions from �V��/2 to �V�� and from �V��/2 to �V�0, and sub-
tracting the two series, we arrive at the following expression:

�V��� = �V��0 + C1 + D2 + O��3/2,�3� , �57�

where,

C1 = �g���/2� , �58�

D2 = s���W��0
�, �59�

where Eq. �45� defines g. Combining these terms and substi-
tuting from Eq. �45�, we have

�V��� = �a���/2 + b��n�V�Vn��/2 − ����V���/2 + s���W��0
�

+ O��3/2,�3� . �60�

3. Solving the nonlinear equation for V

There is an added complication here, as Eq. �60� requires
the half time step quantities �a���/2 and �V���/2 to
O��1/2 ,�2� in order to satisfy these conditions. We find that

�a���/2 =
1

2
��a��0 + �a���� + O��3/2,�2� , �61�

and also that

�V���/2 =
1

2
��V��0 + �V���� + O��1/2,�2� , �62�

which leads to the following expression for V:

�V��� = �1

2
�a��0 +

1

2
�a��� +

1

4
b��n�V�Vn�0 −

1

2
����V��0	�

+ s���W��0
� + �1

4
�b��� + b�����V��0 −

1

2
���	��V���

+
1

4
b��n��V�Vn�� + O��3/2,�3� . �63�

Note that the RHS of this expression contains terms linear
and quadratic in the unknown, �V��. We must perform an
extra step to solve this equation for �V��. Following the
method used for the leapfrog algorithm in �13�, the equation
is solved by iteration, using the first order approximation
defined by setting �V��→ �V�0 as an initial guess. So long as
� is not too large, the solution is found to converge rapidly,
usually within around 2–11 iterations.

4. Random variables

In the expressions above, we encounter the following ran-
dom variables:

�W�0
�
ª 


0

�

dW Brownian motion, �64�

�Y�0
�
ª 


0

�

�W�0
t dt Integrated Brownian motion.

�65�

�W�0
� is a Gaussian random variable with mean zero and

variance �. �Y�0
� is also a Gaussian random variable, with

mean zero and variance �3 /3. The two are not independent.
Their covariance is


�W�0
��Y�0

�� =
�2

2
. �66�

We can generate these variables �see Kloeden and Platen
�27�� by first generating two independent random variables
U1 and U2 from N�0;1� and then setting

�W�0
� = U1

�� ,

�Y�0
� =

1

2
�3/2�U1 +

1
�3

U2� . �67�

C. Multiple bodies

The interaction via a potential between multiple rigid bod-
ies, or a set of rigid bodies and a set of point particles, can be
handled simply treating each body separately, except that the
force a�X� will now depend on the coordinates of all the
bodies rather than just a single body �typically, such interac-
tions might be simplified by considering only two-body in-
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teractions�. One can see this by considering the fact that, if
the bodies only interact via a potential, the only coupling
between bodies will be due to the term a�X�. However, the
position at the completion of a time step depends only on
a�X� at the beginning of the time step, and does not involve
any derivatives of a. In other words, all we need is the multi-
body force evaluated at the beginning of each time step, and
then we can calculate the positions of all the particles at the
end of the time step, which will allow us to evaluate the new
force for the next time step and so on.

V. COMPUTATIONAL EXAMPLE

We have tested the algorithm by simulating the motion of
a molecule of 4-AP �H2NC5H4N�, which is a small ion chan-
nel blocker used to characterize potassium channels and in
the treatment of multiple sclerosis. The molecular coordi-
nates of 4-AP are extracted from the Research Collaboratory
for Stuctural Bioinformatics �RCSB� protein data bank entry
1AEG �28�. The molecule is then rotated to its principal
axes. The principal moments of inertia of the molecule are
�Ix , Iy , Iz�= �89,195,284� Å2u. The diffusion tensor is deter-
mined using the HYDROPRO program �23�, and is shown in
Table I above. Atomic coordinates and masses, and the dif-
fusion tensor, are used as input to the simulation, which is
performed at a temperature of 300 K.

There is actually a separation in timescales inherent in
this particular diffusion tensor. The average fitted decay time
of the autocorrelation function for the three translational co-
ordinates is 58.8 fs, whereas for the three rotational coordi-
nates it is 4.5 fs. The mean free rotational time is therefore
about an order of magnitude smaller than the mean free
translational time, and therefore we must work at the rotation
timescale. We have verified that the algorithm functions un-
der these conditions, but they do not provide a good test
case, as the translational motion will be simulated on a
shorter timescale than would normally be the case. In order
to provide a better test of both the translational and rotational
parts of the algorithm working together, as well as to im-
prove the efficiency of the algorithm under these conditions,
while still essentially simulating the real 4-AP molecule, we
have done a “temperature rescaling” of the rotational degrees
of freedom. Referring to Eq. �34�, the frictional acceleration
tensor 	 is divided into blocks 	tt, 	tr, 	rt, and 	rr �with t
indexing the translational and r the rotational degrees of free-

dom�, which are modified by setting 	tr→�
	tr, 	rt→�
	rt
and 	rr→
	rr, where 
 is a scaling factor. Similarly, refer-
ring to Eq. �35�, the frictional acceleration u is modified by
setting utr→�
utr, urt→�
urt and urr→
urr. These trans-
formations can be seen, referring to Eqs. �34� and �35� to
amount to a decrease in T for the rotational degrees of free-
dom only, while keeping D �and, therefore, the RMS trans-
lational and angular distance diffused in a given time� con-
stant. For the example considered here, we use 
=0.1. Under
the rescaled parameters, we use a time step of 5 fs, which
seems to give good performance.

The results of simulating the free evolution of the mol-
ecule are shown in Fig. 1. The center of mass and rotational
orientation of the molecule diffuse randomly from their start-
ing values.

We check that the equipartition theorem holds by plotting
the time averaged translational and rotational kinetic ener-
gies as the simulation progresses, see Fig. 2. The average
translational and rotational kinetic energies do indeed appear
to converge to �3 /2�kT, as predicted by the equipartition
theorem.

As a further test, we check that the velocity autocorrela-
tion functions for the various degrees of freedom are consis-

TABLE I. The diffusion tensor, D, of a molecule of four-aminopyridine.

Dtt��10−10 m2 s−1� Dtr��10−3 m s−1�

4.787 −0.048 0.047 1.632 1.701 0.314

−0.048 4.594 0.034 1.701 1.174 −1.822

0.047 0.034 4.390 0.314 −1.822 −2.154

Drt��10−3 m s−1� Drr��109 s−1�
1.632 1.701 0.314 1.844 −0.063 0.049

1.701 1.174 −1.822 −0.063 1.503 0.010

0.314 −1.822 −2.154 0.049 0.010 1.370

FIG. 1. �Color� The motion of a molecule of four-aminopyridine
�4-AP� under the influence of Brownian frictional and random
forces. A total of 250 ps of simulation time is shown, and the simu-
lation time step is 5 fs. The trajectory traced out by the center of
mass in three-dimensional space is depicted as a line. The molecule
itself is depicted at 50 ps intervals in order to show the rotational
orientation. For clarity, the size of the molecule is depicted as 25%
of its actual size.
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tent with the results predicted by the frictional acceleration
tensor. In order to do so, we modify the diffusion tensor by
setting all off-diagonal elements to zero, and by changing the
diagonal elements so that the frictional decay timescales in
the system can be easily distinguished. The diagonal ele-
ments of the modified diffusion tensor are �Dxx Dyy Dzz�
= �4.78,5.59,6.39��10−10 m2 s−1 for the translational de-
grees of freedom and �D�x�x

D�y�y
D�z�z

�
= �1.84,1.50,1.37��109 s−1 for the rotational degrees of
freedom. The system is simulated for 1 ns, and the velocity
autocorrelation and angular velocity autocorrelation func-
tions are calculated. Theoretically, we expect that the veloc-
ity autocorrelations will be exponentially decaying functions,
with decay constants given by the diagonal components of
the diagonal frictional acceleration tensor, �. In Fig. 3, we
plot the computational results against the theoretical curves.
There is a good match, meaning that the algorithm shows the
correct diffusive behavior.

In order to test the scaling of the error per time step as a
function of the time step, we perform two parallel simula-
tions. The first simulation lasts for a single time step, and the
second simulation breaks this large time step down into
many smaller time steps. The state at the end of the second
simulation is then used as a benchmark for judging the error
in the first simulation. Some care needs to be taken for the
stochastic terms, since the underlying random process needs
to be equivalent for both simulations. We ensure that this is
the case by using a special procedure to calculate the large
time step random variables: instead of directly sampling the
random variables, the series of small-time step random vari-
ables is used to deduce corresponding large-time step ran-
dom variables.

We apply a force and torque by applying a harmonic po-
tential located at the origin and with spring constant
0.1 kg s−2 to the H2 hydrogen atom �see RCSB data bank,
1AEG.pdb�. An initial velocity of �10,50,−60� m s−1 and an
initial angular velocity of �5,2 ,10��109 s−1 is applied. The
molecule is initially located with its center of mass at the
origin.

We test the error scaling both with and without the pres-
ence of random forces by running two sets of simulations,
one at T=300 K and the other at T=0 K. Results are shown
in Fig. 4, and are close to the predicted error scaling. At zero
temperature, where no random forces are present, the error
for both generalized position and generalized velocity vari-
ables scales as approximately O��3�. Running at finite tem-
perature causes the scaling of error in generalized position to
go to approximately O��5/2�, whereas the error in general-
ized velocity goes to approximately O��3/2�. We conclude
that the algorithm performs more or less as predicted with
regard to per-time step error.

VI. DISCUSSION AND CONCLUSION

We have derived an algorithm for rigid-body Brownian
dynamics that allows molecules of arbitrary shapes and hy-

FIG. 2. The time averaged translational and rotational kinetic
energies for a molecule of four-aminopyridine. Both quantities ap-
pear to converge to a value of 3 /2kT, therefore satisfying the equi-
partition theorem.

FIG. 3. The velocity autocorrelation and angular velocity auto-
correlation functions. Computational results are shown as points,
and the theoretical curves derived from the frictional acceleration
tensor are shown as lines. There is a good match between compu-
tational results and theory.

FIG. 4. Log-Log plots showing the scaling of the error per time
step as a function of the timestep. The black circles were obtained at
T=0 K, and the white circles were obtained at T=300 K. �A� Error
in x. �B� Error in R. �C� Error in v. �D� Error in �.
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drodynamic friction tensors to be simulated. In the zero-
temperature limit, the algorithm performs like the velocity
Verlet algorithm with regard to error propagation. In the sto-
chastic case, the scaling of the local error is a factor � better
than the Euler algorithm. We have demonstrated the feasibil-
ity and error scaling of our algorithm in sample numerical
calculations.

Consider simulating a group of solute molecules �for ex-
ample, globular proteins� interacting in a solvent. In normal
molecular dynamics, each of the solvent molecules is simu-
lated explicitly, and, in addition, the internal dynamics of the
atoms in the solute molecules are taken into account. This
can be quite computationally expensive. For many applica-
tions, it may be preferable to treat the solvent as an implicit,
bulk medium, and to treat the solute molecules as being rigid
bodies. For example, implicit solvent and rigid-body ap-
proximations are employed in Brownian dynamics models of
biological ion channels �29�. They allow simulation times of
tens of microseconds, as opposed to the tens of nanoseconds
typically seen in molecular dynamics studies.

In a typical Brownian dynamics simulation of an ion
channel, the channel and the lipid membrane within which it
is embedded are treated as a stationary, rigid structure con-
taining fixed charges and with a given dielectric constant.
Dissolved ions are modeled as charged spheres. The water
that surrounds and permeates the channel is treated as an
implicit bulk solvent. It has two effects: firstly, it modifies
the electrostatic interactions in the system through the pres-
ence of a dielectric constant, and secondly, it causes the ions
to undergo Brownian motion by giving rise to frictional and
random forces, which are normally modeled using the
Langevin equation. The ions interact with the channel
through macroscopic electrostatics.

We are currently incorporating the algorithm presented
here into a similar Brownian dynamics model of the interac-
tion between biological cell membrane ion channels �protein
pores that span the cell membrane and provide a conduction
pathway for ions� and channel blockers �polypeptides or
other molecules that may affect the function of the ion chan-
nel by physically occluding the pore�. To do so, we will need
to model the motion of the blocker molecules with respect to
the channel, including a realistic treatment of the transla-
tional and rotational diffusion. The ion channel will be
treated as a fixed, rigid structure, and the blocker molecules
as rigid bodies undergoing rotational and translation Brown-
ian motion, simulated using our algorithm. The blocker mol-
ecules will be present in concentrations low enough that hy-
drodynamic interactions between two or more blocker
molecules are not expected to play an important role; the
molecules will experience independent Brownian motion,
and will interact via an ordinary potential. We will combine
Brownian dynamics techniques �29�, developed for studying
the conduction of ions through ion channels, with the rota-
tional algorithm presented here. This will allow us to model
the interaction between the channel, the blocker molecules,
and the ions in solution. However, the algorithm may have
wider applicability to modeling the motion of any fairly rigid
molecules, colloidal particles, nanoparticles, liquid crystals,
or other small particles in fluids.

APPENDIX A: REVIEW OF GEOMETRIC ALGEBRA OF
3D EUCLIDEAN SPACE

The geometric algebra of three–dimensional �3D� Euclid-
ean space can be constructed by starting with real scalars and
the usual vectors of Euclidean 3D space. A geometric prod-
uct, denoted ab, is introduced, which is associative and dis-
tributive over addition, and with the additional requirement
that the square of any vector under this geometric product is
real �and equal to the dot product square�. A set of multivec-
tors �itself a vector space� is then constructed as the space
spanned by linear combinations of arbitrary products of vec-
tors and scalars. It can be shown that the multivectors in 3D
Euclidean space admit the following basis:

Object Grade Basis Multivectors

Scalars Grade 0 1

Vectors Grade 1 �e1 ,e2 ,e3�
Bivectors Grade 2 �e2e3 ,e3e1 ,e1e2�
Pseudoscalar Grade 3 I=e1e2e3

For vectors, the symmetric component of the product is
the usual dot product � · �, and the antisymmetric component
is the wedge product of Clifford algebra �∧ �, so ab=a ·b
+a∧b.

The full algebra of the geometric product can be deduced
from the axioms of geometric algebra. Here, we define it
directly by its action on the basis vectors. We employ the
Einstein summation convention, where a repeated index im-
plies summation over that index.

1a = a1 = a a is any multivector, �A1�

Ia = aI a is any multivector, �A2�

eie j = �ij + �ijkIek, �A3�

I2 = − 1. �A4�

This table is sufficient to define any multivector multiplica-
tion. Note that, as the bivector basis vectors can be written as
a vector times the pseudoscalar, e.g. e1e2= Ie3, there exists a
natural mapping between the vectors and bivectors. In fact,
the axial vectors commonly used to represent cross product
quantities such as angular momentum and the like are best
viewed as bivectors, and the wedge product is used in place
of the more complicated and less general cross product.

1. Reversion

If a is written as a sum of products of vectors, then a†

reverses the order of all vector factors. For example, if a
=1+e1+4e2e3, then a†=1+e1+4e3e2=1+e1−4e2e3.

2. Quaternions

In the context of three-dimensional Euclidean geometric
algebra, Hamilton’s quaternions �a four component object
consisting of a scalar plus three anticommuting imaginary
components� have the same algebraic properties as mixed
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grade objects consisting of scalars plus bivectors. A quater-
nion a+bi+cj+dk is equivalent to the multivector a+bIe1
+cIe2+dIe3, which we represent here in component form as
�a ,b ,c ,d�. Note that the reverse of �a ,b ,c ,d� is
�a ,b ,c ,d�†= �a ,−b ,−c ,−d�. In what follows, we shall make
no distinction between Hamilton’s quaternions and these ob-
jects, which we shall simply refer to as quaternions.

3. Rotors

A rotor is a unit quaternion that can be used to represent
rotations. If a is any multivector and R a rotor, then RaR†

rotates a with a direction and magnitude specified by R. The
inverse of the rotation is R†, and we necessarily have RR†

=1.
Given the components of a rotor, it is possible to write

down a rotation matrix which acts on the column vector
consisting of the components of a vector. This is probably
the most efficient way to actually implement rotations nu-
merically �30�.

APPENDIX B: SKETCH OF A HIGHER ORDER
ALGORITHM

In deriving stochastic motion algorithms, experience
teaches us to avoid derivatives of a�X�, because these would
necessitate multiple force evaluations at each step. Given this
restriction, we can still derive a stochastic algorithm that is
more accurate �but also more complicated� than the algo-
rithm given above. We provide a rough sketch of such an
algorithm below:

In the equation for X, we can carry the stochastic Taylor
expansion further to include the terms C112 and C121:

C112 = s��� �g�

�V�

�h�

�V�

+
�hn

�V�

�h�

�Xn
+ hn

�2h�

�V� � Xn
�

0

� 

0

�

dt

0

t

dt�W���t�� , �B1�

C121 = s���hn
�2h�

�Xn � V�
�

0



0

�

dt

0

t

dWk�t�. �B2�

The expression for X is now accurate to O��7/2 ,�3� �with the
O��3� error canceling, as usual, each alternate time step, to
give an error of O��7/2 ,�4��. Note that there are additional
random variable terms �the integrals in the expressions
above� that are correlated with the existing random variables
W and Y. Deriving the additional variances and covariances
variables is left as an exercise for the reader.

In order to maintain this degree of accuracy in X, we must
now derive V to an accuracy O��5/2 ,�3�. This necessitates
adding a term for C12 to Eq. �57�:

C12 = s��� �g�

�V�
�

�/2



0

�

dt

�/2

t

dW�� . �B3�

This term contains yet another stochastic integral, but by
splitting all stochastic integrals into half time step pieces and
performing some simple manipulations, we can express it in
terms of Brownian motion W and integrated Brownian mo-
tion Y.

Note also that ��g� /�V���/2 is evaluated at a half time
step. This term, as well as the term �g���/2 seen in the origi-
nal algorithm, are treated in exactly the same manner as pre-
viously, but in order to maintain accuracy, we must add a
term to Eq. �62�, which now becomes

�V���/2 =
1

2
��V��0 + �V���� + s����W��0

�/2 − �W���/2
� �

+ O��3/2,�2� . �B4�

As was the case before, the equation for �V�� contains terms
linear and quadratic in the unknown, �V�� on the RHS, and
an additional step must be performed to solve it.
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