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Generation of pulse trains in nonlinear optical fibers through the generalized complex
Ginzburg-Landau equation
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We consider a higher-order complex Ginzburg-Landau equation, with the fourth-order dispersion and cubic-
quintic nonlinear terms, which can describe the propagation of an ultrashort subpicosecond or femtosecond
optical pulse in an optical fiber system. We investigate the modulational instability (MI) of continuous wave
solution of this equation. Several types of modulational instability gains are shown to exist in both the
anomalous and normal dispersion regimes. We find that depending on the sign of the fourth-order dispersion
coefficient, the MI appears for normal and anomalous dispersion regime. Simulations of the full system
demonstrate that the development of the MI leads to establishment of a regular or chaotic array of pulses, a
chain of well-separated peaks with continuously growing or decaying amplitudes depending on the sign of the
loss/gain coefficient and higher-order dispersions terms. Comparison of the calculations with reported numeri-

cal results shows a satisfactory agreement.
DOI: 10.1103/PhysRevE.80.066604

I. INTRODUCTION

Solitons are ubiquitous in nature, appearing in diverse
systems such as shallow water waves, deoxyribonucleic acid-
(DNA) excitations, matter waves in Bose-Einstein conden-
sates, and ultrashort pulses (or laser beams) in nonlinear op-
tics [1]. Originally, the terminology soliton was reserved for
a particular set of integrable solutions existing as a result of
the delicate balance between dispersion (or diffraction) and
nonlinearity. The generation of a train of soliton pulses from
continuous wave (CW) light in optical fibers was first sug-
gested by Hasegawa and Tappert [2], and first realized ex-
perimentally by Mollenauer et al. [3]. Optical soliton are
used for long and short-distance information transmission
because, unlike pulses in a linear dispersive fiber, solitons are
self-confined, propagating for a long distance without chang-
ing shape [3]. A well-known example of an equation which
admits pulselike soliton solutions is the nonlinear
Schrodinger (NLS) Eq. [4]. For long-distance communica-
tion systems, compensating for attenuation of pulses inherent
in fibers is an important issue. One approach is the use of
periodically spaced phase-sensitive amplifiers. Each of such
amplifier exhibits an associated reference phase. The part of
the signal in phase with this reference phase is amplified,
while the out-of-phase component is attenuated [5]. In the
second approach, the losses can be compensated by the
erbium-doped amplified [6]. A well-known model for the
study of pulse propagation in doped fiber amplifiers is the
complex Ginzburg-Landau (CGL) Eq. [7]. The CGL equa-
tion of the simplest type has the cubic nonlinearity. In that
case, exact solutions for pulses are available [8], but they are
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unstable. The most straightforward modification of the
model, which opens the way to the existence of stable soli-
tary pulses is the introduction of the cubic-quintic (CQ) non-
linearity, with linear loss and cubic gain (instead of the, re-
spectively, linear gain and cubic loss in the cubic CGL
equation), and additional quintic loss that provides for the
overall stability of the model.

It is commonly known that CW states are subject to the
modulational instability (MI) under the action of self-
focusing nonlinearity acting in combination with anomalous
group-velocity dispersion (GVD) [9,10]. Prior to fiber optics,
the MI was predicted in hydrodynamics [11] and plasmas
[12]. In optics, the MI was considered not only for uniform
CW states, but also for extended (super Gaussian) wave
packets [13]. The MI in optical fibers offers a means to gen-
erate a regular array of solitary pulses, i.e., it may serve as a
source of soliton trains [14]. In this capacity, it was adapted
for the use in high-bit-rate optical telecommunications
[15,16].

However, when a breakup of CW and quasi-CW radiates
into a train of picosecond and femtosecond pulses in the
fiber, higher-order nonlinear effects such as self-steepening,
self-induced Raman scattering (SRS) and higher order dis-
persion effects such as third-order dispersion (TOD) should
also be taken into account [17]. It is well-known that TOD
effects splitting-up of higher order solitons. The inelastic Ra-
man scattering is due to the delayed response of the medium,
which forces the pulse to undergo a frequency shift, which is
known as self-frequency shift (SFS). The effect of self-
steepening is due to the intensity-dependent group velocity
of optical pulse, which gives the pulse a very narrow width
in the course of propagation. Therefore, in real ultrashort
optical fiber transmission systems, we must consider all these
higher order effects [18]. Recently, the study of MI in higher
NLS (HNLS) equation have been realized in [19]. The author
demonstrated that the MI gain can exist even in the normal
dispersion medium, depending on the strength of the higher-
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FIG. 1. (Color online) MI Integrated gain as a function of d,; and €. (a) Two gain peaks appear regardless of the sign of p,d,; <0 and
move away from the center when dy;— 0, in the anomalous dispersion regime. (b) Two gain peaks appears in the normal dispersion regime

when p,d,;; >0, while the gain disappears when p,d,; <O0.

order dispersion and nonlinear terms, in contrast to the NLS
equation in which the MI gain occurs only in the anomalous
dispersion regime [20]. The higher-order filtering terms are
essential for making the model realistic, and for describing
more involved pulse generation effects [21-23]. For an opti-
cal system, including bandwidth-limited gain and higher-
order effects, the propagation of femtosecond pulses is gov-
erned by the generalized higher-order complex Ginzburg-
Landau (GHCGL) equation with dimensionless form
[21-23]

i+ (pr+ i) + (g, + ig) [P Y + (e, + ic) [y
=i(y, +iy) P+ i(ds, + ids) Yy + i(dy, + idy) Yy
+i(mr+imi)(|{r/,|2lvb)z+i(nr+ini)(|'70|2)tlrlf’ (1)

where ¢ is the slowly varying envelope of complex electric
field, ¢ is the retarded time and z is the propagation distance.
The parameters Pr Pi> 9r> 9is Crs Cis Vs Vi d3r7 d3i’ d4r’ d4i7 mpy,
m;, n,, and n; are real constants. The parameter p, measures
the wave dispersion, p; the spectral filtering, g, and g; repre-
sent the nonlinear coefficient and the nonlinear gain absorp-
tion coefficient, respectively. We noticed that nonlinear gain
helps to suppress the growth of radiative background (linear
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mode), which always accompanies the propagation of non-
linear stationary pulses in real fiber links. The parameter c,
and ¢; stand for the higher-order correction terms to the non-
linear refractive index and the nonlinear amplification ab-
sorption, respectively. The parameter vy, and vy; represent the
linear gain (y,>0) or loss (y,<0) and the frequency shift,
respectively. The complex parameter dy (ds,+ids;) is the
TOD coefficient. The complex parameter d, (dy+id,;) ac-
count for the FOD coefficient. The parameter m, is the non-
linear dispersion term (Kerr dispersion), n, and n; are the
nonlinear gradient terms, which result from the time-retarded
induced Raman process. In fact, n; is usually responsible for
the SFS. Usually, m; and n, are neglected in the optical trans-
mission system. When d;=0, d,=0, m,=0, m;=0, n,=0, and
n;=0, Eq. (1) becomes the CQ CGL equation. So far, differ-
ent types of solutions of the one-dimensional CGL equation
such as pulselike, shocklike, sources, sinks, periodic, and
quasiperiodic solutions have been analyzed [24]. Recently,
the soliton solution of Eq. (1) have been investigated by
many authors. Li ef al. [21] have investigated exact solutions
of Eq. (1) using a chirped hyperbolic secant type solution.
Through the collective variable treatment, it has been shown
that the dynamics of pulse parameters are deeply modified
due to the effects of high possible values of parameters of the
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FIG. 2. (Color online) MI Integrated gain as a function of p, and (). (a) Two gain peaks appear if p,d,; >0 and disappears when p,d,; <0.

(b) The two gain peaks exists regardless of the sign of p,dy;.
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FIG. 3. (Color online) MI Integrated gain as a function of power
P and (). The MI gain increases with the input power.

GHCGL equation [23]. However, MI of Eq. (1) and the dy-
namics of the solitons induced by the MI have not been yet
performed.

In the present work, we have numerically explored the
generation of structures induced by MI in the normal and
anomalous dispersion regime for a large parameters space,
which are not been studied in the case of the GHCGL equa-
tion. Latter, we study the long-term behavior of a periodi-
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cally modulated input signal. For a typical fiber system, we
choose the following physical parameter values: 1.7637
=400 fs, wavelength A=1.55 pum, GVD D
=+0.5 ps.nm™' km~!, TOD B;=-0.007 ps® km~!, nonlin-
ear parameter y=20 W~! km™!, the spacing of filters Z,
=(1/M)=0.75, 3 dB bandwidth of the filters AN
=N/ (mcTN2(p;)Z,)=29 nm, and nonlinear gain g,
=6.8 W~ 'km™!. These parameters give the following
dimensionless parameters: p;=0.1, ¢;=0.5, ¢,=0.34, d;,
=-0.008, d3;=0, m,=-0.025, and n;=-0.05.

The paper is organized as follows. In Sec. II, the linear
stability analysis of the MI is formulated. The instability
zones as well as the analytic expressions of the gain of MI
are obtained. Typical outcomes of the nonlinear development
of the MI, in the form of regular and irregular patterns, are
reported in Sec. III. We focus on the role played by the
loss/gain coefficient and higher-order dispersion terms. Sec-
tion IV concludes the paper.

II. LINEAR STABILITY ANALYSIS OF THE MODULATION
INSTABILITY

Neglecting the g; and c; parameters, CW solution to Eq.
(1) is given by

{/I(Z,t) = \/F eXp[i¢NL + (7r + iYi)Z]’ (2)

where ¢y, =Pq,[5exp(2y,2)dz+ Pc [iexp(4y,2)dz is the
nonlinear phase shift and P is the input power of the CW. To
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FIG. 4. (Color online) Different propagation results of the input CW in the GHCGL with anomalous dispersion. (a) Attenuation pulse for
v,=-0.003. (b) Stable pulse for y,=0.0007. (c) Chaotic pulse for y,=0.005.
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FIG. 5. (Color online) Evolution of CW showing the effects of the TOD terms ds, in the anomalous dispersion regime. (a) ds,

=-0.008, (b) d3,=—0.08, (c) ds,=—0.8.

analyzed the MI of CW solution Eq. (2), we introduce the
perturbed electric field

Wz0) = (VP +u+ivexplidy, + (v,+iv)zl  (3)

and linearizing Eq. (1) in u and v, we obtain the following
set of two coupled equations:

U, == Py — Pilly + d3, iy — d3i0y + Ay — daiU gy

+ (3mr + an)Pf(Z)ut - min(Z)vt

U, =Pyl = Py + A0y + Ay + dgg0 gy + dyitd gy
+2Pf(2)lq, +2¢,Pf(z)Ju+ (3m; +2n) Pf(2)u,
+m,Pf(z)v,, 4)

where f(z)=exp(27,z). These equations can be solved ap-
proximately by assuming a solution of the form [25]

u(z,1) = uo(z)exp{zf K(z)dz - iﬂt}

v(z,t) = vo(z)exp[if K(z)dz - iﬂt], (5)

where K and () represent, respectively, the wave number and
the frequency of the modulation. By substituting Eq. (5) into
Eq. (4), and assuming that u, and v, vary slowly with z

auy ) .
(ai;=ﬂ—;)50), the wave number K is found to satisfy the

following dispersion relation
(K+g,+ig)*=A,+iA,, (6)
where
g=(g,+ig) =[PQf()2m, +n,) - V’d;,]
+i[Q(p; + Q%d,,)]
A, and A, are given in the appendix. Therefore,

K(Q9Z):_grihl+i(_giih2)s (7)

1 [A+]A] 1 [-A+]|A]
hy==4/ L =y
2 2 2 2

In the absence of the loss/gain coefficient (y,=0), K becomes
z independent. MI occurs whenever K has a negative imagi-
nary part since the perturbation then grows exponentially
along the fiber length. The asymptotic behavior of the ex-
tended nonlinear plane wave is then determined by the sign
of the quantity —g;—h,. Since the coefficient &, is always
positive, the inequality —g;—h, <<-g;+h, holds. The differ-
ence —g;,—h, is always negative if g;>0, and then the per-
turbation grows up when the propagation distance z tends to
infinity, i.e., the system remains unstable under modulation.
On the other hand, if g;<<0, the asymptotic behavior of the

where
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FIG. 6. (Color online) Evolution of the input CW out of the MI
zones in the anomalous dispersion regime. The train of solitons
disappears and form a constant background solution.

system will depend on the sign of —g;—h,. In what follows
we study the cases where MI appear.

(1) First of all, if —g;—h, <0, we see that the imaginary
part of K is negative, and the system is said to be modula-
tionally unstable. This inequality allows us to write the MI
criterion for the CW in the GHCGL as

A7 —4(g;+A,)g > 0. (8)

The domain of MI is determined by the inequality g;<O0.
Then we have

1500
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d, Q2+ p O <0. )
The boundaries of the MI domain are then given by

-0y=0=20,, (10)

where
Qo= (= pdd,,)'"?,

which satisfies the constraint —p;/d,,<<0. The MI gain de-
fined as g(Q)=2|Im(K)| [9] as

g(Q) =2(g;+hy). (11)

We note that the real part of the TOD (d5,) does not contrib-
ute to the MI gain.

(2) Second, from the above calculations, we can deduce
that, when the imaginary part of K is positive —g;,—h,>0, we
obtain the following criterion

A?—4(g;+A,)g <0. (12)

This result means that CW, which verify Eq. (12) are stable
under modulation.

However in the presence of the loss/gain coefficient, the
wave number K depend on the propagation distance. The MI
gain spectrum of the fiber at the distance L can be calculated
as a function of the MI frequency by the relation g({))
=2[5Im[K(Q,7)]|dz [25]. Since the expression of g; is not
function of the loss/gain coefficient, we conclude that the MI

1000

1500

FIG. 7. (Color online) Evolution of the input CW in the normal dispersion regime. (a) Stable pulse for ,=0.0007, (b) Attenuation pulse

for y,=-0.004, (c) Chaotic pulse for y,=0.005.
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FIG. 8. (Color online) Evolution of CW showing the effects of the TOD terms d3, in the normal dispersion regime. (a) d3,=-0.008, (b)

d3,=-0.08, (c) d3,=—0.8.

boundaries are also given by relation (10). By choosing d,
=-0.0001, and p;=0.1, we obtain Q;=31.62. We calculate
the MI gain at the distance L=1500 m numerically by cho-
sen the frequency inside the above MI zones. Figure 1 por-
trays the MI gain as a function of the FOD coefficient d,; and
the frequency (), with fixed values for p, and P. Figure 1(a)
shows the spectra for the case of the anomalous dispersion
regime p,=0.5. Two gain peaks are shown here and interest-
ingly is the fact that another gain peaks appears and move
away from the center when d;— 0. Figure 1(b) plot the gain
spectra for the case of the normal dispersion regime p,=
—0.5. We find that two gain peaks appears when p,d,; >0 and
disappears when p,d,; <0, while nonzero gain exists regard-
less of the signs of p, and d,; as shown in Fig. 1(a).

Figure 2 displays the MI gain spectrum as functions of p,
and ) with fixed values for d,; and P. We find in Fig. 2(a)
that two gain peaks appears if p,d,;>0 and disappears when
p.d,;<0. We find also the presence of the two gain peaks in
Fig. 2(b), but in comparison with Fig. 2(a), the nonzero gain
exists regardless of the sign of the product p,d,;. Then we
can conclude that the gain spectrum is sensitive to the sign of
the FOD coefficient. It is also interesting to monitor the evo-
lution of the MI spectrum with variation of total power P and
modulational frequency (). These results are displayed in
Fig. 3 and we can see that the MI gain increases with the
input power.

III. NUMERICAL SIMULATION OF THE MODULATIONAL
INSTABILITY

The next step of the analysis is to run direct simulation of
Eq. (1), adding small initial modulational perturbations to

CW states, with the objective to identify nonlinear patterns
generated by the MI. The MI is induced by injecting an input
signal in the form [9]

(0,7) = VP[1 +a,, sin(Q,,)Jexplidy,), (13)

where a,,=0.09 is the modulation amplitude and (),,=0.75 is
the frequency of a weak sinusoidal modulation imposed on
the CW beam, which belong to the above MI zones [see
relation Eq. (10)]. Equation (1) with initial condition Egq.
(13) is solved utilizing the split-step fourier method [9]. Dur-
ing simulations, we focus on the role played by the loss/gain
coefficient and higher-order dispersion terms.

A. Ultrashort solitonlike pulses in the anomalous dispersion
regime

Results of numerical simulations on the MI in the anoma-
lous dispersion regime as a function of the loss/gain coeffi-
cient are presented in Fig. 4. Obviously, depending on the
value of the loss/gain coefficient, one observes different kind
of propagation. For y,=-0.003, the propagation of waves
presents an attenuation of pulses as shown in Fig. 4(a): the
amplitude of wave decreases gradually during the propaga-
tion. For v,=0.0007, the propagation of waves remains
stable as shown in Fig. 4(b). Waves keep their shape and
their amplitude remains constant during the propagation. The
pulse can propagate stably in the given distance, even in the
presence of the higher-order dispersion and nonlinear terms.
In fact, it is well known that the TOD caused an asymmetri-
cal broadening in the time domain, the self-steepening

066604-6
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caused a spectral broadening of the pulse and the SFS is
responsible of the time-retarded induced Raman process.
However, there exists a balance of the cooperation of all
these effects, which lead to a stable pulse propagation. But,
for y,=0.005, the MI development leads to an irregular pat-
tern, with a quasichaotic field configuration as shown in Fig.
4(c). In Fig. 5, we investigate effects of the coefficient d5, on
the dynamical behavior of the system. Figure 5(a) shows the
propagation of the initial CW through the system for dj,=
—0.008, while Fig. 5(b) stands for d5,=—0.08, and lastly Fig.
5(c) is depicted for d5,=—0.8. Even though the coefficient d,
does not directly influence the MI gain spectrum, one sees
that as this term decreases, its has an effect on the direction
of soliton which propagate [see Fig. 5(c)]. However, the
FOD term does not alter the dynamics of the soliton.

Now we choose the modulational frequency as (),,=40,
which is outside the MI boundaries defined above. We ob-
serve in Fig. 6 that the train of solitons produce initially tend
to disappear as the soliton evolves in propagation distance z.
The system is then said to be stable under modulation.

B. Ultrashort solitonlike pulses in the normal dispersion regime

Results of numerical simulations on the MI in the normal
dispersion regime as a function of the loss/gain coefficient
are presented in Fig. 7. The evolution of the initial CW up to
a distance z=1500 m is shown in Fig. 7(a) for y,=0.0007,
where it was found that the pulse can propagate stably in the
normal dispersion regime. For y,=-0.004, we observe in
Fig. 7(b) that the input CW decays into a zero solution dur-
ing the propagation. In the case presented in Fig. 7(c), We
observe that the trains of solitons which are initially stable
falls into chaotic regime for y,=0.005. We observe in Fig. 8
that while one decreases the coefficient ds,, the direction of
propagation of soliton is modified such as in Fig. 5. Here,
one views that the generation of pulses train seem to be
chaotic. The FOD does not alter the dynamics of the soliton.
Also in the case of normal dispersion regime, when the
modulational frequency is chosen as (),,=40, which is out-
side the MI boundaries, the train of solitons disappear pro-
gressively as the propagation distance z increases as shown
in Fig. 9, which leads the system to a stable regime.

IV. CONCLUSION

In this work, we have investigated the MI of the CW in
the generalized GHCGL with the TOD and FOD, and the
cubic-quintic nonlinear terms. This equation describes the
propagation of an ultrashort femtosecond optical pulses. The
instability regions have been determined by using the linear
stability analysis. Analytic expression of the MI gain have
been derived. We have found that the gain is independent to
the real part of the TOD coefficient, but is sensitive to the
sign of the FOD coefficient. Numerical simulations have
been performed to investigate the outcome of nonlinear de-
velopment of the MI of the underlying GHCGL. We have
found that when the modulational frequency belong to the

PHYSICAL REVIEW E 80, 066604 (2009)
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FIG. 9. (Color online) Evolution of the input CW out of the MI
zones in the normal dispersion regime. The train of solitons disap-
pears and form a constant background solution.

MI zones, the initial CW tends to be disintegrated into a train
of solitonlike objects. Attenuation waves as well as chaotic
pulses are also observed during the propagation. However,
when the modulational frequency is out of the MI zones, the
trains of solitons disappear progressively and form a constant
background solution. We have also found that even though
the real part of the TOD does not contribute to the MI gain,
it influences the evolution of MI and the dynamics of the
pulse train generated. Excellent agreement has been obtained
between our theoretical and numerical approaches. The
present result, especially the formation of the stable periodic
array of localized pulses, may find straightforward applica-
tion in nonlinear optics.
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APPENDIX
Elements of the dispersion relation defined by Eq. (6) are:
Ar = LSQB + L696 + L4Q4 + Lzﬂz + Lo,

A =L, +LsQ° + L0+ L,Q,

Ly=dy. Ly=2dydy, Le=—dy,—2p,dy.
Ls=~2Pf(z)(2mn;)ds; - 2p,ds;,
Ly=4Pf(2)mnds; + p; + 2Pf(2)[q, + 2¢,Pf(2)ldy;,
Ly=4Pf(z)mmnp,+2Pf(2)lq,+ 2¢,Pf(2)]ds;,

L, = (m,—n,)*P*f(z)* = 3P*f(2)*m; - 2P*f(2)*mn;
- 2Pf(z)[qr + 2CrPf(Z)]pr’

Ly == 2P*f(2)*(m, +n,)q;— 4P*f(z)*(m, + n,)c;
—2P*f(2)’[q, + 2¢,Pf(z)Im;,

Ly=P*f(z)’[q, + 2¢,Pf(2)]*.
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