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We consider the dynamical degenerate four-wave mixing (FWM) model in a cubic nonlinear medium
including both the time relaxation of the induced nonlinearity and the nonlocal coupling. The initial ten-
dimensional FWM system can be rewritten as a three-variable intrinsic system (namely, the intensity pattern,
the amplitude of the nonlinearity, and the total net gain) which is very close to the pumped Maxwell-Bloch
system. In the case of a purely nonlocal response the initial system reduces to a real damped sine-Gordon (SG)
equation. We obtain a solution of this equation in the form of a sech function with a time-dependent coefficient.
By applying the reductive perturbation method to this damped SG equation, we obtain exactly the cubic
complex Ginzburg Landau equation (CGL3) but with a time dependence in the loss or gain coefficient. The

CGL3 describes the properties of the spatially localized interference pattern formed by the FWM.
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I. INTRODUCTION

The effect of interaction of light and matter in nonlinear
optics is very often characterized by a coupling coefficient
which reveals a response of the matter. If in addition a mu-
tual mixing of several waves is taken into consideration, one
deals with nonuniform spatial (or spatiotemporal) fields.
People usually consider the reaction of matter is local on the
action of the field. But this is not always the case. In inertial
or nonlocal systems the response can be retarded in time or
shifted in space. As a result, the beam-coupling coefficient
takes a complex value and some phase addition appears be-
tween the mixed waves. This can lead to the control of pa-
rameters of one beam by guiding the properties of another
beam as well as to the formation of stable localized struc-
tures (i.e., intensity patterns). In this paper we show rigor-
ously that a nonlinear system describing the degenerate wave
mixing in a medium which possesses both a nonlocal re-
sponse and relaxation is reduced to one nonlinear complex
Ginzburg-Landau equation (CGLE). We develop the tech-
nique to obtain the cubic CGLE by using the reductive per-
turbation method for the nonlinear dynamical wave coupling
system.

Nonlinear dynamical systems have been studied inten-
sively during the last decennia after localized structures (e.g.,
solitons) were found in such systems. The CGLE became a
widely used physical-mathematical model appearing in many
branches of physics, chemistry, and biology, in order to de-
scribe various localized structures [1-4]. Moreover the
CGLE is considered as the simplest model containing dissi-
pative soliton solutions, which exist in nonequilibrium sys-
tems where gain and loss are balanced [2,3,5]. In optics, the
dissipative solitons described by the Ginzburg-Landau equa-
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tion appear for pulsed operation of passively mode-locked
lasers as well as for all-optical long-haul soliton transmission
lines [2,3,6,7].

The dissipative models which take into account wave in-
teractions have been studied in [8,9], first of all as the enve-
lope of dissipative solitons emitted by an optical parametric
oscillator. In [8] the author presents theoretical and experi-
mental studies of stimulated Brillouin backscattering of a
continuous pump-wave resulting in backward-traveling soli-
tary pulses in long fiber-ring cavities. Nonlinear optical cavi-
ties with three-wave interaction in a nonlinear crystal, when
the waves have different frequencies, were considered in
Ref. [9]. Tt was shown that the spatial dissipative solitons can
form spontaneously in that case. We consider the cubic
CGLE which appears in the problem of dynamical interac-
tion of four waves with the same frequencies in extended
nonlocal media. We show that the CGLE is obtained because
of a photoinduced nonlocal nonlinear response which in-
cludes a time relaxation term in the considered (dissipative)
model.

The next feature that we utilize in the model, the nonlo-
cality, reveals itself as an ubiquitous property in many
branches of physics, e.g., optics, plasmas, and Bose-Einstein
condensates [10,11]. Usually the nonlocal response appears
when the nonlinearity is associated with some sort of trans-
port process such as heat conduction in media with thermal
response [12], diffusion of molecules or atoms accompany-
ing nonlinear light propagation in atomic vapors [13,14] and
charge transport in photorefractive crystals [15,16]. Specific
properties of spatial solitons were investigated in nematic
liquid crystals, where nonlocal response exists due to reori-
entation of anisotropic molecules by a propagating beam
[17-20]. The nonlocal nonlinearities with formation of dissi-
pative optical solitons for a wide-aperture laser with satu-
rable absorption were studied recently in [21,22].

One usually investigates stationary changes of the in-
duced nonlinearity. Our dissipative model includes both gain
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and relaxation of the nonlinearity in a nonlocal medium.
Since we consider the process of wave coupling, the photo-
induced nonlocal nonlinearity leads to an effect of energy
transfer between waves during their propagation. In this way
the nonlocality plays the role of an amplified medium to
increase the intensities of one beam at the cost of decreasing
the energy of another beam. The energy transfer effect is
observed in the dynamical holography when the interacting
beams record a dynamical grating, which is shifted from the
interference pattern, and the same beams diffract from this
grating [23,24]. As a result of this energy transfer both the
interference pattern and the spatial distribution of the ampli-
tude of the nonlinearity get a stable localized pattern along
the z-longitude direction of the medium [25-27]. We show
that the CGLE governs the spatiotemporal dynamics for both
values.

Dissipative solitons described by CGLE demonstrate a
rich variety of unusual properties [2,28], such as stable peri-
odic pulsations, bounded solitary waves, periodic “explo-
sions,” and collapse. All these unique features may find ap-
plications in nonlinear wave coupling, in particular in the
dynamic holography in media with nonlocal response.
Among possible applications in photonics let us mention: (i)
holographic interferometers including phase-shifted interfer-
ometers; (ii) traps of light (trapping states) in a resonator;
(iii) manipulation of pulses having different intensities and
durations in order to obtain optical logic elements, all-optical
switching, pulse retardation etc., as well as the interaction of
pulses not only in bulk materials but with thin nonlinear
films, nanomaterials and metamaterials; and many others.
During the process the medium should possess a nonlocal
nonlinearity, e.g., some kind of transport mechanism; or the
medium can have a local nonlinearity but a regime of mov-
ing dynamical gratings should be realized.

The paper is organized as follows. In Sec. II we introduce
the four-wave mixing (FWM) model and recall the existing
results. In Sec. III, we revisit the derivation of the damped
sine-Gordon equation and derive a solution to the FWM.
Finally, in Sec. IV, we apply the method of multiple scale
expansion and find as a result the cubic CGLE. This proce-
dure proves that the FWM as well as the dynamical self-
diffraction of waves can be considered as a dissipative non-
linear system containing stable soliton solutions.

II. INTRINSIC SYSTEM OF THE DISSIPATIVE FWM
MODEL

The one-dimensional degenerate FWM initial system con-
sists of five partial differential equations, namely, four
coupled wave equations for slow variable amplitudes which
connect waves 1 and 2 propagating in a forward direction
and waves 3 and 4 propagating in a backward direction,

(92A1 = l.(c/‘A2, (9152 = l(c;gl 5

82/13 = - igA_4, 8ZA4 = i5A3, (1)

and the dynamical equation for the medium, which in the
simplest case includes only a gain being proportional to the
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intensity pattern and an exponential relaxation, in the form
&
0,E=l, - ; (2)

We assume here that the interference pattern is formed by
two pairs of copropagating waves

Im=A1A2+/K3A4. (3)

In Egs. (1)=(3), A(t,7) is the slow variable amplitude of
the jth plane wave Ej(r,z) =Aj(t,z)ei(w"kf7) and &(t,z) is the
amplitude of the photoinduced nonlinear susceptibility. It
must be emphasized that the response constant y=y; +iyn.
=|y|e® is complex. The complex value of the coupling coef-
ficient £ is an essential feature for the existence of solitonlike
solutions. The interacting waves are connected by the im-
pulse conservation law:

EI—E2=E4—E3. (4)

We assume the following normalization: all wave amplitudes
are normalized by the square root of the total light intensity
Iy=|A[>+|A,|*+]A5]>+|A4|>=const, £ is the dimensionless
coefficient of the nonlinearity, and z is the dimensionless
longitudinal coordinate z=[k§/ (2k])]z’, where kg is the am-
plitude of the wave vector in the free space and z’ is the
spatial coordinate. We keep the dimension of the time coor-
dinate ¢ in order to display the dependence of the dispersion
relation on the time relaxation constant 7. In this way, in
order to make Eq. (2) dimensionless, the gain coefficient is
normalized by the time relaxation constant 7 and has the
dimension [y]=T"".

Systems (1)—(3) has been considered for the dynamic ho-
lography in the case of a purely nonlocal response y=iyyy.-
Then £ is interpreted as the amplitude of the dynamical grat-
ing. As previously found [26,27,29,30], the initial system is
then reducible to a damped sine-Gordon (SG) equation,
which has a stationary solution in the form of a sech function
|€]=¥C/cosh[2yCz—p], with C,p as the arbitrary constants.
Numerical solutions in the form of periodic oscillations were
investigated in [30]. The first experimental observation of
localization of the dynamical grating amplitude along the
longitudinal coordinate in bulk ferroelectric crystals was
made in [27]. For the general case of a complex 7, the gen-
eral stationary solution was later found in [31], together with,
in the dynamical case, the general solution (expressed with
elliptic functions) of the reduction (z,7) — \ze™"" for a purely
nonlocal response.

The ten-dimensional system [Eq. (1)—(3)] is invariant un-
der any time-dependent rotation in the space {A|,A,,A,,As}
which preserves the interference pattern [Eq. (3)]. In a pre-
vious work [31], we could remove this five-parameter unes-
sential freedom and obtain the following intrinsic system,

Oln=—iEly, d.1y=—2i€l, +2i€l,,,

&
&=yl ——, (5)
T

admitting the first integral
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al1,* + 1=K (@),
The real field 1,
Iy=— A7+ Ay - A5 + 1A,

K arbitrary. (6)

% (7

is the relative net gain. Therefore the four-wave mixing is
characterized by three intrinsic variables: the intensity pat-
tern /,,,, the grating amplitude &, and the relative net gain /.

This intrinsic system [Eq. (5)] is very similar to the
pumped Maxwell-Bloch system, an integrable system of
nonlinear optics defined as [32]

axp=N€, (?X[_)=N§,

IxN = — (pe + pe)/2 + 4s,

dre=p, de=p, (8)

with s as a real constant (the system is “pumped” when s is
nonzero).

When the four-wave mixing model is undamped (7=+%)
and has a purely nonlocal response [PR(y)=0], while the
Maxwell-Bloch system is unpumped (s=0), these two sys-
tems can be identified,

1

-=0, R(y)=0, s=0,

i
2t 2l 2Dlle lls -2iE 2iE ©)
X' 1T p p N e &’

and in this case the undamped purely nonlocal response four-
wave mixing model admits all the solutions of the unpumped
complex Maxwell-Bloch system.

II1. DERIVATION OF THE DAMPED SINE-GORDON
EQUATION

As shown in [26,27,29,30], under some specific assump-
tions, the system made of the four complex Egs. (1) can be
integrated explicitly. Because we need it later, let us first
establish this derivation in full generality.

If one represents the complex amplitudes as

Aj=Mpe'%, E=M e, (Mj,M€,<pj,gog) real, (10)

and introduces the notation

T T
@12=<P1—<P2—<Pg+5, q’43=<P4—‘P3—€De+5,
(11)
system (1) becomes
C?ZM]=+M2M6 COS ¢)12, L?ZCPIZ— eSin ¢)12’
1
MM, .
ﬁzM2=—M1Me COS (1)12’ ﬁz(p2=— sin (I)l2’
2
— _ M3 e .
IOMy=—M3M,cos @y, J.04=+ sin @y3,

4
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MM
IMy=+M;M,cos D3, J.p3=+ ]CI “sin @,;.

z
3

(12)
It is then convenient to introduce the first integrals
M@ =lAP+1AP, @) =|AP +1A5F  (13)
and to compute the z evolution of the two functions
vin= AP - A% v = AL - |ASP (14)
One finds
v =+4M MM, cos Oy,
043 =—4MM3M, cos Dy, (15)
and, by elimination of M,
(0012)* = 4%2 - U%z)Mgcosz Dy,
(0,043)% = 4(f3; — v33)M2cos? Dy, (16)

If one defines two functions u,(z,1), us3(z, ) by the relations
Mcos® @1, = (Jupn)’,  Mocos® @ys = (Jug5), (17)

the two Egs. (16) can be integrated explicitly in terms of the
two variables u;,, Uys,

U= —f%z COS[2(M]2 - C12)]’

Va3 = — fi3 cos[2(uy3 + 43)], (18)

with ¢y, and c,3 arbitrary functions of 7. Basic trigonometry
then yields

A=+ fiy sin(ugy — cpp)e’®,
Ay =+ f13 cos(uyy — c1p)e’?,
Ay=—fy3 sin(uys + cg3)e,

Az =+ fu3 co8(ug3 + Cq3)e'®3. (19)

We have not succeeded to similarly integrate the equa-
tions for ¢; in Eq. (12) without any additional assumption.
Let us therefore assume, as was done in [26,27,30], that these
four equations for the spatial evolution of ¢; identically van-
ish, i.e., that sin ®;,=sin ®,3=0 and the phases ¢; are inde-
pendent of z,

0.9;=0, j=12,34,

(I)]Z =N, @43 = Ny3, niy and Ny3 integers,

d.¢,=0, (20)
and for convenience let us redefine solution (19) as

E=(d.u)e'*e,

A] = +f12 Sin[slz(l,t — Clz)]ei‘Pl,
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Ay =+ f1p coslsip(u — C1p)]e'2,
Ay == fus sinfsgz(u+ Cy3)]e’,

Ay =+ fy3 cos[sys(u + Cy3)]e®,

p— ™ n
q’12=€01—¢2—%+5=”1277, sp=(=1)"2,

p— ™ n
q’43=¢4—¢3—%+5=”437ﬂ S43=(=1)"3,

I =

m

[£1, sin 2(u — Cya) = f35 sin 2(u + Cy3) e’ e ™2,

0 | —

Iy=f1, cos 2(u— Cyy) + fi3 cos 2(u+ Cy3),
Ny, ng € Z. (21)
The last complex equation to be enforced [Eq. (2)] is

equivalent to the two real equations

1
d.0u+ —d.u—K sinQu+ ) =0,
T

. sin . .
Ke'® = ’YNLZ 8 (f%ze—ZzClz _f£213€21c43)’ (22)
(9.0)(3,0,) + (cot 9K sin(Qu+ ) =0, y=|e’.
(23)

If d,¢0,# 0, the ODE (23) (with ¢ as a parameter) inte-
grates as

cos(2u + a) = + tanh 2{ M[Z - Zo(t)]} ,
e
sin(2u + @) = — sech 2{ %::tg[z - zo(t)]}, (24)

then Eq. (22) restricts this solution to

Q,=— C07t_g(t— ty), du=—Krsech2K7(z-z),
(25)
cos(2u + a) = —tanh 2Kz — z),
sin(Qu + a) = —sech 2K7(z — z), (26)

in which K,#,,z, are arbitrary constants. This solution can
also be viewed as the general solution of the reduction
I,/ E=complex constant of the intrinsic system [Eq. (5)],
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2K
Iy=- —tanh 2K 7(z - z;)
o LT g
T T e=—ily(sin g) 7y,

=— =)/ TK - gech 2K 7(z — 7),
(27)

in which the wave number K is arbitrary. Very similar to [31]
[Eq. (23)], this solution is however new and it depends on
both space and time.

If 9,0,=0, then y must be purely imaginary

e, =0, cosg=0, (28)

this defines the already investigated damped sine-Gordon
equation.

The result of the above computation can be summarized
as follows. Under the three assumptions that the phases of
each A ; are independent of z, the phase of £ is constant, and
v is purely imaginary, one obtains a solution of systems
(1)—(3) represented as Eq. (21), in terms of the real solution
u of a damped sine-Gordon Eq. (22) (with sin g=1). The
representation [Eq. (21)] displays the invariance
(1,2,3,4,9.,u)—(4,3,2,1,-9,,—u) and depends on six ar-
bitrary real functions of  (fj5,f43,C12,Caz, @1+ @2, @4+ @3)
and one arbitrary real constant (the phase ¢,).

IV. :3(y)=0: FROM REAL DAMPED SINE-GORDON
TO CGL3

It is a classical result [33] that the nonlinear Schrodinger
equation (NLS) can be derived from the sine-Gordon equa-
tion by a reductive perturbation method, see details in, e.g.,
[34]. When applied to the real damped sine-Gordon Eq. (22),
this method yields a complex cubic Ginzburg-Landau equa-
tion which we now derive. Consider the damped sine-
Gordon Eq. (22)

1
E=d,0.u+—du—K(@t)sin[2u + a(1)] =0, (29)
T

in which u(z,?), K(t), a(t), and 7 are real.

Following the classical derivation of NLS from the sine-
Gordon equation [33,34], we define a multiscale expansion
in which u is of order &, while K(¢) is of order one,

k

t...),

+00
alt .
u(z,t) + —; )282 goilz.82, ... ekt e
Jj=0

40

K@) =2 stj(sjt, ...,et,...), T=unchanged,
=0

+00

E=82 ¢E}, (30)
j=0
and after renaming the scaled independent variables as
ez=27,, =T, (31)

one requires each coefficient £; to vanish.
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The zeroth order,
1
L(PO = O, L= (‘77‘0(‘720 + _(‘720 - 2KQ(T0, .. .), (32)
T

admits the plane-wave-type complex solution

®o = A(Z17227 Tl’ TZ’ .. ')el’[qu—F(To,. ' )]’ (33)

in which the complex constant ¢ and the complex function F
obey the dispersion relation

q oF
i—+qg— —-2K,=0. 34
; q T, 0 (34)
Since K, may depend on T, it is convenient to introduce the
primitive Q, of K, and to represent the dispersion relation by
its integrated form

T 0

F=—i—0+2%, &:KO. (35)

T q aT,
The physical solution of Eq. (32) is then chosen as the real
part of the above complex plane wave

() =A(Z1,22,T1,T2, .. .)e(DO +c.c.,

T,
<1>0=iqzo—7°—2i%.

(36)
The first-order equation, which defines the evolution of
@1,

L(Pl =- Gle(DO - G_leqjo,

2iKy, JA . A
G =-""—u+ig— -2|K, -

)A, (37)
q 0Zl (9T1

aT,
requires the vanishing of G, in order to avoid ¢; to diverge.
This defines two complex conjugate linear partial differential

equations (PDEs) for A(Z,,T,) and A, and the solution of this
first order is

¢ =0,
A=a(Z,-v,T1,Zy— v T2 T, ... )e",
- 2K, d
Ll L
q q aT,

in which the complex function of integration a is to be de-
termined.

Since the group velocity v, is generically complex, let us
introduce the two complex conjugate independent variables
XYy,

Xlzzl—Ung, le)?l:Zl—ﬁng. (39)

The second-order equation similarly defines the evolution of
P2,

Loy=— ;lKO(e3<q’0+q")a3 + @3 4G Por

— G+, (40)
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da _iK, da 2K, Fa K,
Gy=i—-2—5—+— 0 4=22R(@0+ )| 412
aT, ~¢* X, ¢ (92X1 q
2 d
(Kz Q‘)a, (41)
q T,

and the cancellation of the secular terms requires G, to van-
ish, which defines two complex conjugate nonlinear PDEs
for a(X,,T,) and a(Y,,T,) and yields the value

ZTKO

= ——ae

3@+ 4 ¢ c. (42)
247K, - 9iq

Therefore, under the reductive perturbation method, the
damped sine-Gordon Eq. (22) generically yields the complex
PDE G,=0 Eq. (41), in which K,,K;,K, depend on T5.

In the pure sine-Gordon limit 1/7=0, K(r)=ko=const,
with g real, one checks that the PDE G,=0 reduces to the
nonlinear Schrédinger equation,
K(t) = ko,

1
-=0, q real,
r

_da 2k & k
“ 30 - +4-2|al2a=0. (43)
z9T2 (?ZX] q

In the generic case (g complex), the PDE G,=0 Eq. (41)
would be identical to the cubic complex Ginzburg-Landau
equation (CGL3) if its coefficients were independent of T.
Let us therefore try to get rid of this dependence on 7, by
performing the transformation

a(Xl’T2) = lﬂ(f, 77)9)”2),

E=X,-f1(Ty), n=/f(T,), (44)

in which the complex functions f;, N and the real function f,
can be freely chosen. The best one can achieve is to concen-
trate the dependence on 7, in only one coefficient, e.g., the
gain or loss term. Then the functions of the transformation
are the following:

dh_ K dh

=— , =K,,
dT2 q2 dT2 0
2i R
N f KldTl—ZiLZ) K,dT,. (45)
q l4l
The final CGLE is
iy 25y 4 02T/ ™23(9)7, (CI)
i— + = + —e 2TV 23 D% Y2y 4 2 _¢ 0.
on e g lql* K,

(46)

in which the coefficient K,/K, depends on 7 and the other
coefficients are complex constants. Under the condition that
K,/K, be independent of 7, the above PDE (46) is then
identical to the CGL3 equation.

We want to emphasize here that the CGLE [Eq. (46)]
includes only the longitudinal space coordinate £ for the vari-
able . It does not contain any transverse spatial coordinates.
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We thus obtain the CGLE for describing the dynamics of
the FWM in a nonlocal medium with a dissipative term,
where the dependent variable is the envelope of the potential
u. With the definition |£|=d,u and the multiscale expansion
|€|=e22,6/E;, one can obtain the expression which connects
the value u with the envelope of the spatial distribution of the
nonlinearity,

&= % =ig€, 7])ei(qzo—2/qQo—29“(f1)/\q\2Q2+iT0/T) +ec.

Zy
(47)

Taking into account Eq. (27) which connects £ and the
intensity field /,,,, we obtain that both the nonlinearity spatial
shape and the time behavior of the intensity pattern are the
same spatiotemporal distribution, where the magnitudes 7,
and & only differ by a constant. The complex sign “i” means
that the functions 7, and £ have a relative shift in the spatial
coordinate.

Thus the CGLE (46) together with Egs. (47) and (27)
describe the spatiotemporal dynamics for the physical field
I, (the interference pattern), the parameter of the phase tran-
sition |€| and the potential u.

V. CONCLUSION

We have obtained the complex Ginzburg-Landau equation
from the nonlinear systems of the dynamical four-wave mix-
ing that includes degenerate wave coupling in a cubic non-
linear medium which has both nonlocal and relaxation re-
sponse. The obtained CGLE is just the cubic one when the
response is purely nonlocal, i.e., there is the energy transfer
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only between the interacting waves but no phase transfer. In
this case the initial FWM system is reduced to a damped
sine-Gordon equation containing the first derivative on the
spatial longitudinal coordinate z. We show that by applying
the reductive perturbation method, the real damped sine-
Gordon equation reduces to the cubic CGLE except for a
loss or gain coefficient dependent on time. The cubic CGLE
describes the dynamics of the formation of localized states
(intensity patterns) along longitude z direction in bulk non-
linear medium.

The interest is to apply the reductive perturbation method
to the generic system with the complex response. We show
the initial generic complex FWM is reduced to the intrinsic
system, which has three dependent variables (1,,, £ are com-
plex ones, and I, is real). The intrinsic system has a form
very similar to the complex Maxwell-Bloch system. It coin-
cides completely with the Maxwell-Bloch system when at
the same time the response is purely nonlocal the time relax-
ation is absent. In optics there exists an example of reduction
in the Maxwell-Bloch system to the CGLE, which describes
the formation of transverse mode structures in lasers [35],
but they are derived in a high-order approximation.

Till nowadays a number of solutions of the CGLE have
been found including stable localized patterns [4], i.e., dissi-
pative solitons. These solutions may find applications in the
dissipative FWM system. They have great potential for prac-
tical use in photonics by applying wave-coupling with a non-
local medium.
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