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Analytical description for field-line wandering in strong magnetic turbulence
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We investigate analytically the random walk of magnetic field lines. In previous analytical treatments of field
line wandering or random walk, it was assumed that the turbulent magnetic field is much weaker than the mean
field. In the present paper, we develop an improved analytical method to describe the stochastic properties of
turbulent magnetic fields. This approach is an extension of the standard theory of field line wandering and can
be applied to weak as well as to strong magnetic turbulence.
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I. INTRODUCTION

In the theory of field line wandering, we assume a super-
position of a mean magnetic field EO and a stochastic/
turbulent component 5B. Such configurations can be found
in various astrophysical contexts such as the solar wind or
the interstellar medium. Due to the stochastic component,
field lines are not well defined and have to be described
using methods of statistical physics. The main aim of the
theory of field line random walk (FLRW) is the computation
of the field line diffusion coefficient and the field line distri-
bution function. These parameters are also important for de-
scribing the interaction between turbulence and charged par-
ticles such as cosmic rays (see, e.g., [1-5])

In initial investigations of FLRW, a simple slab model for
the turbulence was used (see, e.g., [6]). The slab model is a
one-dimensional model for the turbulence, in which the sto-
chastic field depends only on the coordinate along the mean
magnetic field SB(%)=B(z). For such a simplified model,
the theory of field line wandering is exact. However, slab
turbulence is not a very realistic model for approximating
solar wind or interstellar turbulence. In the first case obser-
vations have shown that there is a strong perpendicular com-
ponent (see, e.g., [7]) also known as two-dimensional (2D)
modes. In the two-dimensional model, the stochastic field
depends only on the two coordinates across the mean mag-
netic field corresponding to SB(%)= 8B (x, y). For small val-
ues of the plasma beta (which is the ratio of the plasma
pressure to the magnetic pressure), the theory of nearly in-
compressible magnetohydrodynamics (MHD) (see [8]) pre-
dicts a collapse in dimensionality making turbulence in the
solar wind a superposition of a dominant 2D and a slab com-
ponent. In the case of interstellar turbulence in situ observa-
tions are, of course, not available. In this case, however,
numerical simulations of turbulence have demonstrated that
the slab model is not very accurate (for a review, see [9]).

For improved turbulence models such as slab/2D models
or isotropic and anisotropic models, an exact description of
FLRW is no longer possible. In this case different theories
have been proposed in the past few years. The most promi-
nent examples are:
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(i) Quasilinear Theory. Jokipii and Parker (see [6]) used a
quasilinear theory (QLT) for computing the field line diffu-
sion coefficient. QLT, which is a first-order perturbation
theory, assumes that the turbulent magnetic field can be
evaluated along unperturbed field lines while a field line dif-
fusion coefficient is computed.

(ii) Nonlinear Diffusion Theory. Matthaeus et al. (see
[10]) developed a nonlinear theory for computing field line
diffusion coefficients. This theory is based on the assumption
that the field lines are diffusive and obey Gaussian statistics.
Furthermore, the so-called Corrsin approximation has been
used [11-13].

(iii) Generalized Nonlinear Theory. Shalchi and Kourakis
(see [14]) generalized the diffusion theory of Matthaeus et al.
to allow also for nondiffusive behavior of FLRW. For several
turbulence spectra proposed by previous authors, Shalchi and
Kourakis (see [15]) found superdiffusive FLRW. Superdiffu-
sion of field lines was also obtained by Zimbardo et al.
[16,17].

These analytical theories were applied to different turbu-
lence models and physical situations in the previous years
(see, e.g., [18-20]). Other authors applied analytical forms of
field line diffusion coefficients to the transport of cosmic
rays by employing a Chapman-Kolmogorov approach (see
[1-5], ). Recently, Shalchi er al. [21] showed that the as-
sumed statistics is less important, confirming the theories of
Matthaeus et al. [10] and Shalchi and Kourakis [14], in
which the ad hoc assumption of Gaussian statistics has been
used.

Another problem that we have ignored in the discussion
above is the time dependence of the turbulent field 5I§(f, 1).
To include such dynamical turbulence effects in the theory of
field line wandering is difficult. Therefore, we employ the
so-called magnetostatic approximation in the present paper.
Time dependent turbulence was employed in the context of
cosmic ray propagation studies (see, e.g., [22] for a review).
A simple example for a dynamical turbulence model would
be the assumption that the turbulence dynamics can be rep-
resented by undamped parallel propagating shear Alfvén
waves. This model was combined with the standard theory of
field line wandering by [3].

The basis of any analytical theory of FLRW is the field
line equation

dx _B[x()]__ oB[¥(z)]
dz BIE(@)] By+ 0B i)

(1)
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where we have chosen our system of Cartesian coordinates,
so that the z axis is aligned along the mean magnetic field
(EozBOEZ). The notation 8B[x(z)] means that the turbulent
field, which depends on all three Cartesian coordinates, is
computed along the field line, which is represented by the
z-dependent vector x(z).

Equation (1) can be simplified by assuming weak turbu-
lence (6B;<<B,) or at least a weak parallel component of the
turbulent magnetic field (6B, <<By). In these cases the funda-
mental equation in the theory of FLRW reads dx
=dz6B,/B,. This form has been used in previous linear and
nonlinear investigations of field line wandering (see, e.g.,
[10,14]). In the following we call this approach the weak
turbulence approximation (WTA).

It is the purpose of the present paper is to develop an
analytical approach for FLRW without assuming a weak tur-
bulent magnetic field. Our approach is based on ideas devel-
oped by Shalchi and Dosch [23] for describing cross-field
diffusion of charged energetic particles.

II. THEORY OF FIELD LINE WANDERING
A. Fundamental equations
By defining the parameters [24]

dx(z)
dz

. D)= dz—f) @)

D.(z) =

the field line equation [see Eq. (1)] can be written as
OB [%(2)] = Di(2){By + 6B [%(2) ]}, 3)

with i=x,y and the field line vector X(z). The ij component
of the field line diffusion tensor «;; can be computed by
employing the well-established Taylor-Green-Kubo (TGK)

formulation (see [25-27)),

iy = f d=(DA(2)D}(0). )

0
From Eq. (3) we can derive
(3B,(2)B;(0)) = (Di(2)D}(0)) By +(Di(2)D;(0) 8B.(2) 3B:(0))
= (D;(2)D}(0))B; +(D(z)D;(0))
X(6B.(z)6B;(0)). (5)

Here, we assumed that third-order correlations are zero and
that fourth-order correlations can be approximated by a
product of two second-order correlations as suggested by
Matthaeus et al. [28]. Note that 6B;(z) denotes 6B,[%(z)] (the
magnetic field has to be evaluated along a field line). The
validity of the approximation used in Eq. (5) has not been
explored theoretically. However, in order to develop an ana-
lytical theory of FLRW, this approximation is necessary. Pre-
viously this approximation has been used in cosmic ray dif-
fusion theory and the results of the corresponding theory
were compared with computer simulations (see, e.g., [22] for
a review). According to such comparisons Eq. (5) provides a
good approximation.

Equation (5) can be combined with the TGK formula [Eq.
(4)] to yield
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. f (8B,(z) 9B;(0))
ij = 0 ZB(Z) + <5BZ(Z)5B:(O)> .

(6)

Although mathematically complicated, Eq. (6) can be seen as
a fundamental equation in the theory of FLRW. In the fol-
lowing, we will evaluate Eq. (6) analytically and numeri-
cally.

B. Application of Corrsin’s independence hypothesis

A shown above, one has to know the magnetic correlation
function (6B,(z) 5B}k(0)) in order to compute the diffusion
coefficient [see, e.g., Eq. (6)]. In the present paper we de-
scribe two possibilities to compute this fundamental func-
tion. The first, which is described in the present paragraph, is
the standard approach which is used in the theory of FLRW.
The approach relies on the so-called Corrsin approximation.
An alternative method is presented in the next section.

To replace magnetic correlation functions one can use

(8B,(2) 8B}(0)) = f &k f &K' (5B, (k) 8B (k' )elE-1)K" 5001y

o= f Pk f d*k'(5B(k) 5B (K'))

X ei[lz.x(z)-i' -)E(O)]>
~ 3 2/ ik [(z)-x(0
~fdkpij(k)<e [%(2) ()]>. (7)

Here, we have employed a Fourier representation of the tur-
bulent field, the Corrsin approximation [11-13], assumed ho-
mogeneous turbulence, and have introduced the magnetic
correlation tensor in the wave vector space Pl-j(E)
=(6B,(k) 53?(12)). The vector £ is the turbulence wave vector.
The Corrsin approach has been used in the nonlinear theory
of FLRW developed by Matthaeus er al. [10]. It should be
noted, however, that the same approximation has already
been used by Lerche [29] who called this approach a
random-phase approximation since it is assumed that the
amplitudes 6B;(k) are uncorrelated from the phases
exp(ilz-f). As far as we have been able to ascertain no de-
tailed investigation of this assumption has ever been given—
despite its extensive use. However, several authors compared
analytical results which are based on the Corrsin approxima-
tion with computer simulations (see, e.g., [18]). According to
this work the Corrsin approximation works very well in the
theory of field line wandering.

The characteristic function in Eq. (7) can be replaced by

(e”z‘[f(Z)‘f(O)b = cos(k||z)e‘Kik2L|z|. (8)

Equation (8) is valid for Gaussian statistics [30] and for
diffusive FLRW. The parameter «, denotes the field line
diffusion coefficient in axisymmetric turbulence with «
= Ky = Ky, and k., =k, =0. By combining Egs. (7) and (8) we
can easily derive
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(6B,(2)8B}(0)) = f &P (R)cos(lz)e™ Kk (9)

Equation (9) in combination with Eq. (6) allows the calcula-
tion of a field line diffusion coefficient. In order to apply this
formulation, one has to specify the properties of the correla-
tion tensor P; j(lg). The general form of this tensor for axisym-
metric turbulence has been discussed by Matthaeus and
Smith [31]. For vanishing magnetic helicity these authors

derived
kik,,
L ] . (10)

le(k) A(kl’ki)|:61m k2

The form Eq. (10) takes into account the solenoidal con-
straint and can be applied for arbitrary (but axisymmetric)
turbulence. The function A(kj,k,) is the turbulence wave
spectrum which has to be specified.

C. Recovery of the standard theory in the limit
of weak turbulence

In the following, we show how the standard theory of
FLRW can be derived from Eq. (6) by assuming weak tur-
bulence. In cases, in which the parallel turbulent field is
much weaker than the mean field (6B,<B,), Eq. (6) be-
comes

o0

g dz(6B(z) 6B;(0)). (11)
BO 0 ’

With Eq. (9) and by assuming axisymmetry, we derive

L= iz f i dz(8B,(z) 8B;(0))
BO 0

1 R 0
= _2f d3kpxx(k)f dz cos(k”z)e"&kil
B 0

&2
IUNLEN L—Ki

fd kP, (k) Pk (12)
Here, we assumed convergence of the wave-number integral.
However, there is a whole family of wave spectra, for which
the integral is not convergent. These cases correspond to su-
perdiffusion of magnetic field lines (see, e.g., [15,20]). For-
mula (12) corresponds to the diffusion theory proposed by
Matthaeus et al. (1995). As demonstrated, we can derive this
theory from the more general Eq. (6) by assuming 6B, <B,,.
In the next section, we drop this assumption.

III. ANALYTICAL AND NUMERICAL RESULTS FOR AN
ARBITRARY TURBULENCE STRENGTH

A. Simple models for magnetic correlation functions

In contrast to the previous paragraph, we now use a dif-
ferent approach for replacing the magnetic correlation func-
tions. The correlation functions which enter Eq. (6) are the
correlation functions along the magnetic field line. There-
fore, we can write
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<%ﬂﬁ$w»5fwj@w&®&m®mﬁmmn
(13)

For the field line distribution function fz;(x,y;z) we can
assume again a Gaussian distribution and diffusive FLRW,

1

47T|Z|Kl

fri(xy;z) = e‘(xzﬂ'z)/(“ﬁld). (14)

To compute field line diffusion coefficients we also have to
specify the magnetic correlation function. To ensure math-
ematical tractability and for simple analytical estimations we
employ the following forms (again we have assumed axi-
symmetry with respect to the mean magnetic field):

(B,(%) 5B(0)) = B2 e VL

(8B,(%)9BY(0)) = 6B~ e~ (15)

A more realistic description of turbulence can be achieved by
replacing the magnetic correlations by using the Fourier
transformation approach described in Egs. (7)—(9). In this
case one has to specify the wave spectrum and other turbu-
lence properties. It would be straightforward to combine this
approach with Eq. (6). In the present paper, however, we
abstain from such calculations for the sake of mathematical
tractability.

The model defined in Eq. (15) describes the decorrelation
of the magnetlc fields with increasing distance. The param-
eters 5B 535 and 532 describe the total strength of the
turbulent magnetic fields in the different directions with re-
spect to the mean field. /; and [, are the correlation lengths
along and across the mean magnetic field.

From Eq. (15) we can obtain models used previously:

(i) Isotropic turbulence. The isotropic model can be ob-
tained from Eq. (15) by setting 5B)2(:533:5B§:5B2/ 3 and
lHZZ 1

(ii) Slab turbulence. The slab model can be obtained from
Eq. (15) by setting B2=0 and [, =.

(iii) Two-dimensional turbulence. The two-dimensional
model can be obtained by settlng 5B =0 and /;=. It should
be noted that the assumption 5B 0 is part of the standard
two-dimensional model used in Matthaeus et al. [10] and in
other articles. However, two-dimensional models with 5B§
# 0 can also be formulated.

B. Field line diffusion coefficients for an isotropic distribution
of the magnetic fields

By combining Egs. (14) and (15) with Eq. (13) we find
for the correlation functions along the magnetic field lines
the following forms

2,72
oBZe i

(6B,[%(z)|6B;[x(0)]) = W
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2,72
oB2e~

(B LXOB LT = 1

(16)
We can simplify Egs. (16) if we assume an isotropic field
distribution corresponding to 8B§=5B§=5B?=5Bz/ 3 [32].
By combining Egs. (16) and (6), and employing the integral
transformation £=z/[, we find

1 (" &
K=-B f dé ¢ 1 . (17)
O | 44KL2+ §B26‘52

Here, we have used B=0B/B,, L=1[;/1, and the dimension-
less diffusion coefficient K=« /[. The field line diffusion
coefficient is controlled by two parameters, namely, the
strength of the turbulent field with respect to the mean field B
and the ratio of the two correlation length scales L. Equation
(17) is a nonlinear integral equation, which is solved in the
next section numerically and for some cases analytically.

C. Special cases/previous results

For special parameter regimes we can simplify Eq. (17) as
follows.
(i) The limit B—0. In this case, Eq. (17) becomes

B [~ et
K~—| dé——. 18
3]0 §1+4KL2§ (18)

This case corresponds to the WTA used in previous investi-
gations. In this special case Eq. (18) can be multiplied by L?
to give

R> (* et

KL’=— | dé——-. 19
3, §1+41<ng (19)

In this limit the diffusion coefficient KL> depends only on
one independent parameter, namely,

_Bh

R=BL-= .
Byl

(20)
The parameter R, which is the well-known Kubo number,
controls the solution of Eq. (19) and separates the quasilinear
from the nonlinear regime (see Figs. 1-4 of the present pa-
per).

(ii) The limit KL*>— 0. In this case, Eq. (17) becomes (see,
e.g., [33])
_§2 —

1 “ J B
K= B f dg——— =~ %Lim(— 5), (1)
0 1+ 5326_52

with the polylogarithm function Li,(z) [34]. This formula
corresponds to the quasilinear result which can be obtained
be setting K=0 on the left land side of Eq. (17). Within QLT,
the diffusion coefficient K depends only on the relative
strength of the turbulence B. For completeness we note that
QLT is exact in the limit L— 0 corresponding to slab turbu-
lence.
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FIG. 1. The field line diffusion coefficient K=« /I versus the
strength of the turbulent magnetic field with respect to the mean
field B=6B/B, for L=1)/l, =1 corresponding to isotropic turbu-
lence. Shown is the nonlinear result obtained by solving Eq. (17)
numerically (solid line) and the analytical result (dotted line) ob-
tained by employing SQLT (B,K— 0). The analytical result for this
limit is given by Egs. (22) and (23). The weak turbulence result
without the quasilinear approximation is also shown (dashed line).
Also shown is the value R=1 for the Kubo number, which separates
the linear and nonlinear regimes within the WTA.

(iii) The limit B—0, KL*>—0. In this case, Eq. (17) be-
comes

32 ) [
K~— f dée € ~ g2, (22)
3 ), 6

which can be written as

10
R=1
—

=, -3
>|£I—| 10k
N

4

10 : :
107 10™ 10° 10’ 10°

L=|”/I N

FIG. 2. The field line diffusion coefficient K=« /I versus the
ratio of the turbulence correlation lengths L=[/1, for weak turbu-
lence B=6B/By=0.1. Shown is the nonlinear result obtained by
solving Eq. (17) numerically (solid line) and the analytical result
(dotted line) obtained by employing SQLT (B,K—0). The analyti-
cal result for this limit is given by Egs. (22) and (23). The weak
turbulence result without the quasilinear approximation is also
shown (dashed line) but is in perfect coincidence with the solid line.
Also shown is the value R=1 for the Kubo number, which separates
the linear and nonlinear regimes within the WTA.
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FIG. 3. The field line diffusion coefficient K=« /I, versus the
ratio of the turbulence correlation lengths L=/;//, for intermediate
turbulence B=0B/By=1. Shown is the nonlinear result obtained by
solving Eq. (17) numerically (solid line) and the analytical result
(dotted line) obtained by employing SQLT (B,K—0). The analyti-
cal result for this limit is given by Egs. (22) and (23). The weak
turbulence result without the quasilinear approximation is also
shown (dashed line). Also shown is the value R=1 for the Kubo
number which separates the linear and nonlinear regimes within the
WTA.

[ 2
Vi ( 6B

The formula can be derived by employing QLT (KL?—0) in
combination with the WTA (B — 0) [35]. In this very simple
case, the field line diffusion coefficient depends linearly on
the parallel correlation length and the relative magnetic en-
ergy of the turbulence. This case corresponds to the standard
quasilinear theory (SQLT) derived earlier (see [6]).

10 ;
R=1
10’ el 1
S
ﬁ_‘ 10° ¢
x
107"t
2
10 :
107 107 10‘; ! 10°
L=l /I
'L

FIG. 4. The field line diffusion coefficient K=« /I, versus the
ratio of the turbulence correlation lengths L=//[, for strong turbu-
lence B=06B/By=10. Shown is the nonlinear result obtained by
solving Eq. (17) numerically (solid line) and the analytical result
(dotted line) obtained by employing SQLT (B,K —0). The analyti-
cal result for this limit is given by Egs. (22) and (23). The weak
turbulence result without the quasilinear approximation is also
shown (dashed line). Also shown is the value R=1 for the Kubo
number, which separates the linear and nonlinear regimes within the
WTA.
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D. Numerical results for field line diffusion coefficients

Equation (17) can be evaluated numerically exactly by
using an iteration method. Figure 1 shows the field line dif-
fusion coefficient versus the turbulence strength B for an
isotropic model (L=1). Figures 2—4 show the field line dif-
fusion coefficient versus the parameter L for different values
of the turbulence strength B. Large values of L correspond to
two-dimensional turbulence and small values of L to slablike
turbulence.

In Fig. 1, it is shown that SQLT works very well for weak
turbulence as expected. For strong turbulence, however, we
find that QLT as well as the WTA are not very accurate and
the results of the present article have to be used. As shown in
Figs. 2-4, QLT is also inaccurate for large values of L cor-
responding to two-dimensional turbulence. The WTA works
very well for turbulence that is not too strong.

E. Influence of the Kubo number

In Eq. (19) we identified the Kubo number since it con-
trols transport in the weak turbulence limit (6B, <B,). The
influence of the Kubo number on the transport of field lines
and particles has been discussed by other authors (see, e.g.,
[16,36—40]). In Fig. 1 we assumed L=1 and, thus, R=B.
Therefore, the plot also shows the dependence of the dimen-
sionless diffusion coefficient on the Kubo number R. Within
SQLT we can use Eq. (23) which corresponds to K~ R?. If
we drop QLT, and employ only the WTA we have to use Eq.
(19). According to Fig. 1 we find for large values of the
Kubo number the relation K~ R. For small Kubo numbers
the quasilinear regime holds.

If we drop all approximations and employ Eq. (17), we no
longer find the simple dependence on the Kubo number as in
the WTA. Instead, the dimensionless field line diffusion co-
efficient depends on two parameters (e.g., on R and B or L
and B). According to direct numerical solutions of the field
line equation (see [17]) the Kubo number is not the only
parameter to determine the value of the diffusion coefficient.
The value of the anistropy ratio L also plays an important
role. Our analytical theory of FLRW agrees with this conclu-
sion.

F. Comparison with the percolative scaling

In general one could assume that the scaling of the field
line diffusion coefficient is given by

K=aBPLY= aRPL". (24)

Although this formula is not always correct [see, e.g., Eq.
(21)], is can be used to represent the diffusion coefficient for
several cases. One example is the standard quasilinear result
of Eq. (23). By comparing Egs. (24) and (23) we find «
=\m/6, B=2, and y=0 for quasilinear transport.

Isichenko [38] predicted the existence of a percolative
regime with 8=0.7 and y=-1.3. The percolative scaling
should be valid for high Kubo numbers and its existence has
been investigated by several authors (see, e.g., [41-43]). In
Fig. 5 we have computed the parameter y for fixed B in the
limit of large values of L. This limit should correspond to the
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FIG. 5. The parameter y which is defined as the exponent in the
field line diffusion coefficient K=aBPL? versus the parameter L.
We have considered weak turbulence with B=0.1 (dotted line), in-
termediate turbulence with B=1 (dashed line), and strong turbu-
lence with B=10 (solid line). Also shown are the standard quasilin-
ear result with y=0 and the percolative scaling with y=—-1.3.

limit of large Kubo numbers. Our result predicts values for y
between —0.5 and —1.7. Although our results are close to the
percolative scaling for certain values of B, we cannot find the
exact percolative scaling. The reason for our different result
could be the application of the Corrsin approximation and
the approximation of fourth-order correlations used in Eq.

(5).

IV. SUMMARY AND CONCLUSION

In the present paper, we have revisited the problem of
FLRW. For any turbulence model except the case of pure
slab fluctuations one has to employ a quasilinear or nonlinear
theory for describing the field line statistics. In previous in-
vestigations the assumption of weak turbulence (JB,<<B)
was employed to simplify the field line equations. The WTA
has been used in quasilinear as well as nonlinear calculations
of field line diffusion coefficients.

In the present paper, we have generalized the standard
nonlinear theory of FLRW developed previously (see, e.g.,
[10,14]). The approach no longer relies on the WTA since the
restriction 0B, << B is no longer used in the theory. By com-
bining the fundamental and general formula (6) with Eq. (9)
one can compute field line diffusion coefficients. The result
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depends on the magnetic correlation tensor P,,(E). For sim-
plicity we combined Eq. (6) with Gaussian models for the
decorrelation of magnetic fields [see Eq. (15)] to derive a
nonlinear integral equation for FLRW [see Eq. (17)]. From
this general formula we derived the quasilinear limit, the
weak turbulence limit, and the combination of these two lim-
its. If only the WTA is applied, the solution for the diffusion
coefficient depends only on the Kubo number R. In the gen-
eral case (e.g., for strong turbulence) this simple dependence
on the Kubo number cannot be seen.

We have also computed field line diffusion coefficients by
solving Eq. (17) numerically. Figures 1-4 show the field line
diffusion coefficients and their dependence on the turbulence
strength B=6B/B, and the ratio of the two correlation
lengths L=[;//,. As expected, the previous result based on
the WTA can be confirmed for weak turbulence (6B <<B,).
Furthermore, QLT is valid for small values of the parameter
L corresponding to slablike turbulence. For strong turbulence
previous approaches (QLT as well as WTA) do not agree
with our new result. Furthermore, the solution is controlled
by two independent parameters, namely B and L instead of
one parameter R as in the weak turbulence limit considered
previously. We have also explored the scaling of the diffu-
sion coefficient by assuming K~ L”. As expected we found a
result which disagrees with the quasilinear scaling (y=0).
Furthermore we have compared our result with the percola-
tive scaling predicted by Isichenko [38]. This comparison is
shown in Fig. 5.

The improved description of FLRW developed here pro-
vides a useful tool for computing field line diffusion coeffi-
cients and for improving our understanding of fundamental
properties of magnetic turbulence and charged particles
which experience scattering by interaction with turbulence.
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