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A transition between Kelvin’s equilibrium states is investigated. Using nonlinear theory, we have shown that
the transition of polygonal patterns of the hollow vortex core from mode N=2 through N=4 occurs in two
steps: quasiperiodicity and frequency locking. We have also shown that this transition can be modeled by a
one-dimensional circle map. We extrapolate the present result and hypothesize that the transition between
Kelvin’s equilibria follows the same route and the ratios of locking frequencies form a Farey sum and staircase
function against the control parameter, where the staircase corresponds to the rational frequency ratio, �N
−1� /N.
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I. INTRODUCTION

A hollow vortex core in shallow liquid, produced inside a
cylindrical reservoir using a rotating disk near the bottom of
the container, exhibits polygonal patterns �1,2�. These forma-
tions are similar to those observed in some geophysical flows
such as polar vortices, tornados, and tropical cyclones. Flow
fields of this type are often idealized as two dimensional
�3,4� with strong point vortices embedded within a low and
diffuse background vorticity �5�. Interest in vortex patterning
started with the work of Kelvin �6� and continued with Th-
omson �7� and later on with Havelock �8� who systematically
investigated the stability of steady-state rotation of N identi-
cal point vortices located in a plane at apexes of regular
N-gon. The case of N=7 remained theoretically dubious until
Cabral and Schmidt �9� and Kurakin and Yudovich �10�
proved that in theory, the heptagon is also stable.

From the experimental side, the work of Yarmchuk et al.
�11� disclosed the existence of quantized stationary vortex
arrays in a rotating cylindrical pail containing superfluid 4He
below the � point. Perhaps the awkward conditions encoun-
tered near the absolute zero did not permit them to examine
directly the stability of different ensembles. The experimen-
tal studies of Durkin and Fajans �12� on the stability of pure
electron plasma columns in Malmberg-Penning traps �a two-
dimensional inviscid flow simulator� concluded that the elec-
tron patterning is stable if N�6 and unstable for N�8.
Likewise, recent observations using normal fluid �water�
reached the same conclusions �13�. The case of N=7 has not
been observed in water �13�. In the electron column experi-
ments, the pattern’s lifetime decreases with an increase in N.
While any pattern with N�7 survives for thousands of revo-
lutions, the N=7 pattern lasts for merely 300 rotations �12�.
The stability range of different equilibria states in normal
fluid �water� decreases with the disk speed �13�, with the
N=6 equilibrium enduring within a very narrow interval.
Therefore, if the heptagon exists �in real settings�, it must
live in an exceedingly fine range of disk speeds. Since vari-
ous types of internal and external disturbances contaminate
the real problem, the N=7 system may not even appear.

While the question of Kelvin’s equilibrium stability has
been extensively investigated �1,2,13�, the mechanisms lead-

ing to the transition from one equilibrium state to the other
remain unexplored and unknown. There is no comprehensive
investigation of the physical process involved when a given
N-gon transforms or bifurcates into �N+1�-gon in normal
fluids such as water. The recent studies on the subject �2,13�
have just skimmed over this question. For instance, the tran-
sition was just described as surprising and dramatic �2� while
in our earlier contribution �13� we have just alluded to it and
described it as mixed-mode states inserted between neigh-
boring equilibria. A foremost systematic description of this
transition is presented in the present paper which would be a
substantial contribution to the overall knowledge of Kelvin’s
equilibria �1–13�.

II. EXPERIMENTAL TECHNIQUES

The present experiments were conducted in a cylindrical
reservoir of 284 mm inner diameter �D0=2R0�, with a flat
disk revolving in the counterclockwise direction near the
tank’s bottom; see Fig. 1. Two experiments were conducted

FIG. 1. Experimental setup.
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using disks of two different diameters, 252 and 270 mm, and
two different initial water heights �h0� of 30 and 40 mm
above the disk. The experiment investigating the transition
from N=3 to N=4 was conducted with a 270 mm disk di-
ameter and 40 mm initial water height while the experiment
focused on the transition from N=2 to N=3 was conducted
with a 252 mm disk diameter and 30 mm initial water height.
When swirl is imparted to a thin liquid layer, the centrifugal
force along with the gravity causes the free surface to deform
thus exposing part of the disk’s central surface to air; the line
of intersection between the surfaces of the disk, liquid, and
air outlines a circular shape of the core. Increasing the disk
speed, the circular shape of the core acquires different po-
lygonal equilibrium patterns caused by the presence of satel-
lite vortices at the apexes of the polygonal shapes �2,13�. The
presence of these vortices manifests as stationary rotating
azimuthal waves. In order to enhance the signature of the
patterns, blue water-soluble dye was mixed into water prior
to the experiments. A charge coupled device �CCD� camera
�JAI CV-M2� with the resolution of 1600�1200 pixels was
placed above the cylinder to image the core patterns formed
on the disk �see Fig. 1�. The camera was connected to a PC
equipped with a digital frame grabber �DVR express� that
acquires 8-bit images at a rate of 30 frames per second. To
avoid blurring effects, the shutter speed of the camera was
set equal to 1/500 s. A circular neon lamp surrounding the
cylindrical tank was used to ensure uniformity of light.

Past exploratory tests �1,13� revealed that the disk speed
intervals over which the stationary and mixed transition
modes exist become narrow with an increase in the wave
number �N�. Therefore, the experiments were conducted for
the transition from N=2 through N=4 that have sufficient
interval to conduct an in-depth investigation of the transition

process. In the first set of experiments, the transition from
mode N=2 to 3 was investigated while the second set dealt
with the transition from mode N=3 to 4. For each experi-
mental run in a given set, 1000 images were acquired. This
number of the images corresponds to approximately 33 s of
recording time which was enough to cover the whole transi-
tion process. A transition from N=2 to 3 and from N=3 to 4
require approximately 17 and 20 s, respectively. In order to
accurately detect the edges of the patterns in each image, an
image processing algorithm was developed �15�. This algo-
rithm has been implemented in a code within the MATLAB

environment. The algorithm allows the automatic processing
of the image sequences acquired by the CCD camera for
each case. The speed of the disk was also measured using
image processing by the juxtaposition of the two marks
around the center of the disk �see Fig. 2�.

III. FUNDAMENTALS OF THE TRANSITION

It was observed that the establishment of the equilibrium
states and their transitions are influenced by three param-
eters; the initial water height �h0�, disk frequency �fd�, and
disk radius �Rd�. The effect of these parameters is combined
in a dimensionless parameter, the Froude number �Fr� which
is defined as Fr=Rdfd /2��gh0, where g is gravity. At certain
values of h0, Rd, and fd, a specific N-gon pattern establishes
on the disk which is associated with a particular Froude
number. By changing any one of the above parameters, the
Froude number changes and, thus, the pattern acquires the
form that corresponds to that particular Froude number. For
example, for the given h0 and Rd, by increasing fd, the
Froude number increases and the polygonal pattern changes
its form from lower to higher N-gon. Similarly, for the given

a b c

d e f

FIG. 2. Wave pattern during a transition. Wave patterns of the hollow core during transition from N=3 to N=4. ��a�–�c�� As the Froude
number increases, the pattern expands from the troughs, while the apexes remain at the same radial distance from the center approximately
half the radius of the tank. The disk speeds are �a� 3.20 Hz, �b� 3.33 Hz, and �c� 3.64 Hz. The pattern in �b� and �c� has a quasitriangular form.
��d�, �e�� The critical value for the disk speed is reached �i.e., 3.87 Hz� and the transformation into quasisquare is in its way. Note that the
images in �d� and �e� are at different times to illustrate the transition process. �f� Transition is completed and the pattern set in square shape.
These experiments were conducted with water height above the rotating disk �h0=40 mm� and disk diameter �d0=270 mm�.
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Rd and fd if the initial water height �h0� is increased, the
Froude number decreases and the polygonal pattern acquires
the shape of lower N-gon. In this case, the original polygonal
shape can be acquired by either increasing the disk speed or
using a disk of larger radius to increase the Froude number
that matches with that of the original pattern. Similarly, for
the given h0 and fd, by reducing the disk radius �Rd�, Froude
number decreases, and the pattern acquires the shape of
lower N-gon. The original Froude number and, thus, the
original pattern can be obtained by either decreasing h0 or
increasing fd. Therefore, a particular N-gon can be estab-
lished on the disk by varying any of the three parameters to
reach the Froude number associated with that N-gon. For
example, the pattern in Fig. 2�a� is obtained at Fr=3.46 and
the pattern in Fig. 2�b� is obtained at Fr=3.6. Thus, the tran-
sition from the pattern in Fig. 2�a� to that in Fig. 2�b� can be
achieved by either decreasing the water height, increasing
disk diameter, or increasing disk speed. Of the three param-
eters, it is more convenient to change the Froude number
�Fr� by changing the disk speed which was used as the main
varying parameter in this study. As it will be argued later, the
transition mechanism would follow the same route regardless
of the initial state �equilibrium pattern� which is determined
by the values of these three parameters.

The transition from N=3 to N=4 is depicted in Fig. 2. For
this experiment, the initial water height and disk diameter are
set to 40 mm and 270 mm, respectively. Thus, the Froude
number was changed by varying the disk speed. Figure 2�a�
shows the image of the pattern at N=3 equilibrium state
obtained at Fr=3.46 �fd=3.20 Hz�. With a further increase
in the disk speed, the troughs dilated, while the apexes re-
mained at the same radial distance from the center, i.e., al-
most half of the tank radius �15�, and the pattern acquired
quasitriangular form; see Figs. 2�b� and 2�c�. Once a critical
Froude number �Fr=4.18� is reached, the quasitriangular pat-
tern transformed gradually into a quasisquare shape; see
Figs. 2�d� and 2�e�. With a further increase in the Froude
number �i.e., the disk speed�, the pattern started to stabilize
at mode N=4, and the troughs receded �Fig. 2�f��.

A first look at the underlying physical mechanism during
this changeover from N-gon to N+1-gon pattern was carried
out with the aid of spectral analysis of the time series of the
radial displacement, r�t�, of a given point on the pattern’s
edge from the disk center. The location of the given point is
defined by its radius �varying with time� from the disk center
and its azimuthal angle �constant� from an axis passing
through the disk center. It was found that the transition
started with a quasiperiodic regime, where two modes coex-
isted, which was followed by the synchronization of the two
oscillatory modes. This behavior is illustrated in the power
spectrum in Fig. 3�a� which corresponds to the transforma-
tion phase of the pattern at the critical Froude number shown
in Figs. 2�d� and 2�e�. The spectrum clearly shows the pres-
ence of two dominant frequencies. The frequency of 3.4 Hz
corresponds to the intrinsic frequency of mode N=3, which
is the initial mode �f1� in Fig. 2�a�, while the frequency of
5.1 Hz corresponds to the intrinsic frequency of mode N=4
in Fig. 2�f�, which is the transitioned or the final mode �f2�.
The plot indicates that during this transition process, the in-
trinsic oscillatory modes were locked at f1 / f2=N−1 /N

=2 /3 and their amplitudes were of the same order. Figure
3�b� shows the power spectrum of the transition phase from
N=2 to N=3, where the two intrinsic oscillatory modes at
frequencies of f1=1.46 Hz and f2=2.92 Hz lock at rational
ratio f1 / f2=N−1 /N=1 /2. This result confirms that the tran-
sition from N=2 to N=3 also occurred in two steps. That is,
the transition started with a quasiperiodic regime which was
followed by the synchronization of the two mode dynamics.

As mentioned earlier, the ranges of Froude numbers over
which the stationary and mixed transition modes exist be-
come narrow with an increase in the wave number �N�. This
could be due to the reason that the nonlinear coupling be-
tween the two intrinsic oscillatory motions becomes much
stronger at higher modes �14�. The narrow Froude number
interval renders the experiments on the transitions at higher
modes extremely challenging. However, based on the trans-
formations �N=2 to N=3, and N=3 to N=4� and the spectral
analysis �15� at the quasiequilibrium modes at N=5 and
N=6, we can cautiously hypothesize that the transition at
these higher modes might follow a similar route. The power
spectrum of quasipentagon state in Fig. 3�c� indicates a peak
at f2=6.68 Hz besides f1=5.27 Hz, where, f1 is the intrinsic
frequency of N=5 mode and f2=6.68 Hz is close to the
intrinsic frequency of N=6; see Fig. 3�d�. Therefore, a tran-
sition from N=5 to N=6 might occur at f1 / f2=N−1 /N
=4 /5 which is the rational ratio close to 5.27

6.68 . Similarly, the
power spectrum of quasihexagon state in Fig. 3�d� indicates
two frequencies f1=6.85 Hz and f2=8.38 Hz, where f1 is
the intrinsic frequency of the hexagon. The frequency f2
should be of mode N=7 which is critically stable or unstable
since it is not observed. Hence, the breakdown of N=6 equi-
librium state is expected to occur at f1 / f2=N−1 /N=5 /6
which is a rational ratio close to 6.85

8.38 .
The detailed description of the transition mechanism de-

picted above is presented in the following for the changeover
from N=3 to N=4. The underlying physical mechanism of
this transition was investigated using a powerful nonlinear
dynamics theory. The phase portraits, Poincaré sections, and
return maps were constructed from the time series of the
radial displacement, r�t�, of a given point on the pattern’s
edge from the disk center. The phase portrait of each pat-
tern’s state was reconstructed using delay method or embed-
ding method �16�. The time lag, �, and the “window length”
of the embedding were determined using the iterative proce-
dure suggested by Albano et al. �17� where singular-value
decomposition �18� and Grassberger-Procaccia �19� algo-
rithm were combined.

At the disk frequency of 3.2 Hz �Fr=3.46�, the circular
hollow core espoused a trefoil pattern �Fig. 2�a��. This intrin-
sic oscillatory mode is referred to as frequency f1. This state
is depicted in the phase space by a limit cycle and its
Poincaré section in Fig. 4�a� �i and ii�, respectively. With an
increase in the disk frequency to 3.33 Hz �Fr=3.6�, the tre-
foil pattern opened up and became quasitriangular �see Fig.
2�b��. This transformation is depicted in Fig. 4�b� �i, ii�
whereby the fixed point in Fig. 4�a� �ii� �limit cycle in Fig.
4�a� �i�� became a dense closed curve in Fig. 4�b� �ii� �two-
dimensional torus in Fig. 4�b� �i��. According to the theory of
dynamical systems �20� the fixed point �limit cycle� should
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have undergone a second Hopf bifurcation. Hence, a second
intrinsic oscillatory mode �referred to as frequency f2� ap-
peared and the regime became quasiperiodic. Figure 4�b� �i�
indicates that the trajectories �74 in total� lie and wind them-
selves densely on its surface while its Poincaré section is a
dense closed curve �Fig. 4�b� �ii��. This quasiperiodic state is
also confirmed using spectral analysis �15�. This spectral
analysis indicates also that the two intrinsic oscillatory
modes are nonlinearly coupled; the power spectra include the
sum and difference of frequencies f1 and f2. With a further
increase in the disk speed to 3.64 Hz �Fr=3.93�, the pattern
remained quasitriangular �see Fig. 2�c�� but this time the
number of winding trajectories on the surface of the two-
torus decreased by half �37 trajectories� and became un-
tangled forming a closed orbit �phase-locked state�. The re-
duction in the number of trajectories by half can be
interpreted as the pairwise collisions and disappearances of
the trajectories on the surface of the torus �20�. The corre-
sponding Poincaré section, Fig. 4�c� �ii�, became a less dense
closed curve which is a characteristic feature of frequency
locking between the two oscillatory regimes �20�. This fre-
quency locking was confirmed through the spectral analysis
of the time series r�t�; see Fig. 3�a�.

The transition from N=3 to N=4 is illustrated by the tran-
sient phase portrait and Poincaré section in Fig. 3�d� �i, ii�.
These figures indicate that the two-dimensional torus con-
tracted into almost zero volume annular disk. That is, the
pairwise collisions and disappearances of the 37 winding tra-
jectories continued and merged into a closed spiral curve
�limit cycle� �20�. With a further increase in the disk speed to
4.17 Hz �Fr=4.51�, the square pattern acquires equilibria
state �Fig. 2�f�� and the closed spiral curves of Fig. 4�d� �i, ii�
ended up into a limit cycle, Fig. 4�e� �i, ii�.

The oscillatory dynamics around the two-dimensional
torus can be described by one-dimensional �1D� return map
using polar coordinates �21� as 	n+1= �	n+2�
��mod 2��,
where 
 is the winding number given by the ratio of the two
frequencies determining the motion on the surface of the
two-torus. The nth point of the Poincaré section is defined by
the radius vector position, r�tn�, with respect to the centroid
of the closed curve and the angle 	n between a radius vector
position and r�tn+�� axis. The return maps extracted from
the Poincaré sections of Figs. 4�b� and 4�c� are shown by the
plot 	n+1 versus 	n in Fig. 5. The sequences of the points on
the Poincaré sections are determined by the 1D return maps
of the form 	n+1= f�	n�. The curve of the angular function
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FIG. 3. Power spectra. �a� Power spectrum of the radial displacement during the transition phase from N=3 into N=4
�critical Froude number=4.18�. It illustrates the frequency locking of the two intrinsic modes, f1=3.4 Hz and f2=5.1 Hz. The mean water
height above the rotating disk �h0=40 mm� and disk diameter �d0=270 mm�. �b� Power spectrum of the radial displacement during the
transition phase N=2 into N=3 �critical Froude number=4.12�. It illustrates the frequency locking of the two intrinsic modes,
f1=1.46 Hz and f2=2.92 Hz. The mean water height above the rotating disk �h0=30 mm� and disk diameter �d=252 mm�. �c� Power
spectrum of the radial displacement of a quasipentagon �disk speed=3.2 Hz, Froude number=6.4�. It announces a frequency locking of
the two intrinsic modes, f1=5.27 Hz and f2=6.68 Hz. The mean water height above the rotating disk �h0=20 mm� and disk diameter
�d=252 mm�. The data for this plot are taken from �15�. �d� Power spectrum of the radial displacement of a quasihexagon �disk speed
=3.4 Hz, Froude number=6.86�. It announces a frequency locking of the two intrinsic modes, f1=6.85 Hz and f2=8.38 Hz. The mean
water height above the rotating disk �h0=20 mm� and disk diameter �d0=252 mm�. The data for this plot are taken from �15�.
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�	n+1−	n� versus 	n is periodic �f�	n+2��= f�	n�� in the
piecewise linear or sawtooth form. Hence, the obtained re-
turn maps are similar to the circle map which is extensively
studied and largely used to depict the transition toward chaos
through quasiperiodic regime and frequency locking �22�.
The return map in Fig. 5�a� deviates from the linear curve of
the circle map because of the strong nonlinear coupling be-
tween the two intrinsic oscillations in quasiperiodic regime.

Hence, the return maps in Fig. 5 can be described by 	n+1
= �	n+2�
+g�	���mod 2��, where the function g�	� repre-
sents the nonlinearities. The strong nonlinearities in Fig. 5�a�
might be considered as a prelude for topological transforma-
tion or frequency locking in rational ratio. Indeed, these non-
linearities diminish when the frequencies lock and the return
map acquires almost the linear form similar to the circle
map; see Fig. 5�b�.
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FIG. 4. Phase portraits and Poincaré sections.
�a�i�, b�i�, c�i�� Phase portraits and �a�ii�, b�ii�,
c�ii�� Poincaré sections from the time series of the
radial displacement of a given point on the pat-
tern’s contour. �a�i�, a�ii��, �b�i�, b�ii��, and �c�i�,
c�ii�� correspond to the conditions depicted in
Figs. 2�a�–2�c�, respectively. a�i�, a�ii� and b�i�,
b�ii� depict the emergence of the second intrinsic
oscillatory dynamic �a limit cycle undergoes a
Hopf bifurcation into two-torus�. The Poincaré
section changes from fixed point into dense
closed curves. c�i� The trajectories on the surface
of the two-torus become untangled and the
Poincaré section changes into discontinuous
closed curves. d�i� and d�ii� correspond to the
conditions depicted in Figs. 2�d� and 2�e�; they
indicate that the two-torus contracted into almost
zero volume annular disk. e�i� and e�ii� corre-
spond to Fig. 2�f�; they show the limit cycle and
the fixed point in the Poincaré section. a�i� Time
delay, �=0.1 s, which is around one-third of the
period of the intrinsic oscillation, f1. b�i� Number
of orbits is 74, �=0.067 s, which is around one-
fourth of the period of first intrinsic oscillation,
f1. c�i� Number of orbits is 37, �=0.057 s, which
is around 3/5 of the period of first intrinsic oscil-
lation, f1. d�i� Time delay, �=0.13 s, which is
around half of the period of first intrinsic oscilla-
tion, f1. e�i� Time delay, �=0.13 s, which is
around half of the period of first intrinsic oscilla-
tion, f1.
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The transition scenario between Kelvin’s equilibria re-
sembles the transitions through quasiperiodicity and phase
locking toward the chaos �22�. However, in the present ex-
periments, the strength of the nonlinear coupling does not
reach a critical curve where the Arnold’s tongues �frequency-
locking windows� overlap and chaos sets. According to the
above description, the transition from elliptical to hexagonal
pattern seems to occur within the following windows or Ar-
nold’s tongues �1/2, 2/3, 3/4, and 4/5�, when the amplitudes
of the two intrinsic oscillatory modes become of the same

order. These series of frequency-locking steps satisfy Farey
sum � � � of two rational numbers p1 /q1 and p2 /q2 defined
by p1 /q1 � p2 /q2= �p1+ p2� / �q1+q2� and the graph of the
winding number as a function of the control parameter �disk
speed or Froude number� looks similar to the staircase func-
tion or incomplete devil’s staircase. Therefore, it is of inter-
est to compute the dimensions of the staircase function. Con-
sidering a pair of �parent� staircases 1

2 and 3
4 , which

correspond to the transitions from N=2 to N=3 and from
N=4 to N=5, respectively, and using the results of power
spectra �15�, the length of the interval between the staircases
�sT� is found equal to 0.73. The gaps between the daughter
state �p1+ p2� / �q1+q2�=2 /3 �which correspond to the transi-
tion from N=3 to N=4� and the parent states denoted by s1
and s2 are found equal to 0.3 and 0.32, respectively. Using a
relation �14� �s1 /sT�D+ �s2 /sT�D=1, the fractal dimension, D,
is found equal to 0.81. We expect this value to increase at
higher frequency-locking ratio �i.e., higher modes� where the
frequency-locking window becomes smaller. The discrep-
ancy between the experimental and numerical values for the
fractal dimension of the circle map �D=0.868� can be ex-
plained by the fact that the transition mechanism between
Kelvin equilibria does not exhibit chaotic behavior; hence, it
occurs below the critical curve for the circle map.

IV. CONCLUSIONS

An experimental investigation of the transition mecha-
nism of Kelvin’s equilibria modes is reported. It is shown
that the transition of polygonal patterns of the hollow vortex
core from mode N=2 through N=4 occurs in two steps: qua-
siperiodicity and frequency locking. The frequency locking
or synchronization, driven by the strength of the nonlinear
coupling between the parent �N� and daughter �N+1� modes
at frequencies f1 and f2, was found to occur at the ratio
�N−1� /N. It is also shown that this transition can be modeled
by a 1D circle map. The ratios of locking frequencies form a
Farey sum and staircase function against the control param-
eter, where the staircase corresponds to the rational fre-
quency ratio, �N−1� /N.

The present flow is subjected to shear layer and “stratifi-
cation” because of the stationary cylindrical wall and differ-
ential rotation of the fluid, respectively. These two types of
flow might lead to Kelvin-Helmholtz-Rayleigh instability
which can explain the formation of satellite vortices at the
apexes of the polygonal patterns �2�. These vortices make the
present system look similar to the N-body problem; the si-
militude of these two problems and the above report on the
underlying mechanism of the transition can serve as a valu-
able starting point to the modeling of the present problem
with a low dimension dynamical system.
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