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Spectral analysis of the weighted Laplacian in slip and no-slip flows
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Slip boundary conditions for the velocity field impact on the spectral properties of the advection-diffusion
operator describing transport of passive particles in laminar parallel flows. By considering the Hermitian
operator (referred to as the weighted Laplacian), describing the interplay between axial convection and cross-
sectional diffusion of a scalar field, we show that the spectral watershed between slip and no-slip boundary
conditions is a qualitatively different scaling behavior of the mean of the normalized eigenfunctions of the
weighted Laplacian. The occurrence of slip conditions also influences the scaling of the density of states as
regards both the leading and the subleading term in the Weyl’s expansion.
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I. INTRODUCTION

The possible occurrence of slip velocity at static walls
enclosing a laminar liquid flow is one of the main current
problems in microfluidics, which admits profound implica-
tions on the validity of the continuum formulation, and spe-
cifically on the reliability of the Navier-Stokes equations at
micrometric and submicrometric scales. This problem is be-
coming increasingly relevant, as miniaturized flow devices
containing channels or capillaries of submicron characteristic
diameter are becoming more and more widespread. Specifi-
cally, the occurrence of slip boundary conditions in micro-
channels for a liquid (aqueous) phase is the subject of ongo-
ing scientific debate [1], and experimental results on
micrometer channels performed by using microparticle im-
age velocimetry or total internal reflection velocimetry [2]
suggest, to date, contradictory conclusions (see, e.g., the re-
view [3] and references therein).

Recently, Giona et al. [4] showed how the possible occur-
rence of slip on simple channel flows could in principle be
detected from the analysis of transport properties of scalar
fields advected by the flow in the presence of diffusion. The
analysis developed in [4] is grounded on the behavior of the
dominant Frobenius eigenvalue associated with the non-
Hermitian advection-diffusion operator in channel flows. Al-
beit the approach proposed in [4] is very difficult to imple-
ment experimentally, its conceptual interest resides in the
possibility of investigating flow properties (and specifically
the onset of slip flows in microchannels) via indirect mea-
surements of scalar concentration fields advected by the flow.

More recently, an experimentally feasible approach for
detecting slip velocity in laminar flows, grounded on the ap-
plication of wide-bore chromatography [5], has been pro-
posed [6].

The results obtained in [4,6] indicate clearly that the local
velocity profile near the solid walls of a microchannel im-
pacts on the properties of linear transport operators associ-
ated with the interplay between advection and diffusion of a
scalar concentration field evolving along the channel.
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The aim of this article is to analyze the influence of the
near-wall flow on the simplest advection-diffusion operator
describing scalar field evolution in laminar channel flows.
The operator considered throughout this article, namely, the
Hermitian cross-sectional Laplacian operator weighted with
respect to the axial velocity field (for details see Sec. II),
arises naturally in the context of the moment analysis [7] of
a typical hydrodynamic chromatography experiment [8].

More specifically, we seek for a characterization of the
fine structure of the near-wall velocity profile in terms of the
spectral properties of a Hermitian operator (referred to as the
weighted Laplacian), which, in the present context, describes
the interplay between axial convection and cross-sectional
diffusion of a passive scalar embedded in a laminar carrier
flow. We show that even though no relevant information can
be obtained from the scaling of the eigenvalue spectrum,
there are specific features associated with the structure of the
eigenfunctions that are sensitive to the slip/no-slip behavior
of the axial velocity. Therefore, a qualitative spectral crite-
rion can be established for discriminating between slip and
no-slip channel flows, based on the properties of the eigen-
functions. Moreover, the analysis of the density of states
(DOS) of the weighted Laplacian reveals quantitative differ-
ences in the Weyl’s expansion [9] in the presence of slip
flows with respect to the no-slip case.

The latter problem (scaling of the density of states) bears
some analogies with the seminal work by Marc Kac [10] on
the detection of the shape of the boundary of a closed two-
dimensional (2D) domain from the structure of the eigenfre-
quencies and eigenfunctions associated with the propagation
of amplitude waves within the domain, and with the subse-
quent Literature related to the identification of fractal bound-
aries from the spectral properties of the Laplacian operator
[11].

The article is organized as follows. Starting from a typical
chromatographic experiment, Sec. II formulates the proper
mathematical setting via moment analysis, and introduces
the Hermitian operator associated with the interplay between
transverse (cross-sectional) diffusion and axial advection in
channel flows. Section III analyzes the eigenvalue/
eigenfunction structure of this operator and provides a quan-
titative criterion for detecting the occurrence of slip bound-
ary velocity from the properties of the eigenfunctions of the
weighted Laplacian. The spectral analysis of the weighted
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Laplacian operator is intrinsically theoretical, since the
eigenfunction of the advection-diffusion problem are not di-
rectly (experimentally) observable. Section IV discusses the
scaling of the density of states of the weighted Laplacian
operator in the case of slip and no-slip flows.

II. STATEMENT OF THE PROBLEM

This section introduces the physical setting of the prob-
lem, motivated by the analysis of chromatographic experi-
ments, and the weighted Laplacian operator associated with
moment analysis that is considered throughout the article.

A. Solute transport in a finite-length channel

The simplest way of approaching the analysis of laminar
channel flows through a transport-based experiment is to per-
form a chromatographic experiment [7].

Consider, for the sake of simplicity, a two-dimensional
channel of length L and cross-sectional width W with L
> W. Let x be the axial coordinate and y the cross-sectional
coordinate (0=x=L,0=y=W), and v=(v(y),0) the axial
laminar velocity profile (Poiseuille flow).

At time =0, a dye (solute) is injected at the inlet section
of the channel (i.e., at x=0) in an impulsive way [let c(¢,x,y)
be its concentration], and at the outlet section (i.e., at x=L)
its average concentration profile is recorded as a function of
time ¢.

The evolution of the scalar field c(z,x,y) within the chan-
nel can be modeled via the advection-diffusion equation

dc dc (6’26 &zc>
- =-v(y)—+D )
ox

— + 1
at x> dy )

where D is the diffusivity of the solute. By making the for-
mulation nondimensional, and letting ¢=c/Cyy, v(y)
=Veit(y), x—x/L, y—y/W, and t —1V,¢/ L (henceforth we
will use x, y, and ¢ as the above defined dimensionless vari-
ables), where C,. is a reference concentration, V. a refer-
ence velocity [so that u(y) admits unit average velocity
f(l)u(y)dyzl], Eq. (1) becomes

b ap 1 (PP
—=-u(y) —(—

¢ &2_¢>
+ 9’
Jat dx Pe

+ 2
x> @ r9y2 @

where 0<x,y <1, Pe=V_L/D is the Péclet number referred
to the channel length, and a=L/W>1 the channel aspect
ratio. Equation (2) is equipped with vanishing initial condi-
tion  ¢(t,x,y)],20=0, and impulsive inlet condition
&(t,x,y)|,eo=08(t). Solid walls are impermeable to mass
transport, and therefore the homogeneous Neumann condi-
tions apply, i.e., d¢(t,x,y)/dy|,-91=0. As regards the outlet
boundary condition, different choices are possible. A typical
approach is to consider the infinite-length approximation,
i.e., the column is regarded as infinitely extended, x
€ (0,%), (so that solely the regularity condition at infinity
applies), but the outlet concentration profile is evaluated at
x=1, i.e., at the outlet section of the capillary. Alternatively,
one may use the Danckwerts’ outlet boundary condition that
dictates d(t,x,y)/dx|,-;=0, i.e., the outlet solute flux is
purely convective. Since in this article attention is focused
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FIG. 1. Outlet chromatogram ¢,(t) vs t for @=20. Transition
from Taylor-Aris to convection-dominated regime. Line (a) Pe
=1000 (Pe.;=2.5), line (b) Pe=5000 (Pe.g=12.5).

on relatively high Péclet numbers (i.e., Pe/a?>1, with «
> 1), the outlet condition is practically irrelevant since the
contribution of axial dispersion is negligible in this param-
eter region. With the present normalization, the interplay be-
tween axial advection and diffusion, and the role of the chan-
nel geometry is characterized by two dimensionless groups:
the Péclet number Pe defined above with respect to the chan-
nel length L, and the effective Péclet number Pe4=Pe/ a’.
The latter quantity expresses the ratio of the characteristic
diffusion time along the cross section of the channel
Liifteross=W?/D, and the axial advection time 7y ayial
=L/V,, since

2
Liff,cross
Pegy= — =~ = il (3)
a DL tadv,axial
The target quantity in chromatography is therefore the
function

1
d,(1) = f o(t,1,y)dy, (4)
0

which corresponds to the average outlet concentration. At
fixed aspect ratio « of the column and increasing Pe values,
the dispersion properties of the solute are first characterized
by the Taylor-Aris dispersion [12,8], and subsequently (at
higher Pe) by a convection-dominated dispersion regime
[6,13]. The transition between these two different dispersion
regimes becomes evident from the visual inspection of the
graph of the outlet chromatograms ¢,(z) depicted in Fig. 1.
In the Taylor-Aris regime (curve a) the outlet chromatogram
possesses an almost Gaussian profile centered close to r=1.
As Pe increases, the transition toward the convection-
dominated regime occurs, characterized by a highly asym-
metric shape of ¢,(¢) (curve b), whose modal abscissa 7.4
(i.e., the time instant of the peak) becomes progressively
located at #,,= 1/, Where upy,, =max, u(y), that for 2D
channel flow [u(y)=6y(1-y)] corresponds to f.i,=2/3.
Physically, this corresponds to the fact that downstream dif-
fusion becomes less and less important with respect to axial
convection. For high values of Pe, the outlet chromatogram
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UNQ)

FIG. 2. Comparison between the solution of Eq. (2) (solid lines)
and the solution of Eq. (5) (symbols) obtained neglecting axial dif-
fusion at a=20, at different Pe values. Line (a) and ((J) Pe=2000
(Pe.g=5), line (b) and (O) Pe=5000 (Pe.g=12.5), line (c) and (@)
Pe=10000 (Pe ;=25).

¢,(1) approaches the purely kinematic residence-time prob-
ability density functions (i.e., the time necessary for a solute
particle initially located at the channel inlet to reach the out-
let section while driven exclusively by advection). This is a
first heuristic indication that, starting from a chromato-
graphic experiment performed at a sufficiently large Pe
value, it is possible to recover information on the channel
velocity u(y). The analysis of the convection-dominated dis-
persion regime is out of the scope of the present article and it
is addressed in detail in [6]. The experimental use of chro-
matographic columns for analytical purposes operating in the
convection-dominated regime has been recently introduced
in chemical practice and is referred to as wide-bore chroma-
tography [5].

For high Péclet values, such as Pe ;=5 [14], the effect of
axial dispersion on the shape of the outlet chromatogram
becomes negligible, and the term ¢*¢/dx* in Eq. (2) can be
dropped out. Numerical evidence for the validity of this ap-
proximation is depicted in Fig. 2. Therefore, Eq. (2) simpli-
fies to

Lo u(p)E e (5)
y

In Eq. (5) we have introduced the parameter e=a?/Pe
=1/ Peeff.

In the case of a circular capillary of radius R and length L,
letting p=r/R, and z the dimensionless normalized axial co-
ordinate, z € (0, 1), the counterpart of Eq. (5) for a radially
symmetric inlet reads

¢ __ I e[ i
PRl Oy +pap(pap)’ (6)

where a=L/R, and € and Pe are defined as in the case of the
2D channel.
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B. Moment analysis and axially weighted Laplacian

The relevant information on transport properties of the
solute associated with the outlet average concentration ¢,(r)

is recovered by the moment hierarchy mgf])[ defined as

0 © 1
mf)’fl)lzf t"d)a(t)dt:J t”dtJ &(t,1,y)dy, n=0,1,...
0 0

0
(7)

and by considering the first elements n=1,2 of this hierarchy

[15].

By introducing the local moments m"(x,y) defined as

m™(x,y) = f ’ " (t,x,y)dt, (8)
0

it follows that m{")=[im"(1,y)dy. For Pe/ a*=5, i.e., when
axial diffusion becomes negligible, the local moments

m"™(x,y) satisfy the system of parabolic equations

am"(x, y) Pm"(x, y)
=g -+
ax dy

u(y) nm" V(x,y),  (9)

where, in the case of an impulsive loading, m(o)(x,y)=1 and
m(n)(O,y):O for n=1,2,.... For a circular capillary, the mo-
ment hierarchy m™(z, p) satisfies the equation

dm"(z.p) & 9 ( am™ (z,p)

u
(p) dz pap ap

) + nm(”‘l)(z,p),

(10)

and the outlet moments m") are related to m"(z,p) by the
equation

1
mgn =2 f pm"(z.p)dp. (11)
0

Consider again Eq. (9), and let {=ex. From Eq. (9) one
obtains

am"(Ly)  Pm™(L,y)
= +
a ay?

u(y) §m<"-”(§,y>, (12)

and the outlet moments are thus expressed by the equations

1
Mo = J m"(s,y)dy. (13)
0
Equation (12) indicates that all the information about the
moment hierarchy is embedded in the spectral properties of
the weighted Laplacian operator
1 &y
LlYl=——"7, (14)
T uy) dy?
i.e., within the eigenvalue/eigenfunction spectrum associated
with the generalized eigenvalue problem

d*(y)
dy2

- \u(y)ly) = P0)=¢'(1)=0, (15

which is the main object of investigation of the present ar-
ticle.
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C. Channel flows and slip boundary conditions

Before addressing the spectral properties of £, and how
they depend on u(y) (or on u(p), for circular channels), let us
briefly recall how the occurrence of slip velocity for a lami-
nar flow in a two-dimensional channel can be described by
means of the Navier boundary condition

du(y)

Y dne =_u(y)|y=0,l? (16)

where n, is the outward normal direction to the channel walls
(located at y=0 and y=1), and y=¢,/W is the dimensionless
slip length (€, is the slip length, sensu stricto, that in liquid
microflows may attain values between ten nanometers and
few microns, depending on the liquid phase, the structure
and the material forming the channel walls, and the way the
measurement is performed, as discussed in [3]). In a two-
dimensional channel flow, the normalized axial velocity pro-
file is therefore expressed by

6
1+6y

u(y) = =y*+y). (17)

The prefactor 6/(1+67) entering Eq. (17) ensures unit aver-
age velocity. For y=0 one recovers the no-slip Poiseuille
profile.

In a similar way, the normalized axial velocity profile in a
circular channel with slip reads as

2
u(p)=m(l+7—p2), (18)

where y=¢,/R.

Next, we show how from the spectral structure of £, it is
possible to discriminate between the two cases y=0 and 7y
>0.

II1. SPECTRAL STRUCTURE OF THE WEIGHTED
LAPLACIAN

A. General properties of the weighted Laplacian

Consider the eigenvalues and the eigenfunctions of the
weighted Laplacian £, defined by Egs. (14) and (15). Let
(£.8)=LofMEM)dy, (f.8).=Jqu(»)f(»)gy)dy (where g is
the complex conjugate of g). £, is a Hermitian operator and
therefore its eigenvalues are all real and nonpositive since

(s 1)
Ny=7"7"—-=0, h=0,1,..., 19
g <lr/lh’lrllh>u ( )

where ¢, is the real-valued eigenfunction associated with \;
and ,(y)=dyy(y)/dy (observe that the eigenvalue of £, is
—\;), verifying Neumann boundary conditions at the channel
walls.

By ordering the spectrum {\,},_, in an increasing way, it
follows that Ay=0 which corresponds the uniform eigenfunc-
tion ¢y(y)=1, while \;,>0 for h=1,2,....

The eigenfunctions are orthogonal with respect to the
weighted inner product,

PHYSICAL REVIEW E 80, 066302 (2009)

WL (y)

FIG. 3. The first four nonuniform eigenfunctions ,(y), n
=1,2,3,4 (lines from (a) to (d)) for a 2D no-slip channel flow.

1

(W 0 = J u(y) i (y) i (y)dy = 0,

0

h#k (20

and can be assumed to be normalized, i.e., zﬁhHLZ&:(Lﬂh, Ui
=1. Moreover, they form a basis for the space L;([0,1]) of
the square summable functions with respect to the weight

u(y),

LU0, 1]) = S KFf < o} (1)

This implies that any f eLi([O,l]) can be expanded in a
convergent series of eigenfunctions

) = 2 fut)s fo= o thidu- (22)
n=0

Figure 3 shows the first four nonconstant eigenfunctions [16]

#,(y) for the 2D channel flow Eq. (17) with y=0 (no slip).
The case of circular channel flow is almost identical. The

eigenfunction problem in cylindrical coordinates reads

1d{ d
- Nu(p) i (y) = ‘_<Pﬂ), (23)
pdp\" dp
and
(),
=L =0, h=0,1,..., 24
T (24

where (f.2),=/0pf(P)3(p)dp. (f.8),u=Jopu(p)f(p)E(p)dp.
Consequently, instead of Eq. (22), the generalized Fourier
expansion for any function f e Lfm([O, 1]) reads

) =2 fubnP)s o=t (25)
n=0

Let us consider the eigenvalue spectrum. Figure 4 depicts
the eigenvalue spectrum for 2D (panel A) and for circular
channel flow (panel B) for different values of y. As can be
observed, there is neither qualitative nor significant quantita-
tive difference between the eigenvalue spectra associated
with axial velocity profiles u(y) [and u(p) for circular capil-
laries] for zero and small values of . For large n, the clas-
sical scaling
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FIG. 4. Eigenvalue spectrum {\,} vs n associated with the
weighted Laplacian. (a) 2D channel flow: ((J) y=0 (no-slip flow),
(O) y=0.03, (®) y=0.1. (b) Flow in a circular capillary: (CJ) y
=0 (no-slip Poiseuille flow), (O) y=0.03, (®) y=0.1. The solid
lines represent the scaling \,~n?. The dashed lines depict \,

=7’

N, ~ n? (26)

is observed independently of y. This means that it is not
possible to discriminate between slip and no-slip flow con-
ditions at the solid walls on the basis of the eigenvalue spec-
trum. Therefore, any attempt of spectral discrimination
should be grounded on the properties of the eigenfunctions,
and this is discussed in the next paragraph. Alternatively,
quantitative differences between slip and no-slip flows can
be observed in the global spectral properties, expressed, e.g.,
by the density of states, as discussed in Sec. I'V.

B. First-order moments

A feasible way of discriminating between slip and no-slip
conditions in channel flows by a chromatographic experi-
ment can be based on the analysis of first-order moments
mgh)[ and mgl)t and of their dependence on Pey=1/e=Pe/a’
[6]. For the scope of the present analysis, it is sufficient to
consider exclusively the first-order moment m!!). Figure 5
shows the behavior of mf)t)l as a function of the effective
Péclet number Pe.y. In the case of no-slip conditions,
mD(Peyy) diverges with Peyy, while for any >0 (slip
flows) m"(Pe,;) saturates toward a constant value.

(1)
out

] a & @

10

Per
FIG. 5. First-order moment mg'u)t vs the effective Péclet number
Pe.g for the 2D channel flow. Lines represent the results of Eqgs.
(7)—(9) for n=1, symbols those obtained form numerical simula-
tions of the advection-diffusion Eq. (2). Line (a) and (CJ) y=0 (no-
slip), line (b) and (O) y=0.03, line (c) and (@) y=0.1.
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These results can be easily interpreted, since for Pe.;
—o (i.e., for e—0), the outlet chromatogram ¢,(¢) con-
verges toward the kinematic residence-time distribution p(z)
that, for uniform inlet injection (i.e., whenever the solute in
injected uniformly along the inlet cross section), is p;(1)=0
for r<t,;,, and

2 1

pr(t) = — , for
e way-aic,

tmin(‘)/) == tmax(y)’

(27)

where  C,=6/(1+67%), tyin(¥)=2(1+67)/3(1+4y), and
tmax(Y)=1+1/6.
For y=0, i.e., in the presence of no-slip velocity profile,

Eq. (27) reduces to

prlt) = . t=2/3. (28)

1\97* - 6t
Therefore, for e — 0, and v arbitrary,

[max
m_ 2 dt

lim m, =
—
e0 N Cyly (L4 - 4iC,

2
= ———log(2\(1 +4y)[(1 + 4y)* —41/C.]
CN1+4y £ 7 7 ”

+2(1 +4y)t- 4/Cy)|’2,arxnfn7(),/). (29)

For any y>0, mf)lu)t is bounded, while it diverges at y=0

(see Fig. 5). Specifically, for small y, Eq. (29) shows that
m)) ~_log(y)/3.

In order to analyze how the presence of slip conditions
impacts upon the structure of the eigenfunctions of the
weighted Laplacian, the analysis of the first-order moment

provides a useful starting point.

C. ¢ spectrum

Equation (12) for m"(¢,y) reads

(1) (1)
am (é,’y) — azm gg»y) + 8_1, (30)
al dy
(1

and the average outlet first-order moment 1is mg,
=[ymV(e,y)dy. By expanding mV(¢,y) with respect to the
eigenbasis of the weighted Laplacian, m(Z,y)
=Ef=0mﬁll)(§) ,(y), one obtains for mﬁ”(() the system of dif-
ferential equations

dm"(g)
2—§=—Ahm;,1)+s_ldh, (31)

u(y)

where

1
d,= f D(y)dy. (32)
0

The sequence {c,};_,, where c,=|d,|, will be referred to as
the ¢ spectrum associated with the operator £,. Equations
(31) can be solved yielding m(()1>(§)=8‘1, since dy=1, and
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(1 —e ™Mb,

m(Q) = h=12,.... (33)

)

Therefore, the first-order moment m

can be expressed as

oul =1+ E _(1 _)\hs)- (34)

=1 €N

Since for small vy, \,= 7°h?, independently of 7 (this result
stems from the fact that in the case of pure diffusion, i.e., no
axial flow, the eigenvalues of the Laplacian operator
equipped with the Neumann boundary condition in [0,1] are

=h?; for a numerical Vahdation see the dashed lines in
Flg 4), the properties of mOut are controlled by the scaling of
the ¢ spectrum. By enforcing the simplification \,= 7h?, Eq.
(34) reduces to

2
é‘ui~1+2 hz(l— o), (35)
Since,
(1-e*™") )L h <N'(e) (36)
emh* | 1(emh?), h>N(e),
where N*(g)=(em2)~"2. The first-order moment m ! can be
approximated as
IN*(e)| 0 C2
==1+ 2 c? 2 h
out h 2
h=1 h=|N*(e)|+1 emh
[N*(e)]
=1+ 2 ci+r(e)=8"(e) + r(e), (37)
n=1

where |[N*(g)| is the closest integer to N*(g), and r(e) is the
last residual summation in the first Eq. (37). For £ —0, the
residual approaches a constant value lim,_yr(e)=r,
~O(107") [17]. Therefore, to the leading order, the scaling
of the first-order moment is controlled by the function S*(¢).

Two cases should be considered. For y>0, m) is
bounded, and from Eq. (37) the sum =} ,c7 should be con-
vergent. This means that ¢; goes to zero faster that 4!,

cy~Kh™*P for some K>0 and 8>0.

Conversely, for y=0, mom diverges to infinity for e —0,
and the ¢ spectrum should decay as ¢, ~ Kh™ "> for some
K>0 and 8=0. The scaling of ¢, for 2D slip and no-slip
flows is depicted in Fig. 6(a). In the case of the Poiseuille
flow one observes that c,;,,;=0 [and this may be due to the
symmetry of the axial velocity u(y) around y=1/2], and
solely even-order terms c,, are different from zero. Numeri-
cal simulations indicate that

k', (38)
for no-slip Poiseuille flow, while
o~ 2, (39)

for a channel flow in the presence of slip velocity at the
walls. Indeed, from Egs. (37) and (38) it follows that mf)l)
possesses a logarithmic divergence with Pe. for no-slip Poi-
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FIG. 6. Scaling of the c-spectrum ¢, vs h. (a) 2D channel flow.
(a) y=0 (no-slip), (b) y=0.01, (c) y=0.03, (d) y=0.1. (b) Flow in a
circular capillary. (a) y=0 (no-slip Poiseuille flow), (b) y=0.01, (c)
v=0.03, (d) y=0.1. Lines (e) and (f) are the scalings ¢,~ "> and
c,~h72, respectively.

seuille flow, mout C log(Pe.s), where C is a constant, as
observed in the numerical simulations (Fig. 5). An identical
result holds for circular capillaries [see Fig. 6(b)], with the
only difference that in cylindrical structures with circular
cross section the ¢ spectrum is defined as

Ccp= (40)

1
f pn(p)dp| .
0

The validity of the above analysis is further confirmed by
the following prediction. From the behavior of ¢, in 2D
channel flow the following approximation c,,=Cy(2h)"2,
where Cy=0.655 can be applied [Fig. 7(a)]. From Eq. (37) it
follows that the sum 2 (Pe,) defined by

IN“()/2

SPegy)=1+C > — (41)
f 0 = o

provides an approximation for mf)lu)t for h1 h values of Pe..
Figure 7(b) depicts the comparison of mOut and X (Pe.), re-
vealing the good agreement between theory and simulations,
as regards the scaling of the first-order moment.

The above analysis indicates that the eigenfunction struc-
ture carries information on the slip/no-slip boundary condi-
tion in channel flow, and this information is captured by the
scaling of the ¢ spectrum.

Physically, a slower decay of {c,},_, is associated with the
decay of the mean value of the higher-order eigenfunctions

10°
18
E)
= -1 =
& 10 a4t
£
e
| oo’
5 .
10 : : .
100 10 102 108 10" 10 10
(a) h (b) Pegr

FIG. 7. (a) ¢, vs h (@) and the approximation ¢,=0.655h""/
(solid line). (b) Comparison of mg{l)t (®) and the partial sum
>*(Pees) Eq. (41) (solid line).
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FIG. 8. Comparison of a higher-order eigenfunction ¢;4(y) for
no-slip (line a) and slip (line b) 2D channel flows (with y=0.03).

,(y) as a function of 4. In the presence of no-slip Poiseuille
flow, the mean value of even-order eigenfunctions ,,(y)
decays to zero slower than for slip flows, and a qualitatively
different scaling of ¢, is observed. Figure 8 depicts two typi-
cal higher-order eigenfunctions (24=30) for no-slip and slip
Poiseuille flow. Although qualitatively similar, the two eigen-
functions differ in their mean values and this influences the
asymptotic scaling of the ¢ spectra.

It is possible to give an analytical interpretation of the
scaling results found above, in terms of the singularities of
the reciprocal of the axial velocity field. Consider the gener-
alized Fourier series associated with the coefficient spectrum
{d)}-o (the absolute value of which is {c,},_,)

SO) = 2 dyih(y). (42)
n=0

Since

1 1
d, = f U(y)dy = f u(y)(iﬁn(y)dy, 43)
0 0 M()’)

it follows that {d,},_, is the coefficient spectrum associated
with the function 1/u(y), i.e., with the reciprocal of the
weight u(y) that corresponds to the axial velocity profile.
Therefore, the series Eq. (42) converges to the reciprocal of
the axial velocity field in the Li metrics, i.€.,

1 N
-3 2 dnlr//n(y)

lim
M(y) n=0

N—o©

=0, (44)

at any point y of continuity of u(y). The comparison of S(y)
(truncated up to N=300 eigenmodes) and 1/u(y) is depicted
in Figs. 9(a) and 9(b) for slip and no-slip channel flows,
respectively. For slip flows, 1/u(y) is a bounded and differ-
entiable function of its argument in (0,1). Because of the
symmetry of u(y) with respect to y=1/2, one observes the
decay of the Fourier coefficients ¢,;, expressed by Eq. (39).
Conversely, in no-slip Poiseuille flows 1/u(y) is singular at
the boundaries (y=0,1), and the function 1/u(y) is not
square summable in L2([0,1]), since ||1/u(y)|]*=[idy/u(y)
=, As a consequence, the Parseval series 2;_c; diverges,
and this explains the scaling observed for no-slip flows, ex-
pressed by Eq. (38), since 1/u(y) does not belong to
L([0,1]), while 1/uP(y) for B<1 does.
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FIG. 9. 1/u(y) (solid lines) and S(y) Eq. (42) (symbols @) for
2D channel flows. (a) y=0 no-slip. (b) y=0.03.

IV. SCALING OF THE DENSITY OF STATES OF THE
WEIGHTED LAPLACIAN

The classical spectral theory considers the density of
states of the Laplacian operator [9,18],

Vi=—\y, (45)

equipped with the Dirichlet or Neumann conditions at the
boundary of a closed and connected domain. Introducing A\
=k?, the density of states Npos(k,d) of the Laplacian opera-
tor in a d-dimensional domain [Npgg(k,d) is a counting func-
tion, which for fixed k returns the number of eigenvalues A\
such that A=k?] can be expressed in the form of the
asymptotic (Weyl’s) expansion

Npos(k,d) = b(d)k? + c(d) k" + o(k*), (46)

where b(1)=L/, b(2)=S/4m, b(3)=V/677, L, S, V be the
d-dimensional (d=1,2,4) measures of the domain [9,18].
The next to the leading-order prefactor ¢(d) is positive for
the Neumann and negative for the Dirichlet boundary condi-
tions. In the case of the unit interval, the leading term is thus
Ny(k)=k/mr, and c(1) is positive [c¢(1)=1/2] for the Neu-
mann conditions.

The spectral characterization of dispersion in straight
channels involving the weighted Laplacian operator is
slightly different from the classical problem reviewed above,
as it is related to the generalized eigenvalue problem

V2(x) = - \u(x)(x), xe3, (47)

where X is either an interval, or a connected two-
dimensional domain (representing the cross section of the
channel), equipped always (i.e., both for slip and no-slip
flows) with the Neumann boundary conditions (associated
with the impermeability of the walls to mass flow)

IP(x)

=0 48
an xedd ( )

at the boundary 42 of 3.

What makes the difference between slip and no-slip flows
is the nature of u(x), that is, the axial velocity field. Indeed,
since creeping flow (Stokes regime) is considered, u(x) is the
solution of a Poisson equation on 2,
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FIG. 10. (a) Density of states Npgg(k) vs k (symbols [) for the
no-slip 2D Poiseuille flow. The solid line represents the function
No(k)=k/ . (b) Npos(k)—Ny(k) vs k for the no-slip and slip 2D
Poiseuille flows. Symbols ((J) refer to y=0 (no-slip), (O) to y
=0.01, (@) y=0.03. The solid lines (a) to (c), represent the func-
tions Npog(k) —No(k)=—a(y)k, for y=0, 0.01, 0.03, respectively.

Viu=-4A, (49)

where A is a constant (related to the pressure gradient), such
that u(x) admits unit mean. Slip/no-slip phenomena enter Eq.
(49) as a boundary condition for u at the solid walls of the
channel. For no-slip flows, the boundary condition is of the
Dirichlet type,

u(x)|xed'2=0’ (50)
while for slip flows is of mixed nature
Ju(x)
Y +M(X)|xe&2=07 (51)
on

e

where vy is the nondimensional slip length. For y=0, Eq. (51)
reduces to the Dirichlet condition Eq. (50).

Due to the different spectral problem, it can be expected
that the density of states Npog(k) associated with Egs.
(47)—(51) admit an asymptotic expansion characterized by
slightly different properties than that for the Weyl’s problem
involving the (bare) Laplacian operator Eq. (45).

Figure 10(a) shows Npgg(k) vs k for the weighted Laplac-
ian [associated with Egs. (47)—(51)) in a 2D no-slip Poi-
seuille flow, compared with the leading-order term Ny(k)
=k/m of the Weyl’s problem. The following observations can
be derived: (i) Npos(k) ~k even for the weighted Laplacian
(as expected, also from the data depicted in Fig. 4); however
(ii) the leading-order term Ny(k) of the bare Laplacian opera-
tor overestimates Npgg(k) for the weighted Laplacian. The
latter observation is further supported by the data depicted in
Fig. 10(b), showing the difference Npog(k)—Ny(k) vs k for
the 2D Poiseuille flow at different values of y corresponding
to no-slip and slip conditions. It follows from the data de-
picted in Fig. 10(b) that

Npos(k) = No(k) = = a(y)k, (52)

where a(y)>0 and depends on the nondimensional slip
length 7. Table T reviews the best fit for a(7y) in the case of
2D Poiseuille flows. As can be expected a(7y) is a decreasing
function of 7, since the weight u(y) becomes more uniform
as vy increases and tends to 1 for y—oo. In this case the
weighted Laplacian problem reduces to the classical Weyl’s
problem.

PHYSICAL REVIEW E 80, 066302 (2009)

TABLE 1. Correction prefactor a(y) to the leading-order term of
the density of states for the 2D Poiseuille at different nondimen-
sional slip lengths 7.

Y a(y)

0 1.18 X 1072
0.01 9.5%x1073
0.03 6.8X1073

In order to perform a semianalytical analysis of the prob-
lem, it is convenient to consider the family of 2D shear
flows,

2(y+y)

u(y) = 2yl (53)
possessing unit mean velocity. The parameter 7y in Eq. (53) is
the nondimensional slip length. For y=0, Eq. (53) reduces to
the 2D no-slip shear flow possessing unit mean velocity.

For this family of flows the eigenvalues A, of the
weighted Laplacian operator Egs. (14) and (15) are given by

1+2y)u,
\, = ( Y)Mn’ (54)
2
where u, are the solutions of the cardinal equation f(u)=0,
where

flp) = Ai" (= yu)Bi' (= (1 + y) )
- Ai" (= (1+ y)uw)Bi' (- yu) =0, (55)

expressed in terms of the Airy function Ai(§), Bi(&) of the
first and second kind [19], where Ai’(€)=dAi(§)/dé, and we
used the notation Ai’(§1)=dAi’(§)/d§|§=§1, with & =-yu or
—(1+ ). Similarly for Bi(¢).

The corresponding eigenfunctions ,(y) can be expressed
as

Ai’ (_ ‘}//"Ln)

zpn(y) = C,, Al(_ /*Ln(y + '}’)) - Bi/(_ vI )

Bi(— p,(y + 7))} ,

(56)

where C, are normalization factors.

The spectrum can be thus computed accurately even for
large n, by enforcing the asymptotic expansions of the Airy
functions for negative arguments [19],

R U, Yy %3/2_3)
Ai(-¢) & COS<3§ 1)

Bi(-§) = — 7121 sin(%fm - jf) (57)

Figure 11(a) depicts the difference Ny(k)—Npog(k) for the
family of 2D shear flows Eq. (53), up to k=10°. The leading-
order term in the expansion of the density of states of the
weighted Laplacian, in the presence of a weight u(y) that is
solution of a Stokes problem, is different from Ny(k)=1/7
and is given by
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FIG. 11. (a) Ny(k)—Npos(k) vs k for the no-slip and slip 2D
shear flows. Symbols ((J) refer to y=0 (no-slip), (O) to y=0.1, (@)
to y=0.2. (b) Next to the leading-order term Npgg(k)—c,k vs k for
the 2D no-slip shear flow. Dotted line is the mean value equal to
—-0.565.

Npos(k) = c,k, c¢,=1/m—a(y), (58)

where a(7y) is a decreasing function of the nondimensional
slip length (as discussed above). The values of a(7y) for the
family of slip shear flows are reviewed in Table II. Let us
analyze the subleading term. The behavior of Npgg(k)—c,k is
depicted in Fig. 11(b). This difference is approximately con-
stant and negative. This is just the opposite than in the case
of the bare Laplacian, where the subleading contribution is
positive for the Neumann conditions. This result is however
not surprising, just because the presence of an axial weight
u(x) makes the eigenvalue problem completely different
from the classical Weyl’s problem.

V. CONCLUDING REMARKS

The eigenfunctions of the weighted Laplacian embed in-
formation on the local structure of the near-wall velocity
profile, and a qualitative difference is observed in the scaling
of the ¢ spectrum for higher-order eigenfunctions Eqgs. (38)
and (39). From the analysis developed in this article, it is
clear that Egs. (38) and (39) hold for generic physically re-
alizable channel flow, for which u(y) >0 in the open interval
(0,1), and such that u(y) behaves linearly as a function of
Y= Ywan» Where yy.=0,1.

Quantitative difference between slip and no-slip flows can
be detected from the scaling of the density of states of the
weighted Laplacian, since the prefactor of the leading-order
term depends on the slip length.

Even though the analysis developed in this article does
not provide a direct practical criterion for discriminating the
possible occurrence of slip (to this purpose, moment analysis

PHYSICAL REVIEW E 80, 066302 (2009)

TABLE II. Correction prefactor a(y) to the leading-order term
of the density of states for the 2D shear flows at different nondi-
mensional slip lengths 1.

Y a(y)

0 1.82x 1072
0.05 1.35% 1072
0.1 1.1x1072
0.15 9.0x 1073
0.2 7.5% 1073

of a wide-bore chromatographic experiment is significantly
simpler and experimentally feasible), the results obtained
provide one more connection between the spectral features of
an advection-diffusion operator (which in the present case,
expresses the simplest form of interaction between molecular
and convective transport) and a physically relevant issue,
such as the occurrence of slip velocity. The importance of
establishing such connection should not be underestimated,
as it allows to interpret a variety of results associated with
different experimental conditions on the basis of properties
(such as the ¢ spectrum), which depend exclusively on the
interaction between advection and diffusion with no refer-
ence to the operating conditions, such as, e.g., the form of
the injection loading at the channel entrance.

From the structure of the eigenfunctions {4} it is possible
to analyze and predict the dispersion properties in the
convection-dominated regime, which differ qualitatively
from the Taylor-Aris scaling.

Moreover, the analysis of the eigenfunctions of the
weighted Laplacian proposed in this article can be extended
to approach and interpret a variety of other different trans-
port problems in simple flow systems, such as the effect of
mixing of two-fluid stream in pressure-driven microchannels
(T junctions) [20], as well as the role of cross-channel geom-
etry on mixing in these systems.

As a final comment, we remark that, depending on the
specific transport problem under investigation, different lin-
ear operators can be defined for analyzing and predicting the
interplay between advection and diffusion in simple flows
(compare the present approach with the analysis developed
in [4] and in [21]), and the corresponding eigenvalues/
eigenfunctions provide complementary information on dif-
ferent phenomenologies associated with mixing, dispersion,
homogenization.
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