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We propose a method for the reconstruction of time-delayed feedback systems from time series. The method
is based on the analysis of the system response to a weak external disturbance having the form of rectangular
pulses. To apply the method one must have access to the state variable of the system in order to perturb it and
the time series of the driving signal and the system response having at least about one hundred points on the
time interval equal to the delay time. The method is intended to recover delays in low-order time-delay systems
performing periodic oscillations, but can also be applied to systems in chaotic regimes in the presence of high
level of noise. We verify the method by applying it to both numerical and experimental data.
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I. INTRODUCTION

Nonlinear systems with a time-delayed feedback have at-
tracted a lot of attention due to the wide abundance of time
delays in various fields of science including optics �1–4�,
chemistry �5�, and biology �6–8� among others. The dynam-
ics of time-delay systems critically depends on the values of
delay times. Thus, the problem of reconstruction of delay
times from experimental time series is of great importance
for many scientific disciplines and applications. To solve this
problem a variety of methods has been proposed, which al-
lows one to recover the delay times of time-delayed feedback
systems from their chaotic time series �9–17�. However,
these methods fail for periodic states �18�. But in practice
many important time-delay systems operate in periodic or
nearly periodic regimes �19–21�. Hence, it is important to
develop methods that allow one to estimate the parameters of
systems with delay-induced dynamics performing not only
chaotic, but also periodic oscillations.

Several such methods have been proposed recently
�22–24�. These methods are based on the analysis of the
time-delay system response to external perturbations. To re-
cover the delay time it was proposed to disturb the system by
a short-correlated noisy signal �22�, a periodic impulsive sig-
nal leading to the appearance of a transient process �23�, and
a control signal suitably designed to drive the system to a
steady state �24�. All these methods �22–24� require suffi-
ciently large amplitude of perturbations. For example, in Ref.
�24� the amplitude of the signal of perturbation was by order
of magnitude greater than the amplitude of unperturbed self-
sustained oscillations. However, the use of strong distur-
bances of a time-delay system performing periodic oscilla-
tions is not always possible because it can result in
undesirable qualitative change in the system behavior. In
these cases the use of small disturbances for estimating the
system parameters is preferable. Such technique based on the
method of accumulation �25� has been proposed in Ref. �23�.
However, this method exploits a complicated signal of per-
turbation having the form of rectangular radio pulses with
linearly increasing filling frequency that hampers its use in
practice. Besides, the application of the method needs long
time series.

In this paper we propose a method for recovering time-
delay systems based on the analysis of the system response
to a weak impulsive disturbance of a simple form. The
method can be applied to short time series of time-delay
systems performing either periodic or chaotic oscillations.

The paper is organized as follows. In Sec. II we present
the idea of the method and apply it to recover first-order
time-delay systems with a single delay in periodic and cha-
otic regimes using both numerical and experimental data. In
Sec. III the method is applied for the reconstruction of delays
in scalar time-delay systems of second order and with several
coexisting delays and nonscalar time-delay system. In Sec.
IV we summarize our results.

II. RECOVERY OF FIRST-ORDER TIME-DELAY
SYSTEMS WITH A SINGLE DELAY

Let us consider a ring time-delayed feedback system com-
posed of a delay line, nonlinear device, and filter �Fig. 1�,
performing self-sustained oscillation x�t�. We disturb the sys-
tem by an external signal y�t� having the form of rectangular
pulses with amplitude A, period T, and duration M. Filter
parameters and the point of the external signal injection into
the ring time-delay system define the form of its model equa-
tion. In the case where the filter is a simple low-frequency
first-order filter and the signal y�t� is added to the system
between the filter and the delay line �Fig. 1�, the considered
system is governed by the first-order delay-differential equa-
tion

�ẋ�t� = − x�t� + f„x�t − �� + y�t − ��… , �1�

where � is the delay time, the parameter � characterizes the
inertial properties of the system, and f is a nonlinear func-
tion.

FIG. 1. Block diagram of a ring time-delayed feedback system
disturbed by an external pulse signal.
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The external signal y�t� disturbs the system. However, as
can be seen from Eq. �1�, the result of x�t� perturbation by
y�t� manifests itself only after the time � after the beginning
of perturbation. Similarly, termination of external perturba-
tion affects the system dynamics only after the time � after
the completion of perturbation. If a disturbance has the form
of rectangular pulses beginning at time moments t=nT and
ending at time moments t=nT+M, n=1,2 , . . ., then the tra-
jectory x�t� suffers perturbations at t=nT+� and t=nT+M
+�. At these moments of time breaks appear in the temporal
realization of x�t�, which are practically unnoticeable in the
case of small amplitudes of the disturbances. The changes in
the system dynamics become more noticeable if one numeri-
cally differentiate x�t� with respect to t. Time derivative ẋ�t�
shows a jump in time � after the beginning and after the
ending of a rectangular pulse. The variable best suited to
analyze a time-delay system response to external perturba-
tions by rectangular pulses is the second derivative ẍ�t�. Its
time series exhibits sharp peaks or dips in time � after the
passage of the leading and trailing edges of a rectangular
pulse. These peaks and dips are pronounced even for small
amplitudes of the disturbances.

Investigating correlations between a disturbance and the
system response one should use signals that have undergone
the same transformations. Thus, the cross-correlation func-
tion of ẍ�t� and the second derivative of perturbation ÿ�t�
allows us to estimate �. However, since ÿ�t� obtained from
y�t� using numerical differentiation takes both positive and
negative values in the vicinity of pulse edge, the delay time
corresponds to zero crossing of the cross-correlation function
between main maximum and minimum. To recover � it is
more convenient to exploit the cross-correlation function

C�s� =
��ÿ�t���ẍ�t + s���
���ÿ�t��2���ẍ�t��2�

, �2�

where the angular brackets denote averaging over time. The
magnitude �ÿ�t�� takes only positive values at the pulse edges
and C�s� has a pronounced maximum at s=� �Fig. 2�a��.
Note that for the accurate recovery of � the time series of x�t�
and y�t� should be sampled at least at � /100.

It should be emphasized that the proposed method can be
applied only in the case where one has an access to the state
variable of the system in order to perturb it. Recently we
have proposed another method for the recovery of time-delay
systems in periodic regimes, which is also based on an analy-
sis of the system response to small periodic disturbance and
the use of the cross-correlation function �23�. However, the
method �23� is much more complicated. First of all, it re-
quires a complex signal of perturbation having the form of
rectangular radio pulses with linearly increasing filling fre-
quency. Second, it is necessary to filter the signals of pertur-
bation and the system response. Then the method of accumu-
lation �25� should be used to obtain a superposition of about
100 responses of the system to perturbations. At last, one has
to define the order of the model delay-differential equation of
the system. Only under fulfillment of these four points the
cross-correlation function of the driving signal and the super-

position of the system responses allows one to estimate the
delay time.

The method proposed in the present paper exploits very
simple external disturbance having the form of rectangular
pulses. Small changes in the system dynamics caused by
such pulses with low amplitude are best revealed by the sec-
ond derivative of the system response. As a consequence, the
cross-correlation function of the second derivatives of the
driving signal and the system response becomes a very sen-
sitive measure for detecting delay in the system. It needs
neither filtration of data nor the knowledge of the system
order for the recovery of �. Since the proposed technique
does not exploit the method of accumulation, it can be ap-
plied to time series by order of magnitude shorter than those
required for the method in Ref. �23�. One more advantage of
the present method is that it can be easily realized in the
physical experiment in contrast to the method �23�, which
application to real data is hampered by the necessity to en-
sure the same initial phase of filling for all radio pulses.

We apply the proposed method to recover a delay time of
system �1� with �=800, �=20, f�x�=�−x2, and �=1. For a
given parameter of nonlinearity �, the system �1� shows in
the absence of perturbation periodic self-sustained oscilla-
tions with amplitude Aa=1 and period Ta=1638. We disturb
the system by an external pulse signal with A=0.01, T
=1900, and M =T /2. The function �2�, constructed with a
variation step for s equal to 1, shows the maximum at s=�
=800 �Fig. 2�a��. This maximum is located at the true value
of the delay time for A�0.002. The derivatives ẍ�t� and ÿ�t�
are estimated from the time series of x�t� and y�t� using the
simplest difference method. To construct the plot of C�s�
�Fig. 2�a�� we use 20 000 points, but the method can be
applied to shorter time series. As the length of the time series
decreases, the maximum of C�s� at s=� becomes less pro-
nounced. For the indicated parameter values it is sufficient to
take only 3500 points, i.e., the use of two pulses is sufficient
for the accurate reconstruction of �.

In general the number of peaks of C�s�, s� �0,�� is de-
termined by the ratios T /� and M /T. For M =T /2 the dis-

FIG. 2. The cross-correlation function �2� for the system �1�
with �=800, �=20, f�x�=�−x2, and �=1 disturbed by rectangular
pulses with A=0.01 and M =T /2. In the absence of disturbance the
system �1� performs periodic oscillations. �a� T=1900. �b� T
=1000. �c� T=1200.
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tance between the peaks of C�s� is always equal to T /2. In
this case the delay time corresponds to the location of the
first peak of C�s�, if T�2� �Fig. 2�a��, the second peak of
C�s�, if ��T�2� �Fig. 2�b��, and the kth peak of C�s�, if
2� /k�T�2� / �k−1�, k�3. Since the ratio T /� is a priori
unknown, we do not know which peak of C�s� should be
taken for the estimation of �. That is why we propose to
disturb the system at first by an impulsive signal with an
arbitrary period T=T1 and then by an impulsive signal with a
period T=T2 close to T1 and to compare the functions C�s� in
the first and the second cases. For different T the peaks of
C�s� are observed at different s values. Only the location of
the peak corresponding to the delay time remains fixed. If we
find such a peak, we recover �. For example, for �=800 the
first peaks of C�s� are located at s values equal to 300, 800,
and 1300, if T=1000 �Fig. 2�b�� and at s values equal to 200,
800, and 1400, if T=1200 �Fig. 2�c��.

In the case of periodic self-sustained oscillations of a
time-delay system one can easily define their period Ta. If it
is known that these oscillations take place at the principal
mode, for which ��Ta /2, one can choose the impulsive sig-
nal with T�Ta �T�2�� and M =T /2 and recover � as the
value at which the first peak of C�s� is observed. For sim-
plicity all the subsequent figures of the cross-correlation
function C�s� are plotted in the paper for the case T�2�.

If M �T /2, then under fulfillment of one of the condi-
tions: M �� or �T−M��� the C�s� plot exhibits an addi-
tional peak between the values of s=0 and s=� �Fig. 3�. This
peak is located at s=�−M in the case of M �� �Fig. 3�a��
and at s=�− �T−M� in the case of �T−M��� �Fig. 3�b��. In
both cases the second peak of C�s� observed at s=� is the
maximal one. Thus, the value of M can be chosen over a
wide range. The method allows one to use even very short
pulses �M �0.01T� without their amplitude increasing. It
may be useful when it is desirable to reduce the system dis-
turbance to a minimum.

To test the method efficiency for experimental systems
inevitably corrupted by noise we consider the application of
the method to experimental time series gained from an elec-
tronic oscillator with time-delayed feedback perturbed by an
external signal having the form of rectangular pulses �Fig. 1�.
As the nonlinear device we exploit an amplifier constructed
using bipolar transistors and having a quadratic transfer
function. The inertial properties of the oscillator are defined
by a low-frequency first-order RC filter, which resistance R
and capacitance C specify �=RC. The oscillator dynamics is

described by Eq. �1�, where x�t� and x�t−�� are the delay line
input and output voltages, respectively. In the absence of
external perturbation the oscillator shows at �=4.16 ms and
�=0.46 ms periodic self-sustained oscillations with ampli-
tude Aa=1.5 V and period Ta=9.2 ms.

Using an analog-to-digital converter with sampling fre-
quency fs=20 kHz we record the signals x�t� and y�t� at the
pulse signal parameters A=20 mV, T=11.1 ms, and M
=T /2. The function �2� is plotted in Fig. 4�a�. For a variation
step for s equal to 0.05 ms it has the maximum at s
=4.20 ms, i.e., the delay time is recovered with high accu-
racy.

After estimation of � one can reconstruct the parameter �
and the nonlinear function f of a scalar time-delay system
using the method described in Ref. �16�. Following this
method, we have to project the trajectory of undisturbed sys-
tem �1� on the plane �x�t−�� ,�ẋ�t�+x�t��. As follows from
Eq. �1�, in the absence of perturbation the points of the pro-
jection reproduce the nonlinear function f , which can be ap-
proximated if necessary. Since the parameter � is a priori
unknown, one needs to plot �̂ẋ�t�+x�t� versus x�t−�� under
variation in �̂, searching for a single-valued dependence in
the �x�t−�� , �̂ẋ�t�+x�t�� plane, which is possible only for
�̂=�. As a quantitative criterion of single-valuedness in
searching for � we use the minimal length L��̂� a line, con-
necting all points ordered with respect to x�t−�� in the plane
�x�t−�� , �̂ẋ�t�+x�t��. The minimum of L��̂� gives us an esti-
mation of �.

The L��̂� plot constructed at the recovered delay time
�̂=4.2 ms is shown in Fig. 4�b�. A variation step for �̂ in Fig.
4�b� is equal to 0.01 ms. The minimum of L��̂� takes place at
�̂=0.39 ms, giving us a close estimation of �=0.46 ms. Us-
ing the estimated values �̂ and �̂ we reconstruct the nonlinear
function from experimental undisturbed time series �Fig.

FIG. 3. The cross-correlation function �2� for the system �1�
disturbed by rectangular pulses with A=0.01 and T=2000. The sys-
tem �1� parameters are the same as in Fig. 2. �a� M =4. �b� M
=1600. The inset in �a� is the enlarged fragment of C�s� in the
vicinity of s=800.

FIG. 4. Reconstruction of the electronic oscillator with delayed
feedback performing periodic oscillations. �a� The cross-correlation
function �2�. �b� Length L of a line connecting all points ordered
with respect to the abscissa in the �x�t− �̂� , �̂ẋ�t�+x�t�� plane, as a
function of �̂. L��̂� is normalized to the most dispersed set of points.
�c� The nonlinear function recovered from experimental periodic
time series at �̂=4.2 ms and �̂=0.39 ms.
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4�c��. Such a technique allows us to recover only a fragment
of the function f , since the oscillations take place only in a
small region of phase space because of their periodicity.

The proposed method can be applied to chaotic time se-
ries for the delay-time reconstruction. Let us consider the
system �1� with �=800, �=20, and �=1.85 corresponding to
a chaotic dynamics. The system is disturbed by a pulse signal
with A=0.1, T=1900, and M =T /2 and a zero-mean Gauss-
ian white noise with a level of 5% �the signal-to-noise ratio
is about 26 dB� is added to the system dynamics. As can be
seen from Fig. 5, the plot of C�s� exhibits the maximum
accurately at s=800. Similarly to Figs. 2 and 3, this figure is
plotted varying s with a step of 1.

The results of the application of the method to experimen-
tal data obtained from the electronic oscillator with delayed
feedback operating in chaotic regime are presented in Fig. 6.
The oscillator parameters �=4.16 ms and �=0.46 ms are
chosen the same as in the considered above case of periodic
oscillations �Fig. 4�. To obtain chaotic oscillations in the sys-

tem we increase the amplifier gain. The oscillator is dis-
turbed by rectangular pulses with A=50 mV, T=11.1 ms,
and M =T /2. The cross-correlation function �2�, constructed
varying s with a step of 0.05 ms, exhibits the maximum at
s=4.20 ms �Fig. 6�a��. The L��̂� plot, constructed with �̂
=4.2 ms and a variation step for �̂ equal to 0.01 ms, shows
the minimum at �̂=0.39 ms �Fig. 6�b��. The nonlinear func-
tion recovered at �̂=4.2 ms and �̂=0.39 ms �Fig. 6�c�� co-
incides closely with the true transfer function f of the ampli-
fier.

III. DELAY ESTIMATION IN SCALAR TIME-DELAY
SYSTEMS OF SECOND ORDER AND WITH MULTIPLE

DELAYS AND NONSCALAR TIME-DELAY SYSTEM

The proposed method can be applied for the reconstruc-
tion of time-delay systems of higher order than system �1�.
Let us consider a time-delay system described by the second-
order delay-differential equation in the presence of dynami-
cal noise 	�t�,

�2ẍ�t� + �1ẋ�t� = − x�t� + f„x�t − �� + y�t − ��… + 	�t� . �3�

Equation �3� governs the system depicted in Fig. 1 if the
filter is composed of two in-series low-frequency RC filters.
In this case �1=R1C1+R2C2 and �2=R1C1R2C2, where R1,
R2, C1, and C2 are respectively the resistances and capaci-
tances of the first and the second filters. At �=800, �1=25,
�2=100, f�x�=�−x2, and �=1 in the absence of perturbation
and noise the system �3� exhibits periodic oscillations. Part
of the time series is shown in Fig. 7�a�.

We disturb the system by a very short pulse signal with
A=0.05, T=1900, and M =0.01T=19 and add to the system
dynamics a zero-mean Gaussian white noise 	�t� with a stan-
dard deviation of 3% of the standard deviation of data with-
out noise �the signal-to-noise ratio is about 30 dB�. The
cross-correlation function �2� shows the maximum at s
=801 giving a close estimation of � �Fig. 7�b��. It should be
noted that the error of � estimation increases with the in-
crease in the system order. The appearance of an additional
peak to the left of the main maximum in Fig. 7�b� is the
result of M �T /2 �see Sec. II�. In the case of chaotic behav-
ior of the system �3� the function �2� has a shape qualita-
tively similar to the one presented in Fig. 7�b�.

The method can be extended to time-delay systems with
several coexisting delays. We demonstrate the efficiency of
the proposed technique with a generalized Ikeda equation
obtained by introducing a further delay in the presence of
dynamical noise,

FIG. 5. The cross-correlation function �2� for the system �1�
with �=800, �=20, f�x�=�−x2, and �=1.85 disturbed by rectangu-
lar pulses with A=0.1, T=1900, and M =T /2. In the absence of
disturbance the system �1� performs chaotic oscillations.

FIG. 6. Reconstruction of the electronic oscillator with delayed
feedback performing chaotic oscillations. �a� The cross-correlation
function �2�. �b� The L��̂� plot. L��̂� is normalized to the most
dispersed set of points. �c� The nonlinear function recovered from
experimental chaotic time series at �̂=4.2 ms and �̂=0.39 ms.

FIG. 7. �a� The time series of periodic self-sustained oscillations
of the system �3� in the absence of perturbation and noise. �b� The
cross-correlation function �2�.
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ẋ�t� = − x�t� + 
�sin„x�t − �1� − x01 + y�t − �1�… + sin„x�t − �2�

− x02 + y�t − �2�…� + 	�t� . �4�

The Ikeda equation describes a phase lag x of the electrical
field across the optical resonator. The parameter 
 character-
izes the laser power intensity injected into the system, �1 and
�2 are the delay times, and x01 and x02 are the constant phase
lags. At 
=10, �1=2, �2=2.5, and x01=x02=� /3 in the ab-
sence of perturbation and noise the system �4� exhibits cha-
otic oscillations �Fig. 8�a��.

Figure 8�b� shows the function �2� plot for the case where
the system �4� is disturbed by a pulse signal y�t� with A
=0.5, T=5.2, and M =T /2 and corrupted by a zero-mean
Gaussian white noise 	�t� with a standard deviation of 20%
of the data standard deviation �the signal-to-noise ratio is
about 14 dB�. For a variation step for s equal to 0.01 the first
two peaks of C�s� are located at s=2.00 and s=2.50. In spite
of the high level of noise, the delay times are recovered
accurately. For the indicated parameter values the method
provides accurate reconstruction of �1 and �2 for noise levels
up to 40% �the signal-to-noise ratio is about 8 dB�. Being
applied to the system �4� in periodic regimes the method
gives the similar results. Thus, the proposed method is more
tolerant to noise than the method �24�, which is efficient only
for very small levels of noise.

Let us consider the application of the method to nonscalar
time-delay system in periodic regime. For a demonstration
on numerically generated data we use a system of two
coupled nonlinear delayed equations introduced in �26� and
disturb the variable x�t� by an external signal y�t� similarly to
the way used in Eqs. �1�, �3�, and �4�,

ẋ�t� = rx�t� − 
	�x�t − �� + y�t − ���2 + cz2�t − ��
x�t� ,

ż�t� = rz�t� − 
�z2�t − �� + cx2�t − ���z�t� . �5�

We choose the parameters to be r=4, 
=4, c=0.5, and �
=0.35. As it was shown in �26�, at these parameter values the
system �5� shows periodic oscillations in the absence of per-
turbation. Part of the time series is shown in Fig. 9�a�. The
period of self-sustained oscillations is Ta=3.38.

We disturb the system by rectangular pulses with a very
small amplitude A=0.01, T=4, and M =T /2. For a variation

step for s equal to 5�10−4 the maximum of C�s� is observed
at s=0.3500, giving an accurate recovery of � �Fig. 9�b��.

IV. CONCLUSION

We have proposed the method for the reconstruction of
low-order time-delayed feedback systems based on the
analysis of the system response to an external disturbance
having the form of rectangular pulses. To implement this
method one must have access to the state variable of the
system in order to perturb it. The method allows one to use
very short and low-amplitude pulses. It can be successfully
applied to short time series and data heavily corrupted by
noise. However, the time series of the driving signal and the
system response must have at least about 100 points on the
time interval equal to the delay time. In contrast to the
method proposed by us in Ref. �23�, the considered tech-
nique can be used for the recovery of delays in time-delay
systems with multiple delays and nonscalar time-delay sys-
tems and is easily realized in practice. The method can be
applied also for the reconstruction of high-order time-delay
systems, but the error of the delay-time estimation increases
with the increase in the system order.

The proposed method is oriented to the recovery of time-
delay systems performing periodic oscillations. However, it
can be applied to systems with delay-induced dynamics per-
forming chaotic oscillations. A limitation of the proposed
technique in comparison with other methods of time-delay
system reconstruction from chaotic time series is the neces-
sity of disturbing the system dynamics. On the other hand,
the advantage of the considered method over other ones pro-
posed for chaotic time series is its efficiency for higher levels
of noise.

We verified the method by applying it to periodic and
chaotic time series of various model delay-differential equa-
tions, including those corrupted by noise, and an experimen-
tal time series acquired from an electronic oscillator with
delayed feedback, disturbed by rectangular pulses.
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FIG. 8. �a� The time series of chaotic oscillations of the system
�4� in the absence of perturbation and noise. �b� The cross-
correlation function �2�.

FIG. 9. �a� The time series of periodic self-sustained oscillations
of the system �5� in the absence of perturbation. �b� The cross-
correlation function �2�.
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