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Considering the fact that signal transmission time delays between different pairs of synaptically coupled
neurons in the brain are different, we study the effects of distributed time delays on phase synchronization of
bursting neurons. We consider the case of inhibitory coupled bursting Hindmarsh-Rose neurons and find that
distributed time delays in chemical coupling can induce a variety of phase-coherent dynamic behaviors. The
critical mean time delay for the emergence of coherent behaviors is inversely proportional to both the coupling
strength and the average degree. This phenomenon is robust to nonidentical external inputs and is independent
of network topology. A physical theory is formulated to explain the emergence of coherent neuronal activity.
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I. INTRODUCTION

Synchronization of neuronal oscillatory activity has been
suggested as a mechanism for various cognitive and percep-
tual processes in the brain such as perceptual grouping,
attention-dependent stimulus selection, routing of signals
across distributed cortical networks, sensory-motor integra-
tion, working memory, and perceptual awareness �1–3�. Ab-
normal synchronization is also known to be the hallmarks of
certain brain disorders, such as epilepsy, schizophrenia, au-
tism, Alzheimer disease, and Parkinson �2�. Synchronized
oscillation can occur in neurons from a small brain region to
a large-scale network of distributed brain regions. Inhibition
plays an important role to induce and balance network oscil-
lations and synchrony both in small- and large-scale brain
networks �3–5�. The inhibitory neuronal network consisting
of interneurons, coupled to the principal cells, provides the
necessary flexibility for the complex operations of the brain
�5�. The network module with reciprocal inhibition, a princi-
pal building block of various central pattern generators, has
been known to generate antiphase oscillations critical for
rhythmic motor patterns �6,7�. However, our theoretical un-
derstanding of mechanisms for synchronous neural activity
patterns in spatially distributed inhibitory neural populations
is limited �8�. In particular, the interplay of distributed time
delays and inhibitory chemical coupling in phase synchroni-
zation of bursting neurons �multitime scale dynamical sys-
tems� has not been studied well.

Signal transmission time delays are unavoidable in spa-
tially distributed coupled oscillator systems. Because of dif-
ferent distances and finite signal transmission speeds be-
tween different pairs of coupled neurons in the brain, time
delays are also spatially distributed. Some experiments have
shown that the time delays can scale up to 80 ms in cortical
networks �9� and could be distributed in a certain range de-
pending on the type and the location of the neurons in the
mammalian neocortex �10,11�. Thus, the influence of time
delays on neuronal activity has received a great deal of at-
tention recently �12,13,15,16�. For example, Dhamala et al.
found neural synchrony enhanced by fixed time delay �12�.

Rossoni et al. studied the stability of synchronous oscilla-
tions in system of neurons with delayed diffusive and pulsed
couplings �13�. Lindner et al. �14� investigated neuronal fir-
ing patterns induced by spatially correlated noise and de-
layed inhibitory global feedback. Gong and van Leeuwen
demonstrated the dynamically maintained spike timing se-
quences of pulse-coupled neurons under large identical and
nonidentical time delays in recurrent networks �15�. Ghosh et
al. pointed out that the effects of noise and time delays are
essential for the emergence of the coherent fluctuations of
the brain network �16�. Burić et al. recently reported the
synchronization of bursting neurons with delayed excitatory
chemical �synaptic� synapses �17�. The effects of distributed
time delays in inhibitory chemical coupling of bursting neu-
rons have yet to be explored.

In this paper, we investigate the coherent activity patterns
induced by distributed time delays in inhibitory, synaptically
coupled, bursting Hindmarsh-Rose neurons. We find that the
spatiotemporal chaos of the network can be tamed into regu-
lar patterns by suitable average delays. The period of the
patterns is increased with increasing time delays, which
shows that the coupled system goes through a series of
periodic-adding bifurcation. This phenomenon is robust to
the mismatch of nonidentical external inputs and the network
topology.

II. NETWORK MODEL AND SPATIOTEMPORAL
PATTERNS

The inhibitory Hindmarsh-Rose neural network model is
described by

ẋi = y − ax3 + bx2 − z + Ii
ext − gs�xi − Vs��

j=1

N

gij��xj� ,

ẏi = c − dxi
2 − yi,
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żi = r�s�xi − x0� − zi�, i, j, = 1, . . . ,N , �1�

where x is the membrane potential, y is associated with the
fast current, Na+ or Ka+, and z with the slow current, for
example, Ca2+. The parameters are taken as a=1.0, b=3.0,
c=1.0, d=5.0, s=4.0, r=0.006, and x0=−1.60. The external
inputs are given by Ii

ext. The single neuron exhibits a
multitime-scaled burst-spike chaotic behavior for 2.92� Iext

�3.40. gs is the synaptic coupling strength and the delayed
synaptic coupling function is modeled by the sigmoidal func-
tion ��xi�=1 / �1+exp�−��xi�t−�ij�−�s���, where �s is the
threshold which is chosen such that every spike in the single
neuron bursting can reach the threshold. We here take �s
=0 and �=30. Vs is the reversal potential; its sign determines
the synapse whether excitatory or inhibitory. In this paper,
we consider the case of inhibitory and let Vs=−1.8. �ij is the
conduction delays between node i and j. G= �gij� is the cou-
pling matrix: gij =gji=1 if there is a link between neurons i
and j, gij =gji=0 otherwise, and gii=0. In our study, the net-
work is constructed by adding M −N random links to a cir-
cular ring of N nodes, i.e., the total number of links is M and
the average degree is K=2M /N. The corresponding distrib-
uted time delays between coupled neurons are set as �ij
=int���1+c���, where int� . � denotes the integer part of �.�; �
is a Gaussian white noise with zero mean and unitary stan-
dard deviation. � denotes the mean value of delay and c�
denotes the fluctuations of distance in realistic natural sys-
tems and satisfy 1+c��0. For simplicity, we let c=0.1.

We first consider the case of identical external input with
Ii

ext=3.2 and M =1000. Our numerical simulations show that
in the given set of parameters, the coupled systems will be
chaotic and unsynchronized when �=0 �see Fig. 1�a��. How-
ever, we surprisingly find that when � becomes nonzero, i.e.,
�ij has a distribution, it is possible for the network to emerge
regular spatiotemporal patterns, �see Figs. 1�b�–1�d��. From
Figs. 1�b�–1�d�, it is easy to see that all the oscillators have
the same behavior, indicating that they are synchronized.
Moreover, one can see that with the increase of �, the syn-
chronized pattern changes from period 1 in �b� to period 2 in
�c�, then to period 3 in �d�, and to higher periods as shown in
Figs. 1�e�–1�g�.

In order to get more detailed insight of the ordered pat-
terns in Fig. 1, we introduce an indicator of the average
membrane potential

X =
1

N
�
i=1

N

xi�t� . �2�

If the neurons are weakly correlated, for example, they burst
at different times, X fluctuates irregularly with small ampli-
tudes. Instead, X shows regular dynamics if all neurons burst
coherently. We find that the different patterns in Fig. 1 cor-
respond to different behaviors of X. The left panels of Fig. 2
show how X changes with t, which corresponds to Figs.
1�a�–1�d�. It is easy to see that the value of X fluctuates
slightly around −1 in �a� with �=0, indicating that the neu-
rons are not bursting in phase. And X shows a sequence of
large amplitude spike in �b� with �=8, indicating that the
neurons spike at approximately the same time. When � is
increased to �=14 in �c�, the burst becomes two spikes.
When � is further increased to �=20 in �d�, the burst be-
comes three spikes. Higher �’s result in higher periods �Figs.
1�e�–1�g��.

The right panels of Fig. 2 show the corresponding trajec-
tories of the left panels for a randomly chosen neuron. Com-
paring Fig. 2�a� to Fig. 2�h�, we see that each neuron is in a
chaotic state and bursts randomly, resulting in the spatiotem-
poral chaos in Fig. 1�a�. In the same way, we can explain the
approximate period 1, period 2, and period 3 spikings in
Figs. 2�i�–2�k�. We also notice that the phase trajectories
shown in Figs. 2�h�–2�k� are nonidentical to different neu-
rons, indicating the influence of different degree of each neu-
ron �18�. In addition, it is worthwhile to mention that this
ordered phenomenon caused by distributed delays is similar
to the cases of spike adding in Ref. �19� induced by increas-
ing coupling strengths.

As shown in Figs. 2�b�–2�d�, there exists an ordered be-
havior although the neurons are not completely synchro-
nized. We will introduce an order parameter to describe this
collective behavior. Let us define a phase for each neuron as
follows:

FIG. 1. Spatiotemporal patterns for N=100, M =1000, and gs

=1 with �a� �=0, �b� �=8, �c� �=14, �d� �=20, �e� �=30, �f� �
=40, and �g� �=50.

FIG. 2. �Left panels� Time series of the indicator X with �=0 in
�a�, �=8 in �b�, �=14 in �c�, �=20 in �d�, and �=30,40,50 in
�e�–�g�, respectively. �Right panels� The corresponding trajectories
of the left panels for a randomly chosen neuron. The value of gs is
1.
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�i�t� = 2	
t − Ti,k

Ti,k+1 − Ti,k
,

Ti,k 
 t 
 Ti,k+1,i = 1, . . . ,N , �3�

where Ti,k represents the time of spiking, i.e., the moment
with the maximum of xi�t�. The order parameter of phase can
be written as

z�t� = R�t�exp�i��t�� �
1

N
�
j=1

N

exp�i� j�t�� . �4�

where R�t� and ��t� are the amplitude and angle, respec-
tively. The time-averaged order-parameter magnitude is

R̄ = lim
T→�

�
t=1

T

R�t� , �5�

where R̄ would be zero for weak correlation and tends to
unity for a complete phase synchronization. Figure 3�a�
shows R̄ for different pairs of coupling strength gs and time

delay �. Here, we find that R̄ suddenly becomes unity when
time delay and coupling strength is over a pair of critical
values �� and gs

� �see Fig. 3�a�� which correspond to the
complete phase synchronization. Moreover, from Fig. 3�a�, it
is easy to see that there is a relationship between �� and gs

�,
i.e., ��
gs

�	const. That is, for a fixed gs, we can tame chaos
with sufficient time delay and for a fixed �, we can tame
chaos with sufficient coupling strength. Is this phenomenon
robust to the links M? Figure 4�a� shows the results for M
=1000, 2000, and 3000, respectively, which correspond to
the average degrees K=20, 40, and 60. Interestingly, we find
that for a fixed gs, the threshold �� is inversely proportional
to the average degree K. To see it clearer, we plot the 2�� of
K=40 and 3�� of K=60 with the �� of K=20 together �see
the inset of Fig. 4�a��. Obviously, all the three curves are
approximately overlapped, indicating the invariance of nor-
malization on the average degree K. A similar result holds for
the relationship between gs

� and K for fixed �. Furthermore,
we check the influence of network size on the thresholds. We
increase N from 100 to 200 and then to 500 but keep the
average degree as constant K=20. Figure 4�b� shows the
results. It is easy to see that the three curves are approxi-
mately overlapped, indicating that the correlated patterns are
robust to network size.

Because of the diversity of degree distribution in net-
works, different individual oscillators may get different ex-
ternal inputs. Here, we look at whether the observed phe-
nomena are robust to the nonidentical signal Ii

ext. We let Ii
ext

be random uniformly distributed from the interval �2.92,
3.40� in which individual oscillators are all chaotic. Surpris-
ingly, we have observed the similar results as shown in Figs.

1–3. Here, we plot the dependence of the order parameter R̄
on gs and � in Fig. 3�b�. It is easy to find that Fig. 3�b� is very
similar to Fig. 3�a�, indicating the robust to nonidentical ex-
ternal inputs Ii

ext.
We also look at the influence of parameter c and the net-

work topology on the coherent behaviors. We find that the
observed phenomenon remains for other values of c except
the threshold of average delay �� is increased when we in-
crease c. However, the Gaussian distribution of time delay
becomes flat with large c, which is similar to the uniformly
distribution, and weakens the effect of time delay.

III. PHASE-REDUCED MODEL TO EXPLAIN ORDERED
PATTERNS

We use a phase-reduced model to shed light on the effect
of distributed time delays. The advantage of phase-reduced
model is that one can carry out the analytical calculations
�20,21�. For the sake of simplicity, we consider simply the
single-spike firing pattern of single spike to carry out theo-
retical analysis. That is, we consider the case in which each
neuron has the firing time series similar to Fig. 2�b� but
spiking incoherently when the parameters ��� and gs

�� are
lower than the thresholds.

The phase-reduced model of Eq. �1� can be assumed as

�̇i = �i − ��
j=1

N

gijH�� j�t − �ij� − �i�t��, i = 1,2, . . . ,N ,

�6�

where �i are natural frequencies, �i�t� the phases of indi-
vidual neurons, and −� the inhibitory coupling strength. H���
is a 2	-periodic function and estimated by phase reduction

FIG. 3. �Color online� Order parameter R̄ for different pairs of
coupling strength gs and time delay � with N=100 and M =1000. �a�
Ii
ext=3.2; �b� Ii

ext� �2.92,3.40�.
FIG. 4. The relationship between �� and gs

� for different number
of links M and network size N. �a� �� for N=100, M =1000, 2000,
and 3000. �Inset of �a�� The normalized �� based on M =1000. �b� ��

for N=100 and M =1000 �squares�, N=200 and M =2000 �circles�,
and N=300 and M =3000 �triangles�.
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method for pairwise interaction. In general, H��� can be ap-
proximated by a few Fourier components H���
=�n=0

3 �an cos�n��+bn sin�n��� �20�. Here, we choose the
simplest possible periodic coupling function H���=sin���
which is widely used in many studies �21–23�. Then, Eq. �6�
becomes

�̇i = �i − ��
j=1

N

gij sin�� j�t − �ij� − �i�t�� . �7�

When all the oscillators are synchronized, they will have the
same frequency �=�i+�� j=1

N gij sin���ij� , i=1,2 , . . . ,N. As
�ij satisfies the Gaussian distribution with mean � and stan-
dard deviation �=c�, we have

� 	 �i + �K

2	
�	 �

0

�

exp�−
��� − ��2

2�2 
 sin�����d��

= �i + �K exp�− �c���2

2

 sin���� .

Letting �e−�c���2/2���, we obtain

� 	 �i + ��K sin����,i = 1,2, . . . ,N . �8�

It is easy to see that � is inversely proportional to K for fixed
�. As K is proportional to M, thus � is inversely proportional
to M, confirming Fig. 4�a�. Then we let �i be 	

16 or distrib-
uted in the range �− 	

8 , 	
8 � and apply the same delay distribu-

tions as in Eqs. �1�–�7�. Here, �i is not specific and can be
set as other values. Using Eq. �5�, we calculate the coherent

indicator R̄ and find the similar trend with Fig. 3 �see Fig. 5
for N=100 and M =1000 in Eq. �7��. Thus, the phase-reduced
model �7� explains the coherent behaviors of the Hindmarsh-
Rose neurons observed in Fig. 3.

IV. CONCLUSIONS

We have studied the effects of distributed time delays and
coupling strengths on the collective behaviors of synaptically
coupled inhibitory Hindmarsh-Rose neurons. We find that
the time delays induce different ordered patterns and the pe-
riod increases with the increasing value of average delay via
period-adding bifurcation. The critical values of coupling
strength and time delay have an inverse relationship when
neurons become phase synchronized. A simple phase-
reduced model explains the occurrence of these time-delay-
induced coherent behaviors.
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